PD-1/PD-L1 Inhibitors as Monotherapy in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer Patients with High PD-L1 Expression: An Expert Position Statement
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Expert Panel Selection and Clinical Statement Generation
2.3. Systematic Literature Review
2.4. Delphi Process
2.5. Edition of the Document
3. Results
3.1. Main Characteristics of Pivotal Trials
3.2. Main Results of Pivotal Trials
Atezolizumab * | Cemiplimab | Pembrolizumab | |
---|---|---|---|
Overall survival (months) |
|
|
|
Progression-free survival (months) |
|
|
|
Objective response (months) |
|
|
|
Mean∆Global Health Status/HRQoL | GHS = 62.8 vs. 59.9 [23] | ∆ GHS/HRQoL15.9 vs. −8.3 [18] | QLQ-C30 = 6.95 (95% CI [3.29, 10.58]) vs. −0.88 (95% CI [−4.78, 3.02]) [24] |
3.3. Main Results in Predefined Patient Subgroups in the Pivotal Trials
Atezolizumab * | Cemiplimab | Pembrolizumab | |
---|---|---|---|
Overall survival | <65 years HR = 0.72 (95% CI [0.44, 1.19]) [21] 65–74 years HR = 0.78 (95% CI [0.45, 1.36]) [21] >74 years HR = 1.03 (95% CI [0.31, 3.48]) [21] --------------------------------------- Men HR = 0.73 (95% CI [0.48, 1.11]) [21] Women HR = 0.84 (95% CI [0.45, 1.58]) [21] --------------------------------------- ECOG PS score = 0 HR = 0.63 (95% CI [0.33, 1.20]) [21] ECOG PS score = 1 HR = 0.80 (95% CI [0.53, 1.22]) [21] --------------------------------------- Squamous HR = 0.91 (95% CI [0.45, 1.83]) [21] Non-squamous HR = 0.72 (95% CI [0.48, 1.08]) [21] | <65 years HR = 0.66 (95% CI [0.44, 1.00] [18] ≥65 years HR = 0.48 (95% CI [0.30, 0.76]) [18] --------------------------------------- Men HR = 0.50 (95% CI [0.36, 0.69]) [18] Women HR = 1.11 (95% CI [0.49, 2.52]) [18] --------------------------------------- ECOG PS score = 0 HR = 0.77 (95% CI [0.41, 1.44]) [18] ECOG PS score = 1 HR = 0.54 (95% CI [0.38, 0.76]) [18] --------------------------------------- Squamous HR = 0.48 (95% CI [0.30, 0.77]) [18] Non-squamous HR = 0.60 (95% CI [0.44, 0.83]) [18] --------------------------------------- Brain metastases HR = 0.42 (95% CI [0.20, 0.87]) [27] No brain metastases HR = 0.60 (95% CI [0.44, 0.83]) [18] --------------------------------------- Locally advanced HR = 0.67 (95% CI [0.38, 1.17]) [28] | <65 years HR = 0.60 (95% CI [0.38, 0.96]) [20] ≥65 years HR = 0.64 (95% CI [0.42, 0.98]) [20] <75 years HR = 0.71 (95% CI [0.59, 0.87]) [26] ≥75 years HR = 0.41 (95% CI [0.23, 0.73]) [26] --------------------------------------- Men HR = 0.54 (95% CI [0.36, 0.79]) [20] Women HR = 0.95 (95% CI [0.56, 1.62]) [20] --------------------------------------- ECOG PS score = 0 HR = 0.78 (95% CI [0.44, 1.37]) [20] ECOG PS score = 1 HR = 0.56 (95% CI [0.39, 0.81]) [20] --------------------------------------- Squamous HR = 0.73 (95% CI [0.28, 1.39]) [20] Non-squamous HR = 0.58 (95% CI [0.41, 0.83]) [20] --------------------------------------- Brain metastases HR = 0.73 (95% CI [0.20, 2.62]) [20] No brain metastases HR = 0.64 (95% CI [0.46, 0.88]) [20] |
