Endocrine Side Effects in Patients Treated with Immune Checkpoint Inhibitors: A Narrative Review
Abstract
:1. Introduction
2. Thyroid
2.1. Hyperthyroidism
2.2. Hypothyroidism
2.3. Predictors of irAEs
2.4. Management
3. Pituitary
Management
4. Adrenal
Management
5. Type 1 Diabetes Mellitus
Management
6. Parathyroid
Management
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.Y.; Zhu, Y.; Shen, Y.Y.; Xu, Q.Y.; Tang, H.Y.; Cui, N.X.; Jiang, L.; Dai, X.M.; Chen, W.Q.; Lin, Q.; et al. The role of PD-1 signaling in health and immune-related diseases. Front. Immunol. 2023, 14, 1163633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Adv. Exp. Med. Biol. 2020, 1248, 201–226. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front. Immunol. 2019, 10, 2298. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.; Waters, E.; Rowshanravan, B.; Hinze, C.; Williams, C.; Janman, D.; Fox, T.A.; Booth, C.; Pesenacker, A.M.; Halliday, N.; et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat. Immunol. 2022, 23, 1365–1378. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009, 114, 1537–1544. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef]
- Ohaegbulam, K.C.; Assal, A.; Lazar-Molnar, E.; Yao, Y.; Zang, X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol. Med. 2015, 21, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Fallahi, P.; Elia, G.; Ragusa, F.; Ruffilli, I.; Patrizio, A.; Galdiero, M.R.; Baldini, E.; Ulisse, S.; Marone, G.; et al. Autoimmune Endocrine Dysfunctions Associated with Cancer Immunotherapies. Int. J. Mol. Sci. 2019, 20, 2560. [Google Scholar] [CrossRef] [Green Version]
- Gidaro, A.; Palmieri, G.; Donadoni, M.; Mameli, L.A.; La Cava, L.; Sanna, G.; Castro, D.; Delitala, A.P.; Manetti, R.; Castelli, R. A Diagnostic of Acquired Hemophilia Following PD1/PDL1 Inhibitors in Advanced Melanoma: The Experience of Two Patients and a Literature Review. Diagnostics 2022, 12, 2559. [Google Scholar] [CrossRef]
- Stelmachowska-Banas, M.; Czajka-Oraniec, I. Management of endocrine immune-related adverse events of immune checkpoint inhibitors: An updated review. Endocr. Connect. 2020, 9, R207–R228. [Google Scholar] [CrossRef]
- Wright, J.J.; Powers, A.C.; Johnson, D.B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399. [Google Scholar] [CrossRef]
- Lu, D.; Yao, J.; Yuan, G.; Gao, Y.; Zhang, J.; Guo, X. Immune Checkpoint Inhibitor-related New-onset Thyroid Dysfunction: A Retrospective Analysis Using the US FDA Adverse Event Reporting System. Oncologist 2022, 27, e126–e132. [Google Scholar] [CrossRef]
- Wu, H.; Xiong, F.; Bao, X.; Lu, J. Immune checkpoint blockade PD-1 therapy for primary liver cancer: Incidence and influencing factors of thyroid dysfunction. Infect. Agent. Cancer 2022, 17, 64. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Yin, J.; Song, C.; Li, L.; Sun, Z. Efficacy and Safety of the PD-1 Inhibitor Combined with Albumin-Bound Paclitaxel and Nedaplatin in Preoperative Neoadjuvant Therapy of Unresectable Stage III Lung Squamous Cell Carcinoma. Drug Des. Dev. Ther. 2022, 16, 4269–4277. [Google Scholar] [CrossRef]
- Akturk, H.K.; Couts, K.L.; Baschal, E.E.; Karakus, K.E.; Van Gulick, R.J.; Turner, J.A.; Pyle, L.; Robinson, W.A.; Michels, A.W. Analysis of Human Leukocyte Antigen DR Alleles, Immune-Related Adverse Events, and Survival Associated with Immune Checkpoint Inhibitor Use among Patients with Advanced Malignant Melanoma. JAMA Netw. Open 2022, 5, e2246400. [Google Scholar] [CrossRef]
