Predictive Factors for Decreasing Left Ventricular Ejection Fraction and Progression to the Dilated Phase of Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Medical History Data
2.3. Study Protocol
2.4. Statistical Analysis
3. Results
3.1. Factors That Predict LVEF of <50%
3.2. Factors That Predict LVEF of <60%
3.3. Scoring Method
3.4. Effect of PSTMA on LVEF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maron, B.J. Clinical course and management of hypertrophic cardiomyopathy. N. Engl. J. Med. 2018, 379, 1976–1977. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, H.; Tsutsui, H.; Kubo, T.; Ide, T.; Chikamori, T.; Fukuda, K.; Fujino, N.; Higo, T.; Isobe, M.; Kamiya, C.; et al. JCS/JHFS 2018 guideline on the diagnosis and treatment of cardiomyopathies. Circ. J. 2021, 85, 1590–1689. [Google Scholar] [CrossRef]
- Marstrand, P.; Han, L.; Day, S.M.; Olivotto, I.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Wittekind, S.G.; Helms, A.; Saberi, S.; et al. Hypertrophic cardiomyopathy with left ventricular systolic dysfunction: Insights from the SHaRe registry. Circulation 2020, 141, 1371–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biagini, E.; Coccolo, F.; Ferlito, M.; Perugini, E.; Rocchi, G.; Bacchi-Reggiani, L.; Lofiego, C.; Boriani, G.; Prandstraller, D.; Picchio, F.M.; et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: Prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J. Am. Coll. Cardiol. 2005, 46, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- Olivotto, I.; Cecchi, F.; Poggesi, C.; Yacoub, M.H. Patterns of disease progression in hypertrophic cardiomyopathy: An individualized approach to clinical staging. Circ. Heart Fail. 2012, 5, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizawa, Y.; Tanimoto, Y.; Hirata, Y.; Fujisawa, T.; Fukuoka, R.; Nakajima, K.; Katsumata, Y.; Nishiyama, T.; Kimura, T.; Yuasa, S.; et al. Incidence, clinical characteristics, and long-term outcome of the dilated phase of hypertrophic cardiomyopathy. Keio J. Med. 2019, 68, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Hina, K.; Iwasaki, K.; Nogami, K.; Kita, T.; Taniguchi, G.; Kusachi, S.; Moritani, H.; Tsuji, T. Progression of left ventricular enlargement in patients with hypertrophic cardiomyopathy: Incidence and prognostic value. Clin. Cardiol. 1993, 16, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Veselka, J.; Faber, L.; Liebregts, M.; Cooper, R.; Januska, J.; Kashtanov, M.; Dabrowski, M.; Hansen, P.R.; Seggewiss, H.; Hansvenclova, E.; et al. Short- and long-term outcomes of alcohol septal ablation for hypertrophic obstructive cardiomyopathy in patients with mild left ventricular hypertrophy: A propensity score matching analysis. Eur. Heart J. 2019, 40, 1681–1687. [Google Scholar] [CrossRef]
- Maekawa, Y.; Takamisawa, I.; Takano, H.; Takayama, M. Percutaneous transluminal septal myocardial ablation: Past, present, and future. J. Cardiol. 2022, 80, 211–217. [Google Scholar] [CrossRef]