Progression-free survival | - | <65 years HR = 0.51 (95% CI [0.37, 0.69]) [18] ≥65 years HR = 0.60 (95% CI [0.43, 0.84]) [18] --------------------------------------- Men HR = 0.50 (95% CI [0.40, 0.64]) [18] Women HR = 0.79 (95% CI [0.43, 1.46]) [18] --------------------------------------- ECOG PS score = 0 HR = 0.59 (95% CI [0.38, 0.92]) [18] ECOG PS score = 1 HR = 0.52 (95% CI [0.41, 0.68]) [18] --------------------------------------- Squamous HR = 0.48 (95% CI [0.34, 0.67]) [18] Non-squamous HR = 0.60 (95% CI [0.44, 0.81]) [18] --------------------------------------- Locally advanced HR = 0.56 (95% CI [0.34, 0.95]) [28] --------------------------------------- Brain metastases HR = 0.34 (95% CI [0.18, 0.63]) [27] | - |
PD-L1 ≥90% | PD-L1 >60% to <90% | PD-L1 ≥50% to ≤60% | |
---|---|---|---|
Overall survival (months) |
|
|
|
Progression-free survival (months) |
|
|
|
ORR |
|
|
|
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Deng, Y.; Tin, M.S.; Lok, V.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E., 3rd; Xu, W.; Zheng, Z.J.; Elcarte, E.; et al. Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis. Chest 2022, 161, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Cancer Observatory. Available online: gco.iarc.fr (accessed on 17 March 2023).
- Society, A.C. Cancer Facts & Figures. 2022. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2022/2022-cancer-facts-and-figures.pdf (accessed on 1 February 2023).
- Races, A.; Males, M.W.M.B. SEER Cancer Statistics Review 1975–2017. 2020. Available online: https://seer.cancer.gov/archive/csr/1975_2017/results_single/sect_04_table.08.pdf (accessed on 1 February 2023).
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef]
- Chen, D.S.; Irving, B.A.; Hodi, F.S. Molecular pathways: Next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin. Cancer Res. 2012, 18, 6580–6587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Boyle, T.A.; Zhou, C.; Rimm, D.L.; Hirsch, F.R. PD-L1 Expression in Lung Cancer. J. Thorac. Oncol. 2016, 11, 964–975. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, Y.; Wan, B.; Song, Y.; Zhan, P.; Hu, Y.; Zhang, Q.; Zhang, F.; Liu, H.; Li, T.; et al. The clinicopathological and prognostic significance of PD-L1 expression assessed by immunohistochemistry in lung cancer: A meta-analysis of 50 studies with 11,383 patients. Transl. Lung Cancer Res. 2019, 8, 429–449. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; von Pawel, J.; Park, K.; Rittmeyer, A.; Gandara, D.R.; Ponce Aix, S.; Han, J.Y.; Gadgeel, S.M.; Hida, T.; Cortinovis, D.L.; et al. Updated Efficacy Analysis Including Secondary Population Results for OAK: A Randomized Phase III Study of Atezolizumab versus Docetaxel in Patients with Previously Treated Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 1156–1170. [Google Scholar] [CrossRef] [Green Version]
- Antonia, S.J.; Borghaei, H.; Ramalingam, S.S.; Horn, L.; De Castro Carpeño, J.; Pluzanski, A.; Burgio, M.A.; Garassino, M.; Chow, L.Q.M.; Gettinger, S.; et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: A pooled analysis. Lancet Oncol. 2019, 20, 1395–1408. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.R.; Kim, J.-H.; Dubos Arvis, C.; Ahn, M.-J.; et al. Factors associated with better overall survival (OS) in patients with previously treated, PD-L1–expressing, advanced NSCLC: Multivariate analysis of KEYNOTE-010. J. Clin. Oncol. 2017, 35, 9090. [Google Scholar] [CrossRef]