- Ueba, Y.; Yamauchi, I.; Hakata, T.; Fujita, H.; Okamoto, K.; Ikeda, K.; Ueda, Y.; Fujii, T.; Taura, D.; Inagaki, N. Delayed-onset immune-related adverse events involving the thyroid gland by immune checkpoint inhibitors in combination with chemotherapy: A case report and retrospective cohort study. Endocr. J. 2022, 70, 323–332. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, C.; Xiong, Y.; Yang, F.; Zeng, F.; Jiang, W.; Zhang, Y.; Yang, H.; Liu, L.; Zeng, L.; et al. PD-1 inhibitor versus bevacizumab in combination with platinum-based chemotherapy for first-line treatment of advanced lung adenocarcinoma: A retrospective-real world study. Front. Oncol. 2022, 12, 909721. [Google Scholar] [CrossRef]
- Schulz, T.U.; Zierold, S.; Sachse, M.M.; Pesch, G.; Tomsitz, D.; Schilbach, K.; Kahler, K.C.; French, L.E.; Heinzerling, L. Health-related quality of life (EuroQol 5D-5L) in patients with autoimmunity in the context of immunotherapy: A large dataset comprising cancer patients after cessation of checkpoint inhibitor therapy and patients with autoimmune diseases. Data Brief 2022, 45, 108676. [Google Scholar] [CrossRef]
- Van Laar, S.A.; Kapiteijn, E.; Gombert-Handoko, K.B.; Guchelaar, H.J.; Zwaveling, J. Application of Electronic Health Record Text Mining: Real-World Tolerability, Safety, and Efficacy of Adjuvant Melanoma Treatments. Cancers 2022, 14, 5426. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Kalyani, F.S.; Shen, Q.; Yang, G.; Cheng, T.; Liu, L.; Zhou, J.; Zhou, J. Efficacy and Safety of PD-L1 Inhibitors plus Chemotherapy versus Chemotherapy Alone in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer: A Retrospective Real-World Study. J. Oncol. 2022, 2022, 3645489. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chang, N.; Shi, L.; Li, F.; Meng, F.; Xie, X.; Xu, Z.; Wang, F. Lenvatinib plus sintilimab versus lenvatinib monotherapy as first-line treatment for advanced HBV-related hepatocellular carcinoma: A retrospective, real-world study. Heliyon 2022, 8, e09538. [Google Scholar] [CrossRef]
- Liu, J.; Gao, T.; Tan, Z.; Li, S.; Xu, J.; Bai, C.; Xue, R.; Xie, L.; Zhang, L.; Fan, Z.; et al. Phase II Study of TQB2450, a Novel PD-L1 Antibody, in Combination with Anlotinib in Patients with Locally Advanced or Metastatic Soft Tissue Sarcoma. Clin. Cancer Res. 2022, 28, 3473–3479. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Kumada, T.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Does first-line treatment have prognostic impact for unresectable HCC? Atezolizumab plus bevacizumab versus lenvatinib. Cancer Med. 2023, 12, 325–334. [Google Scholar] [CrossRef]
- Uhara, H.; Tsuchida, T.; Kiyohara, Y.; Akamatsu, A.; Sakamoto, T.; Yamazaki, N. Safety and effectiveness of nivolumab in Japanese patients with malignant melanoma: Final analysis of a post-marketing surveillance. J. Dermatol. 2022, 49, 862–871. [Google Scholar] [CrossRef]
- Wu, W.C.; Lin, T.Y.; Chen, M.H.; Hung, Y.P.; Liu, C.A.; Lee, R.C.; Huang, Y.H.; Chao, Y.; Chen, S.C. Lenvatinib combined with nivolumab in advanced hepatocellular carcinoma-real-world experience. Investig. New Drugs 2022, 40, 789–797. [Google Scholar] [CrossRef]
- Baek, H.S.; Jeong, C.; Shin, K.; Lee, J.; Suh, H.; Lim, D.J.; Kang, M.I.; Ha, J. Association between the type of thyroid dysfunction induced by immune checkpoint inhibitors and prognosis in cancer patients. BMC Endocr. Disord. 2022, 22, 89. [Google Scholar] [CrossRef]
- Schonfeld, S.J.; Tucker, M.A.; Engels, E.A.; Dores, G.M.; Sampson, J.N.; Shiels, M.S.; Chanock, S.J.; Morton, L.M. Immune-Related Adverse Events after Immune Checkpoint Inhibitors for Melanoma among Older Adults. JAMA Netw. Open 2022, 5, e223461. [Google Scholar] [CrossRef]