- Gersh, B.J.; Maron, B.J.; Bonow, R.O.; Dearani, J.A.; Fifer, M.A.; Link, M.S.; Naidu, S.S.; Nishimura, R.A.; Ommen, S.R.; Rakowski, H.; et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2011, 58, e212–e260. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.J. Clinical course and management of hypertrophic cardiomyopathy. N. Engl. J. Med. 2018, 379, 655–668. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amano, Y.; Kitamura, M.; Takano, H.; Yanagisawa, F.; Tachi, M.; Suzuki, Y.; Kumita, S.; Takayama, M. Cardiac MR Imaging of Hypertrophic Cardiomyopathy: Techniques, Findings, and Clinical Relevance. Magn. Reson. Med. Sci. 2018, 17, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Kubo, T.; Hirota, T.; Baba, Y.; Ochi, Y.; Takahashi, A.; Yamasaki, N.; Hamashige, N.; Yamamoto, K.; Kondo, F.; Bando, K.; et al. Patients’ characteristics and clinical course of hypertrophic cardiomyopathy in a regional Japanese cohort- results from Kochi RYOMA Study. Circ. J. 2018, 82, 824–830. [Google Scholar] [CrossRef] [Green Version]
- Wasserstrum, Y.; Barriales-Villa, R.; Fernández-Fernández, X.; Adler, Y.; Lotan, D.; Peled, Y.; Klempfner, R.; Kuperstein, R.; Shlomo, N.; Sabbag, A.; et al. The impact of diabetes mellitus on the clinical phenotype of hypertrophic cardiomyopathy. Eur. Heart J. 2019, 40, 1671–1677. [Google Scholar] [CrossRef]
- Kubo, T.; Baba, Y.; Ochi, Y.; Hirota, T.; Yamasaki, N.; Kawai, K.; Yamamoto, K.; Kondo, F.; Bando, K.; Yamada, E.; et al. Clinical significance of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy. ESC Heart Fail. 2021, 8, 5022–5030. [Google Scholar] [CrossRef]
- Ikoma, T.; Naruse, Y.; Kaneko, Y.; Sakakibara, T.; Narumi, T.; Sano, M.; Mogi, S.; Suwa, K.; Ohtani, H.; Saotome, M.; et al. Pre-procedural predictors of left atrial low-voltage zones in patients undergoing catheter ablation of atrial fibrillation. PLoS ONE 2022, 17, e0266939. [Google Scholar] [CrossRef]
- Lee, J.-M.; Park, H.-B.; Song, J.-E.; Kim, I.-C.; Song, J.-H.; Kim, H.; Oh, J.; Youn, J.-C.; Hong, G.-R.; Kang, S.-M. The impact of cardiopulmonary exercise-derived scoring on prediction of cardio-cerebral outcome in hypertrophic cardiomyopathy. PLoS ONE 2022, 17, e0259638. [Google Scholar] [CrossRef]
- Park, K.-M.; Im, S.I.; Kim, E.K.; Lee, S.-C.; Park, S.-J.; Kim, J.S.; On, Y.K. Atrial fibrillation in hypertrophic cardiomyopathy: Is the extent of septal hypertrophy important? PLoS ONE 2016, 11, e0156410. [Google Scholar] [CrossRef]
- Monserrat, L.; Elliott, P.M.; Gimeno, J.R.; Sharma, S.; Penas-Lado, M.; McKenna, W.J. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: An independent marker of sudden death risk in young patients. J. Am. Coll. Cardiol. 2003, 42, 873–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimmelstiel, C.; Zisa, D.C.; Kuttab, J.S.; Wells, S.; Udelson, J.E.; Wessler, B.S.; Rastegar, H.; Kapur, N.K.; Weintraub, A.R.; Maron, B.J.; et al. Guideline-based referral for septal reduction therapy in obstructive hypertrophic cardiomyopathy is associated with excellent clinical outcomes. Circ. Cardiovasc. Interv. 2019, 12, e007673. [Google Scholar] [CrossRef] [PubMed]
Group A | Group B | Group C | A + B vs. C | A vs. B + C | |
---|---|---|---|---|---|
Variables | LVEF ≥ 60% | 50% ≤ LVEF < 60% | LVEF < 50% | p-Value | p-Value |
(n = 239) | (n = 33) | (n = 19) | |||
Age (years) | 65.45 ± 14.05 | 60.58 ± 12.71 | 64.26 ± 13.66 | 0.940 | 0.154 |
Men, n (%) | 108 (45) | 18 (55) | 14 (74) | 0.019 | 0.028 |
Atrial fibrillation, n (%) | 26 (11) | 6 (18) | 11 (58) | <0.001 | <0.001 |
