Relationship between Laser Intensity at the Peripheral Nerve and Inhibitory Effect of Percutaneous Photobiomodulation on Neuronal Firing in a Rat Spinal Dorsal Horn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. In Vivo Extracellular Recordings from Lamina II Neurons
2.3. Laser Irradiation
2.4. Measurement of Power Density at the Sciatic Nerve
2.5. Statistical Analysis
3. Results
3.1. Effects of Percutaneous PBM on the Neuronal Firing in the Lamina II of Spinal Dorsal Horn Neurons Evoked by Mechanical Stimulation
3.2. Comparison of the Effects of Percutaneous PBM and Direct PBM on the Sciatic Nerve
3.3. Measurement of Power Density at the Sciatic Nerve
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, R.; Armati, P.; Laakso, E.-L.; Bjordal, J.M.; Baxter, G.D. Inhibitory Effects of Laser Irradiation on Peripheral Mammalian Nerves and Relevance to Analgesic Effects: A Systematic Review. Photomed. Laser Surg. 2011, 29, 365–381. [Google Scholar] [CrossRef]
- Chow, R.T.; Armati, P.J. Photobiomodulation: Implications for Anesthesia and Pain Relief. Photomed. Laser Surg. 2016, 34, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Martin, L.F.; Slepian, M.J.; Patwardhan, A.M.; Ibrahim, M.M. Mechanisms and Pathways of Pain Photobiomodulation: A Narrative Review. J. Pain 2021, 22, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Mechanisms and Applications of the Anti-Inflammatory Effects of Photobiomodulation. Aims Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Rosso, M.P.d.O.; Buchaim, D.V.; Kawano, N.; Furlanette, G.; Pomini, K.T.; Buchaim, R.L. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering 2018, 5, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, C.H.B.; Buchaim, D.V.; Ortiz, A.D.C.; Fideles, S.O.M.; Dias, J.A.; Miglino, M.A.; Teixeira, D.D.B.; Pereira, E.D.S.B.M.; Cunha, M.R.D.; Buchaim, R.L. Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers 2022, 14, 3150. [Google Scholar] [CrossRef]
- Ravera, S.; Colombo, E.; Pasquale, C.; Benedicenti, S.; Solimei, L.; Signore, A.; Amaroli, A. Mitochondrial Bioenergetic, Photobiomodulation and Trigeminal Branches Nerve Damage, What’s the Connection? A Review. Int. J. Mol. Sci. 2021, 22, 4347. [Google Scholar] [CrossRef]
- Mandelbaum-Livnat, M.M.; Almog, M.; Nissan, M.; Loeb, E.; Shapira, Y.; Rochkind, S. Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomed. Laser Surg. 2016, 34, 638–645. [Google Scholar] [CrossRef]
- Peplow, P.V.; Chung, T.-Y.; Baxter, G.D. Laser Photobiomodulation of Wound Healing: A Review of Experimental Studies in Mouse and Rat Animal Models. Photomed. Laser Surg. 2010, 28, 291–325. [Google Scholar] [CrossRef]
- Kuffler, D.P. Photobiomodulation in Promoting Wound Healing: A Review. Regen. Med. 2016, 11, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Ayuk, S.M.; Abrahamse, H.; Houreld, N.N. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in Relation to Photobiomodulation. J. Diabetes Res. 2016, 2016, 2897656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjordal, J.M.; Couppé, C.; Chow, R.T.; Tunér, J.; Ljunggren, E.A. A Systematic Review of Low Level Laser Therapy with Location-Specific Doses for Pain from Chronic Joint Disorders. Aust. J. Physiother. 2003, 49, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.T.; Johnson, M.I.; Lopes-Martins, R.A.; Bjordal, J.M. Efficacy of Low-Level Laser Therapy in the Management of Neck Pain: A Systematic Review and Meta-Analysis of Randomised Placebo or Active-Treatment Controlled Trials. Lancet 2009, 374, 1897–1908. [Google Scholar] [CrossRef]