- Abdel-Rahman, O.; Oweira, H.; Giryes, A. Health-related quality of life in cancer patients treated with PD-(L)1 inhibitors: A systematic review. Expert Rev. Anticancer Ther. 2018, 18, 1231–1239. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.W.; Xiong, Y.; Chen, S.; Xia, F.; Li, Q.; Hu, J. Anti-PD-1/PD-L1 antibody therapy for pretreated advanced nonsmall-cell lung cancer: A meta-analysis of randomized clinical trials. Medicine 2016, 95, e4611. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Jassem, J.; de Marinis, F.; Giaccone, G.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Oprean, C.; Kim, Y.C.; Andric, Z.; et al. Updated Overall Survival Analysis from IMpower110: Atezolizumab versus platinum-based chemotherapy in treatment-naive programmed death-ligand 1-Selected NSCLC. J. Thorac. Oncol. 2021, 16, 1872–1882. [Google Scholar] [CrossRef]
- Gumus, M.; Chen, C.-I.; Ivanescu, C.; Kilickap, S.; Bondarenko, I.; Ozguroglu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Harnett, J.; et al. Patient-reported symptoms, functioning, and quality of life (QoL) in patients treated with cemiplimab monotherapy for first-line treatment of advanced NSCLC with PD-L1 ≥ 50%: Results from EMPOWER-Lung 1 study. J. Clin. Oncol. 2021, 39, 9078. [Google Scholar] [CrossRef]
- de Marinis, F.; Giaccone, G.; Herbst, R.S.; Oprean, C.-M.; Szczesna, A.; Boukovinas, I.; Bonomi, L.; Kim, Y.-C.; Summers, Y.J.; Kurata, T.; et al. Patient-reported outcomes (PROs) in the randomized, phase III IMpower110 study of atezolizumab (atezo) vs chemotherapy in 1L metastatic NSCLC. J. Clin. Oncol. 2020, 38, 9594. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. PL04a.01: Health-Related Quality of Life for Pembrolizumab vs Chemotherapy in Advanced NSCLC with PD-L1 TPS ≥50%: Data from KEYNOTE-024. J. Thorac. Oncol. 2017, 12, S8–S9. [Google Scholar] [CrossRef] [Green Version]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score >/= 50. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Nosaki, K.; Saka, H.; Hosomi, Y.; Baas, P.; de Castro, G., Jr.; Reck, M.; Wu, Y.L.; Brahmer, J.R.; Felip, E.; Sawada, T.; et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer 2019, 135, 188–195. [Google Scholar] [CrossRef]
- Kilickap, S.; Özgüroğlu, M.; Sezer, A.; Gumus, M.; Bondarenko, I.; Gogishvili, M.; Türk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.A.; et al. 10MO EMPOWER-Lung 1: Cemiplimab (CEMI) monotherapy as first-line (1L) treatment of patients (pts) with brain metastases from advanced non-small cell lung cancer (aNSCLC) with programmed cell death-ligand 1 (PD-L1) ≥ 50%—3-year update. J. Thorac. Oncol. 2023, 18, S42–S43. [Google Scholar] [CrossRef]
- Kalinka, E.; Bondarenko, I.; Gogishvili, M.; Melkadze, T.; Baramidze, A.; Sezer, A.; Makharadze, T.; Kilickap, S.; Gumus, M.; Penkov, K.D.; et al. 114M0 First-line cemiplimab for locally advanced non-small cell lung cancer: Updated subgroup analyses from EMPOWER-Lung 1 and EMPOWER-Lung 3. J. Thorac. Oncol. 2023, 18, S106. [Google Scholar] [CrossRef]