Hypertension, n (%) | 129 (54) | 13 (42) | 10 (53) | 0.700 | 0.566 |
Diabetes mellitus, n (%) | 31 (13) | 13 (42) | 6 (33) | 0.346 | 0.010 |
HOCM, n (%) | 70 (29) | 16 (48) | 1 (5) | 0.022 | 0.341 |
Family history of SCD | 13 (5) | 1 (3) | 2 (11) | 0.322 | 0.925 |
NSVT, n (%) | 57 (24) | 15 (45) | 12 (63) | 0.001 | <0.001 |
Laboratory data | |||||
Troponin T, ng/mL | 0.024 ± 0.083 | 0.021 ± 0.019 | 0.024 ± 0.077 | 0.897 | 0.637 |
Creatinine, mg/dL | 0.81 ± 0.26 | 0.90 ± 0.19 | 1.22 ± 0.91 | <0.001 | <0.001 |
eGFR, mL/min/1.73 m2 | 67.38 ± 17.94 | 60.81 ± 16.81 | 57.63 ± 22.53 | 0.036 | 0.005 |
Chronic kidney disease, n (%) | 81 (34) | 18 (55) | 9 (47) | 0.392 | 0.024 |
CRP, mg/dL | 0.20 ± 0.53 | 0.20 ± 0.36 | 0.59 ± 1.19 | 0.004 | 0.127 |
BNP, pg/mL | 291.86 ± 680.35 | 403.17 ± 418.21 | 295.10 ± 255.54 | 0.961 | 0.484 |
NT-pro BNP, pg/mL | 1006.16 ± 1668.24 | 1334.80 ± 1467.11 | 879.50 ± 707.11 | 0.888 | 0.766 |
Pre-ECG | |||||
QRS duration, msec | 103.53 ± 18.01 | 103.94 ± 16.18 | 109.16 ± 23.89 | 0.177 | 0.356 |
RV5 + V1S, mV | 4.26 ± 1.86 | 3.963 ± 1.875 | 3.561 ± 1.98 | 0.173 | 0.130 |
CRBBB, n (%) | 24 (10) | 3 (9) | 3 (16) | 0.433 | 0.778 |
Post-ECG | |||||
QRS duration, msec | 113.80 ± 28.30 | 118.48 ± 33.87 | 113.26 ± 24.41 | 0.87 | 0.529 |
RV5 + V1S, mV | 3.33 ± 1.60 | 2.56 ± 1.36 | 3.11 ± 1.51 | 0.749 | 0.02 |
CRBBB, n (%) | 72 (30) | 11 (33) | 4 (21) | 0.377 | 0.832 |
Pre-TTE | |||||
LVEF, % | 74.48 ± 6.43 | 70.33 ± 8.00 | 59.58 ± 7.21 | <0.001 | <0.001 |
IVST, mm | 14.07 ± 4.84 | 14.84 ± 4.94 | 13.95 ± 4.64 | 0.849 | 0.561 |
PWT, mm | 10.15 ± 2.12 | 11.13 ± 3.50 | 9.32 ± 1.66 | 0.078 | 0.430 |
Maximum thickness | 15.27 ± 4.76 | 14.94 ± 4.64 | 14.56 ± 4.14 | 0.820 | 0.703 |
LVDd, mm | 43.25 ± 6.12 | 43.97 ± 6.02 | 47.00 ± 8.49 | 0.022 | 0.078 |
LVDs, mm | 24.52 ± 5.06 | 26.34 ± 5.51 | 33.00 ± 9.59 | <0.001 | <0.001 |
LAD, mm | 39.42 ± 7.61 | 40.94 ± 8.34 | 43.21 ± 7.99 | 0.057 | 0.056 |
E/A | 1.08 ± 1.44 | 1.01 ± 0.51 | 1.03 ± 0.54 | 0.894 | 0.778 |
E/e’ | 14.42 ± 6.14 | 15.58 ± 10.59 | 12.5 ± 5.20 | 0.215 | 0.937 |
Severe AS | 7 (3) | 1 (3) | 1 (5) | 0.573 | 0.730 |
Severe MR | 18 (8) | 1 (3) | 4 (21) | 0.028 | 0.615 |
Severe TR | 15 (6) | 1 (3) | 2 (11) | 0.418 | 0.891 |
Post-TTE | |||||
LVEF, % | 72.57 ± 6.75 | 55.18 ± 3.00 | 39.47 ± 10.88 | <0.001 | <0.001 |
ΔLVEF, % | −1.92 ± 8.32 | −15.15 ± 7.48 | −20.11 ± 12.53 | <0.001 | <0.001 |
ΔLVEF/year, % | −0.25 ± 6.37 | −3.05 ± 2.84 | −3.80 ± 2.43 | 0.010 | 0.011 |
LVDd, mm | 42.83 ± 6.08 | 46.97 ± 5.69 | 52.68 ± 10.59 | <0.001 | <0.001 |
LVDs, mm | 25.62 ± 4.94 | 32.79 ± 4.63 | 41.37 ± 12.58 | <0.001 | <0.001 |
CMR | |||||
LGE, n (%) | 91 (38) | 17 (52) | 9 (47) | 0.499 | 0.104 |
Nonpharmacological therapy | |||||
PTSMA, n (%) | 62 (26) | 16 (48) | 1 (5) | 0.025 | 0.347 |
PMI or ICD, n (%) | 33 (14) | 8 (24) | 7 (37) | <0.001 | 0.008 |
Ablation for AF, n (%) | 33 (14) | 4 (12) | 5 (26) | 0.130 | 0.525 |
Medication | |||||
β-blocker, n (%) | 213 (89) | 27 (83) | 16 (87) | 0.891 | 0.999 |
ACE-I or ARB, n (%) | 60 (25) | 19 (58) | 10 (53) | 0.010 | 0.001 |
MRA, n (%) | 5 (2) | 13 (42) | 7 (40) | <0.001 | <0.001 |
Furosemide, n (%) | 21 (9) | 8 (24) | 7 (37) | 0.001 | <0.001 |
Azosemide, n (%) | 12 (5) | 2 (8) | 1 (7) | 0.898 | 0.722 |