- Stausholm, M.B.; Naterstad, I.F.; Joensen, J.; Lopes-Martins, R.Á.B.; Sæbø, H.; Lund, H.; Fersum, K.V.; Bjordal, J.M. Efficacy of Low-Level Laser Therapy on Pain and Disability in Knee Osteoarthritis: Systematic Review and Meta-Analysis of Randomised Placebo-Controlled Trials. BMJ Open 2019, 9, e031142. [Google Scholar] [CrossRef]
- Ezzati, K.; Fekrazad, R.; Raoofi, Z. The Effects of Photobiomodulation Therapy on Post-Surgical Pain. J. Lasers Med. Sci. 2019, 10, 79–85. [Google Scholar] [CrossRef]
- Camolesi, G.C.V.; Marichalar-Mendía, X.; Padín-Iruegas, M.E.; Spanemberg, J.C.; López-López, J.; Blanco-Carrión, A.; Gándara-Vila, P.; Gallas-Torreira, M.; Pérez-Sayáns, M. Efficacy of Photobiomodulation in Reducing Pain and Improving the Quality of Life in Patients with Idiopathic Burning Mouth Syndrome. A Systematic Review and Meta-Analysis. Lasers Med. Sci. 2022, 37, 2123–2133. [Google Scholar] [CrossRef]
- Bjordal, J.M.; Johnson, M.I.; Lopes-Martins, R.A.; Bogen, B.; Chow, R.; Ljunggren, A.E. Short-Term Efficacy of Physical Interventions in Osteoarthritic Knee Pain. A Systematic Review and Meta-Analysis of Randomised Placebo-Controlled Trials. BMC Musculoskelet. 2007, 8, 51. [Google Scholar] [CrossRef]
- Yang, J.; Mallory, M.J.; Wu, Q.; Bublitz, S.E.; Do, A.; Xiong, D.; Chen, C.Y.Y.; Dorsher, P.T.; Chon, T.Y.; Bauer, B.A. The Safety of Laser Acupuncture: A Systematic Review. Med. Acupunct. 2020, 32, 209–217. [Google Scholar] [CrossRef]
- Holanda, V.M.; Chavantes, M.C.; Silva, D.F.T.; Holanda, C.V.M.D.; Oliveira, J.O.D.; Wu, X.; Anders, J.J. Photobiomodulation of the Dorsal Root Ganglion for the Treatment of Low Back Pain: A Pilot Study. Laser Surg. Med. 2016, 48, 653–659. [Google Scholar] [CrossRef]
- González-Muñoz, A.; Cuevas-Cervera, M.; Pérez-Montilla, J.J.; Aguilar-Núñez, D.; Hamed-Hamed, D.; Aguilar-García, M.; Pruimboom, L.; Navarro-Ledesma, S. Efficacy of Photobiomodulation Therapy in the Treatment of Pain and Inflammation: A Literature Review. Healthcare 2023, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Liebert, A.; Capon, W.; Pang, V.; Vila, D.; Bicknell, B.; McLachlan, C.; Kiat, H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Uta, D.; Ishibashi, N.; Konno, T.; Okada, Y.; Kawase, Y.; Tao, S.; Kume, T. Near-Infrared Photobiomodulation of the Peripheral Nerve Inhibits the Neuronal Firing in a Rat Spinal Dorsal Horn Evoked by Mechanical Stimulation. Int. J. Mol. Sci. 2023, 24, 2352. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Chow, R.; Armati, P.J. Inhibitory Effects of Visible 650-nm and Infrared 808-nm Laser Irradiation on Somatosensory and Compound Muscle Action Potentials in Rat Sciatic Nerve: Implications for Laser-induced Analgesia. J. Peripher. Nerv. Syst. 2011, 16, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; Yan, W.; Armati, P. Electrophysiological Effects of Single Point Transcutaneous 650 and 808 Nm Laser Irradiation of Rat Sciatic Nerve: A Study of Relevance for Low-Level Laser Therapy and Laser Acupuncture. Photomed. Laser Surg. 2012, 30, 530–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, K.; Kawatani, M.; Takeshige, C.; Matsumoto, I. Laser Irradiation Abates Neuronal Responses to Nociceptive Stimulation of Rat-Paw Skin. Brain Res. Bull. 1994, 34, 369–374. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kawatani, M.; Takeshige, C.; Sato, T.; Matsumoto, I. Diode Laser Irradiation Selectively Diminishes Slow Component of Axonal Volleys to Dorsal Roots from the Saphenous Nerve in the Rat. Neurosci. Lett. 1993, 161, 65–68. [Google Scholar] [CrossRef]