- Ozguroglu, M.; Sezer, A.; Kilickap, S.; Gumus, M.; Bondarenko, I.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy as first-line (1L) treatment of patients with brain metastases from advanced non-small cell lung cancer (NSCLC) with programmed cell death-ligand 1 (PD-L1) ≥ 50%: EMPOWER-Lung 1 subgroup analysis. J. Clin. Oncol. 2021, 39, 9085. [Google Scholar] [CrossRef]
- Kilickap, S.; Sezer, A.; Gumus, M.; Bondarenko, I.; Ozguroglu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. OA01.03 Clinical Benefits of First-Line (1L) Cemiplimab Monotherapy by PD-L1 Expression Levels in Patients with Advanced NSCLC. J. Thorac. Oncol. 2021, 16, S101. [Google Scholar] [CrossRef]
- Majem, M.; Cobo, M.; Isla, D.; Marquez-Medina, D.; Rodriguez-Abreu, D.; Casal-Rubio, J.; Bueno, T.M.; Bernabe-Caro, R.; Parente, D.P.; Ruiz-Gracia, P.; et al. PD-(L)1 Inhibitors as Monotherapy for the First-Line Treatment of Non-Small-Cell Lung Cancer Patients with High PD-L1 Expression: A Network Meta-Analysis. J. Clin. Med. 2021, 10, 1365. [Google Scholar] [CrossRef]
- Institute, N.C. Cancer Stat Facts: Lung and Bronchus Cancer. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 17 March 2023).
- Wang, S.; Cowley, L.A.; Liu, X.S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy. Molecules 2019, 24, 3214. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.D.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Oncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Campos-Balea, B.; de Castro Carpeño, J.; Massutí, B.; Vicente-Baz, D.; Pérez Parente, D.; Ruiz-Gracia, P.; Crama, L.; Cobo Dols, M. Prognostic factors for survival in patients with metastatic lung adenocarcinoma: An analysis of the SEER database. Thorac. Cancer 2020, 11, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olio, F.G.; Maggio, I.; Massucci, M.; Mollica, V.; Fragomeno, B.; Ardizzoni, A. ECOG performance status ≥ 2 as a prognostic factor in patients with advanced non small cell lung cancer treated with immune checkpoint inhibitors-A systematic review and meta-analysis of real world data. Lung Cancer 2020, 145, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xu, Z.Y.; Zhu, Q.; Liu, X.; Jiang, S.C.; Zheng, J.H. Brain Metastases Status and Immunotherapy Efficacy in Advanced Lung Cancer: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 669398. [Google Scholar] [CrossRef] [PubMed]
- Riihimäki, M.; Hemminki, A.; Fallah, M.; Thomsen, H.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic sites and survival in lung cancer. Lung Cancer 2014, 86, 78–84. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Chen, C.; Hu, Y.; Miao, L.; Zhou, Y. Association of Brain Metastases with Immune Checkpoint Inhibitors Efficacy in Advanced Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 721760. [Google Scholar] [CrossRef]
- Filippi, A.R.; Di Muzio, J.; Badellino, S.; Mantovani, C.; Ricardi, U. Locally-advanced non-small cell lung cancer: Shall immunotherapy be a new chance? J. Thorac. Dis. 2018, 10, S1461–S1467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
# | Statement | n | % ≥7 | Mean (SD) | Median | p25–p75 | Min | Max | Consensus |
---|---|---|---|---|---|---|---|---|---|
| |||||||||