Torasemide, n (%) | 7 (3) | 2 (8) | 2 (13) | 0.062 | 0.048 |
Events | |||||
Hospitalization due to HF, n (%) | 24 (10) | 6 (20) | 6 (32) | 0.010 | 0.060 |
Death, n (%) | 12 (5) | 1 (3) | 6 (32) | <0.01 | 0.029 |
Follow-up period, months | 56.2 ± 64.8 | 59.0 ± 33.4 | 69.6 ± 31.2 | 0.002 | 0.011 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | 0.99 (0.96–1.03) | 0.946 | ||
Male sex | 3.29 (1.15–9.39) | 0.026 | ||
Atrial fibrillation | 10.2 (3.79–27.09) | <0.001 | 14.00 (4.42–44.38) | <0.001 |
eGFR † | 0.97 (0.95–0.99) | 0.041 | ||
Diabetes mellitus | 2.68 (0.84–8.56) | 0.094 | ||
NSVT | 4.76 (1.81–12.57) | 0.002 | 4.84 (1.55–15.09) | 0.007 |
PMI | 0 | 0 | ||
ICD | 4.54 (1.66–12.38) | 0.003 | ||
ICD primary prevention | 4.50 (1.47–13.77) | 0.008 | ||
ICD secondary prevention | 2.79 (0.57–13.61) | 0.204 | ||
PMI or ICD | 3.29 (1.22–8.84) | 0.018 | ||
PTSMA | 0.13 (0.01–1.03) | 0.054 | ||
LAD † | 1.06 (0.99–1.12) | 0.057 | ||
LVDd † | 1.08 (1.01–1.15) | 0.022 | ||
LVDs † | 1.15 (1.07–1.24) | <0.001 | 9.39 (2.39–36.93) | 0.001 |
LGE | 1.38 (0.54–3.51) | 0.499 | ||
CRP ‡ | 1.69 (1.05–2.73) | 0.029 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | 0.98 (0.96–1.00) | 0.100 | ||
Male sex | 1.99 (1.08–3.68) | 0.028 | ||
Atrial fibrillation | 3.92 (1.93–7.97) | <0.001 | 4.11 (1.92–8.81) | <0.001 |
eGFR † | 0.98 (0.96–0.99) | 0.007 | ||
Diabetes mellitus | 3.78 (1.51–9.46) | 0.005 | ||
NSVT | 3.45 (1.86–6.41) | <0.001 | 2.99 (1.54–5.81) | 0.001 |
PMI | 0.50 (0.06–4.04) | 0.517 | ||
ICD | 3.30 (1.57–6.95) | 0.010 | ||
ICD primary prevention | 2.37 (0.97–5.84) | 0.060 | ||
ICD secondary prevention | 4.32 (1.39–13.46) | 0.011 | ||
PMI or ICD | 2.53 (1.25–5.11) | 0.010 | ||
PTSMA | 1.37 (0.72–2.6) | 0.346 | ||
LAD † | 1.04 (0.99–1.09) | 0.054 | ||
LVDd † | 1.04 (0.99–1.09) | 0.075 | ||
LVDs † | 1.11 (1.05–1.17) | <0.001 | 3.13 (1.60–6.11) | 0.001 |
LGE | 1.65 (0.90–3.02) | 0.106 | ||
CRP ‡ | 2.75 (1.37–5.51) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, K.; Kubota, Y.; Matsuda, J.; Imori, Y.; Tokita, Y.; Asai, K.; Takano, H. Predictive Factors for Decreasing Left Ventricular Ejection Fraction and Progression to the Dilated Phase of Hypertrophic Cardiomyopathy. J. Clin. Med. 2023, 12, 5137. https://doi.org/10.3390/jcm12155137
Ishihara K, Kubota Y, Matsuda J, Imori Y, Tokita Y, Asai K, Takano H. Predictive Factors for Decreasing Left Ventricular Ejection Fraction and Progression to the Dilated Phase of Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2023; 12(15):5137. https://doi.org/10.3390/jcm12155137
Chicago/Turabian StyleIshihara, Kakeru, Yoshiaki Kubota, Junya Matsuda, Yoichi Imori, Yukichi Tokita, Kuniya Asai, and Hitoshi Takano. 2023. "Predictive Factors for Decreasing Left Ventricular Ejection Fraction and Progression to the Dilated Phase of Hypertrophic Cardiomyopathy" Journal of Clinical Medicine 12, no. 15: 5137. https://doi.org/10.3390/jcm12155137
APA StyleIshihara, K., Kubota, Y., Matsuda, J., Imori, Y., Tokita, Y., Asai, K., & Takano, H. (2023). Predictive Factors for Decreasing Left Ventricular Ejection Fraction and Progression to the Dilated Phase of Hypertrophic Cardiomyopathy. Journal of Clinical Medicine, 12(15), 5137. https://doi.org/10.3390/jcm12155137