- Shimoyama, N.; Lijima, K.; Shimoyama, M.; Mizuguchi, T. The Effects of Helium-Neon Laser on Formalin-Induced Activity of Dorsal Horn Neurons in the Rat. J. Clin. Laser Med. Surg. 1992, 10, 91–94. [Google Scholar] [CrossRef]
- Kono, T.; Kasai, S.; Sakamoto, T.; Mito, M. Cord Dorsum Potentials Suppressed by Low Power Laser Irradiation on a Peripheral Nerve in the Cat. J. Clin. Laser Med. Surg. 1993, 11, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. Neuronal Circuitry for Pain Processing in the Dorsal Horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Jacques, S.L. Laser-Tissue Interactions: Photochemical, Photothermal, and Photomechanical. Surg. Clin. N. Am. 1992, 72, 531–558. [Google Scholar] [CrossRef] [PubMed]
- Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, 5007–5008. [Google Scholar] [CrossRef]
- Cheong, W.F.; Prahl, S.A.; Welch, A.J. A Review of the Optical Properties of Biological Tissues. IEEE J. Quantum Electron. 1990, 26, 2166–2185. [Google Scholar] [CrossRef] [Green Version]
- Derouiche, S.; Li, T.; Sakai, Y.; Uta, D.; Aoyagi, S.; Tominaga, M. Inhibition of Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Ankyrin 1 by Mosquito and Mouse Saliva. Pain 2022, 163, 299–307. [Google Scholar] [CrossRef]
- Uta, D.; Tsuboshima, K.; Nishijo, H.; Mizumura, K.; Taguchi, T. Neuronal Sensitization and Synaptic Facilitation in the Superficial Dorsal Horn of a Rat Reserpine-Induced Pain Model. Neuroscience 2021, 479, 125–139. [Google Scholar] [CrossRef]
- Uta, D.; Koga, K.; Furue, H.; Imoto, K.; Yoshimura, M. L-Bupivacaine Inhibition of Nociceptive Transmission in Rat Peripheral and Dorsal Horn Neurons. Anesthesiology 2020, 134, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Uta, D.; Kato, G.; Doi, A.; Andoh, T.; Kume, T.; Yoshimura, M.; Koga, K. Animal Models of Chronic Pain Increase Spontaneous Glutamatergic Transmission in Adult Rat Spinal Dorsal Horn in Vitro and in Vivo. Biochem. Biophys. Res. Commun. 2019, 512, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Uta, D.; Takeuchi, K.; Fukano, K.; Kawamura, H.; Ito, A. Effect of a Single Dose of Oxaliplatin on the Induction of Peripheral Neuropathy in a Rat Model: An in Vivo Electrophysiological Study. Biol. Pharm. Bull. 2023, 46, b23-00263. [Google Scholar] [CrossRef]
- Uta, D.; Kiyohara, K.; Nagaoka, Y.; Kino, Y.; Fujita, T. Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms. Int. J. Mol. Sci. 2023, 24, 1434. [Google Scholar] [CrossRef]
- Kiyohara, K.; Uta, D.; Nagaoka, Y.; Kino, Y.; Nonaka, H.; Ninomiya-Baba, M.; Fujita, T. Involvement of Histamine H3 Receptor Agonism in Premature Ejaculation Found by Studies in Rats. Int. J. Mol. Sci. 2022, 23, 2291. [Google Scholar] [CrossRef]
- Holanda, V.M.; Chavantes, M.C.; Wu, X.; Anders, J.J. The Mechanistic Basis for Photobiomodulation Therapy of Neuropathic Pain by near Infrared Laser Light. Laser Surg. Med. 2017, 49, 516–524. [Google Scholar] [CrossRef] [PubMed]
- World Association for Photobiomodulation Therapy. Available online: https://waltpbm.org/wp-content/uploads/2021/08/Dose_table_780-860nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf (accessed on 20 June 2023).