1 | AT, CEMI, and PEMBRO have been compared with platinum-based chemotherapy in phase III studies whose primary endpoints are OS and PFS | 25 | 96% | 9.5 (6.3) | 10 | 9–10 | 3 | 10 | Consensus |
2 | Crossover was allowed in the CEMI and PEMBRO pivotal trials. The AT pivotal trial did not contemplate crossover | 25 | 92% | 9.2 (1.6) | 10 | 9–10 | 4 | 10 | Consensus |
3 | CEMI pivotal trial allowed the inclusion of patients with controlled hepatitis B virus, hepatitis C virus, and HIV infection and included only patients who were smokers or former smokers | 25 | 96% | 9.3 (1.4) | 10 | 10–10 | 3 | 10 | Consensus |
4 | AT pivotal trial included patients with PD-L1 expression ≥1%. CEMI and PEMBRO pivotal trials patients with PD-L1 expression ≥50% | 24 | 96% | 9.7 (1.1) | 10 | 10–10 | 5 | 10 | Consensus |
5 | CEMI pivotal trial included patients with unresectable locally advanced disease who were not candidates for radical chemoradiotherapy | 25 | 100% | 9.6 (0.2) | 10 | 10–10 | 9 | 10 | Consensus |
6 | CEMI pivotal trial allowed the continuation of immunotherapy after disease progression combined with chemotherapy | 25 | 100% | 9.8 (0.4) | 10 | 10–10 | 8 | 10 | Consensus |
7 | In advanced NSCLC patients with high PD-L1 expression (≥50%) and a PS score ≤ 1, first-line treatment with AT, CEMI, or PEMBRO should be considered | 24 | 100% | 9.8 (0.4) | 10 | 10–10 | 8 | 10 | Consensus |
| |||||||||
8 | AT has been shown to be effective in OS and PFS with an acceptable safety profile | 25 | 92% | 8.7 (1.3) | 10 | 8–10 | 6 | 10 | Consensus |
9 | CEMI has been shown to be effective in OS and PFS with an acceptable safety profile | 25 | 100% | 8.9 (0.5) | 10 | 10–10 | 8 | 10 | Consensus |
10 | PEMBRO has been shown to be effective in OS and PFS with an acceptable safety profile | 25 | 100% | 9.8 (0.4) | 10 | 10–10 | 9 | 10 | Consensus |
11 | CEMI and PEMBRO pivotal trials had a high crossover rate | 25 | 92% | 9.1 (1.5) | 9 | 8–10 | 4 | 10 | Consensus |
12 | In CEMI, PEMBRO, and AT pivotal trials, a better response rate has been demonstrated compared with chemotherapy | 25 | 100% | 9.4 (0.9) | 10 | 9–10 | 7 | 10 | Consensus |
13 | CEMI, PEMBRO, and AT pivotal trials have shown an improvement in patients’ quality of life compared with chemotherapy | 25 | 92% | 9.1 (1.3) | 10 | 9–10 | 5 | 10 | Consensus |
| |||||||||
14 | The clinical benefits of AT, CEMI, and PEMBRO have been demonstrated irrespective of age (<65 years/≥65 years) | 25 | 92% | 8.8 (2.3) | 9 | 8.25–10 | 2 | 10 | Consensus |
15 | The clinical benefits of AT, CEMI, and PEMBRO have been observed irrespective of sex, with significant clinical benefits in male | 25 | 88% | 8.5 (2.3) | 9 | 8–10 | 2 | 10 | Consensus |
16 | The clinical benefits of AT, CEMI, and PEMBRO have been observed irrespective of a PS score of 0 or 1 | 25 | 100% | 9.4 (0.7) | 10 | 9–10 | 8 | 10 | Consensus |
17 | In patients with squamous and non-squamous histological subtypes, the use of immunotherapy should be considered | 25 | 100% | 9.8 (0.5) | 10 | 10–10 | 8 | 10 | Consensus |
18 | Treatment with CEMI or PEMBRO should be considered in patients with brain metastases, with more relevant results for CEMI. No data are currently available for AT | 25 | 76% | 8 (1.9) | 9 | 7–10 | 4 | 10 | Consensus |