- Huang, Y.-Y.; Chen, A.C.-H.; Carroll, J.D.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy. Dose-Response 2009, 7, 358–383. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy—An Update. Dose-Response 2011, 9, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.N.; Winfield, T.; Wynd, S. Low-Level Laser Light Therapy Dosage Variables vs Treatment Efficacy of Neuromusculoskeletal Conditions: A Scoping Review. J. Chiropr. Med. 2020, 19, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, N.; Shimoyama, H.; Kawase, Y.; Motohara, S.; Okayama, T.; Niwa, D.; Koyama, J. Measurement of Light Penetration of Near-Infrared Laser at the Lumbosacral Nerves in Rats. Mech. Photobiomodulation Ther. Xiii 2018, 10477, 1047704. [Google Scholar] [CrossRef]
- Ejneby, M.S.; Jakešová, M.; Ferrero, J.J.; Migliaccio, L.; Sahalianov, I.; Zhao, Z.; Berggren, M.; Khodagholy, D.; Đerek, V.; Gelinas, J.N.; et al. Chronic Electrical Stimulation of Peripheral Nerves via Deep-Red Light Transduced by an Implanted Organic Photocapacitor. Nat. Biomed. Eng. 2022, 6, 741–753. [Google Scholar] [CrossRef]
- Wang, L.; Jacques, S.L.; Zheng, L. MCML—Monte Carlo Modeling of Light Transport in Multi-Layered Tissues. Comput. Methods Programs Biomed. 1995, 47, 131–146. [Google Scholar] [CrossRef]
- Nasouri, B.; Murphy, T.E.; Berberoglu, H. Simulation of Laser Propagation through a Three-Layer Human Skin Model in the Spectral Range from 1000 to 1900 Nm. J. Biomed. Opt. 2014, 19, 075003. [Google Scholar] [CrossRef]
- Rogov, P.Y.; Bespalov, V.G. Effects of Femtosecond Laser Radiation on the Skin. J. Phys. Conf. Ser. 2016, 735, 012032. [Google Scholar] [CrossRef]
Wavelength | 808 nm |
Power | 790 mW |
Area | 0.79 cm2 |
Power density | 1 W/cm2 |
Irradiation time | 180 s |
Energy density | 180 J/cm2 |
Mode | Continuous wave |
Number of laser irradiations | Once |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uta, D.; Ishibashi, N.; Kawase, Y.; Tao, S.; Sawahata, M.; Kume, T. Relationship between Laser Intensity at the Peripheral Nerve and Inhibitory Effect of Percutaneous Photobiomodulation on Neuronal Firing in a Rat Spinal Dorsal Horn. J. Clin. Med. 2023, 12, 5126. https://doi.org/10.3390/jcm12155126
Uta D, Ishibashi N, Kawase Y, Tao S, Sawahata M, Kume T. Relationship between Laser Intensity at the Peripheral Nerve and Inhibitory Effect of Percutaneous Photobiomodulation on Neuronal Firing in a Rat Spinal Dorsal Horn. Journal of Clinical Medicine. 2023; 12(15):5126. https://doi.org/10.3390/jcm12155126
Chicago/Turabian StyleUta, Daisuke, Naoya Ishibashi, Yuki Kawase, Shinichi Tao, Masahito Sawahata, and Toshiaki Kume. 2023. "Relationship between Laser Intensity at the Peripheral Nerve and Inhibitory Effect of Percutaneous Photobiomodulation on Neuronal Firing in a Rat Spinal Dorsal Horn" Journal of Clinical Medicine 12, no. 15: 5126. https://doi.org/10.3390/jcm12155126
APA StyleUta, D., Ishibashi, N., Kawase, Y., Tao, S., Sawahata, M., & Kume, T. (2023). Relationship between Laser Intensity at the Peripheral Nerve and Inhibitory Effect of Percutaneous Photobiomodulation on Neuronal Firing in a Rat Spinal Dorsal Horn. Journal of Clinical Medicine, 12(15), 5126. https://doi.org/10.3390/jcm12155126