19 | CEMI should be considered in unresectable, locally advanced NSCLC patients who are not candidates for radical chemoradiotherapy | 25 | 88% | 8.7 (1.5) | 9 | 8–10 | 5 | 10 | Consensus |
20 | The magnitude of the clinical benefit observed with CEMI were incrementally associated with PD-L1 expression levels. There are no corresponding data for AT and PEMBRO | 25 | 88% | 8.3 (2.1) | 9 | 8–10 | 1 | 10 | Consensus |
Atezolizumab [19] IMpower110- NCT02409342 | Cemiplimab [18] EMPOWER-Lung 1, NCT03088540 | Pembrolizumab [17] KEYNOTE-024 NCT02142738 | |
---|---|---|---|
Phase III open | ✓ | ✓ | ✓ |
Randomization 1:1 | ✓ | ✓ | ✓ |
Randomization stratification |
|
|
|
Previous chemotherapy |
|
|
|
Experimental arm |
|
|
|
Control arm |
|
|
|
If disease progression |
|
|
|
Primary endpoint |
|
|
|
Secondary endpoint |
|
|
|
Atezolizumab [19] IMpower110- NCT02409342 | Cemiplimab [18] EMPOWER-Lung 1, NCT03088540 | Pembrolizumab [17] KEYNOTE-024 NCT02142738 | ||||
---|---|---|---|---|---|---|
n
| 107 * 98 * | 283 † 280 | 154 151 | |||
Median age ‡
| 63 (33–79) 66 (33–87) | 63 (58–69) 64 (58–70) | 64 (33–90) 66 (38–85) | |||
Male patients n (%)
| 79 (73.8) 64 (65.3) | 248 (88) 231 (83) | 92 (59.7) 95 (62.9) | |||
ECOG PS n (%)
| 0 35 (32.7) 38 (38.8) | 1 72 (67.3) 60 (61.2) | 0 77 (27) 75 (27) | 1 206 (73) 205 (73) | 0 54 (35.1) 53 (35.1) | 1 99 (64.3) 98 (64.9) |
Histology n (%)
| Squamous 27 (25.2) 23(23.5) | Non-squamous 80 (74.8) 75 (76.5) | Squamous 122 (43) 121 (43) | Non-squamous 161 (57) 159 (57) | Squamous 29 (18.8) 27 (17.9) | Non-squamous 125 (81.2) 124 (82.1) |
Brain metastases n (%)
| - - | 34 (12) 34 (12) | 18 (11.7) 10 (6.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isla, D.; Sánchez, A.; Casal, J.; Cobo, M.; Majem, M.; Reguart, N.; Zugazagoitia, J.; Bernabé, R. PD-1/PD-L1 Inhibitors as Monotherapy in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer Patients with High PD-L1 Expression: An Expert Position Statement. J. Clin. Med. 2023, 12, 5063. https://doi.org/10.3390/jcm12155063
Isla D, Sánchez A, Casal J, Cobo M, Majem M, Reguart N, Zugazagoitia J, Bernabé R. PD-1/PD-L1 Inhibitors as Monotherapy in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer Patients with High PD-L1 Expression: An Expert Position Statement. Journal of Clinical Medicine. 2023; 12(15):5063. https://doi.org/10.3390/jcm12155063
Chicago/Turabian StyleIsla, Dolores, Alfredo Sánchez, Joaquín Casal, Manuel Cobo, Margarita Majem, Noemi Reguart, Jon Zugazagoitia, and Reyes Bernabé. 2023. "PD-1/PD-L1 Inhibitors as Monotherapy in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer Patients with High PD-L1 Expression: An Expert Position Statement" Journal of Clinical Medicine 12, no. 15: 5063. https://doi.org/10.3390/jcm12155063
APA StyleIsla, D., Sánchez, A., Casal, J., Cobo, M., Majem, M., Reguart, N., Zugazagoitia, J., & Bernabé, R. (2023). PD-1/PD-L1 Inhibitors as Monotherapy in the First-Line Treatment of Advanced Non-Small Cell Lung Cancer Patients with High PD-L1 Expression: An Expert Position Statement. Journal of Clinical Medicine, 12(15), 5063. https://doi.org/10.3390/jcm12155063