- Labadzhyan, A.; Wentzel, K.; Hamid, O.; Chow, K.; Kim, S.; Piro, L.; Melmed, S. Endocrine Autoantibodies Determine Immune Checkpoint Inhibitor-induced Endocrinopathy: A Prospective Study. J. Clin. Endocrinol. Metab. 2022, 107, 1976–1982. [Google Scholar] [CrossRef]
- Kim, J.; Noh, J.J.; Lee, T.K.; Kim, S.I.; Lee, J.Y.; Lee, J.W.; Kim, J.W. Real-world experience of pembrolizumab and lenvatinib in recurrent endometrial cancer: A multicenter study in Korea. Gynecol. Oncol. 2022, 165, 369–375. [Google Scholar] [CrossRef]
- Phillips, A.L.; Reeves, D.J. Outcomes and Management of Immune Checkpoint Inhibitor-Induced Hypothyroidism: A Retrospective Analysis. Ann. Pharmacother. 2022, 56, 1100–1105. [Google Scholar] [CrossRef]
- Sonehara, K.; Tateishi, K.; Araki, T.; Komatsu, M.; Akahane, J.; Yamamoto, H.; Hanaoka, M. Predictive Factors Correlated with the Development of Immune-Related Adverse Events in Patients with Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancer Manag. Res. 2022, 14, 427–435. [Google Scholar] [CrossRef]
- Marabelle, A.; Cassier, P.A.; Fakih, M.; Kao, S.; Nielsen, D.; Italiano, A.; Guren, T.K.; van Dongen, M.G.J.; Spencer, K.; Bariani, G.M.; et al. Pembrolizumab for previously treated advanced anal squamous cell carcinoma: Results from the non-randomised, multicohort, multicentre, phase 2 KEYNOTE-158 study. Lancet Gastroenterol. Hepatol. 2022, 7, 446–454. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Luo, Z.; Wang, X.; Liu, H.; Tong, L.; Dong, X.; Zhang, Y.; Valmasoni, M.; Kidane, B.; et al. A multicenter single-arm trial of sintilimab in combination with chemotherapy for neoadjuvant treatment of resectable esophageal cancer (SIN-ICE study). Ann. Transl. Med. 2021, 9, 1700. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Neffa, M.; Monk, B.J.; Melkadze, T.; Huang, M.; Kryzhanivska, A.; Bulat, I.; Meniawy, T.M.; Bagameri, A.; Wang, E.W.; et al. Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. J. Clin. Oncol. 2022, 40, 762–771. [Google Scholar] [CrossRef]
- Fuereder, T.; Minichsdorfer, C.; Mittlboeck, M.; Wagner, C.; Heller, G.; Putz, E.M.; Oberndorfer, F.; Mullauer, L.; Aretin, M.B.; Czerny, C.; et al. Pembrolizumab plus docetaxel for the treatment of recurrent/metastatic head and neck cancer: A prospective phase I/II study. Oral Oncol. 2022, 124, 105634. [Google Scholar] [CrossRef]
- Ngamphaiboon, N.; Ithimakin, S.; Siripoon, T.; Sintawichai, N.; Sriuranpong, V. Patterns and outcomes of immune-related adverse events in solid tumor patients treated with immune checkpoint inhibitors in Thailand: A multicenter analysis. BMC Cancer 2021, 21, 1275. [Google Scholar] [CrossRef]
- Fidilio, E.; Navarro-Gonzalez, E.; Romero-Lluch, A.R.; Iglesias, P.; Diez Gomez, J.J.; Anda Apinaniz, E.; Santos Mazo, E.; Zafon, C. Thyroid disorders associated with immune control point inhibitors. Endocrinol. Diabetes Nutr. Engl. Ed. 2021, 68, 408–415. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, J.N.; Ma, S.Y.; Cai, J.; Su, N.; Huang, H.Q.; Li, Z.M.; Xia, Z.J.; Huang, H.; Liu, P.P.; et al. Combination of PD-1 inhibitor with GVD (gemcitabine, vinorelbine, liposomal doxorubicin) versus GVD regimen as second-line therapy for relapsed/refractory classical Hodgkin lymphoma. Br. J. Haematol. 2022, 196, 127–135. [Google Scholar] [CrossRef]
- Yu, W.; Tao, Q.; Zhang, Y.; Yi, F.; Feng, L. Efficacy and Safety of Regorafenib Combined with Toripalimab in the Third-Line and beyond Treatment of Advanced Colorectal Cancer. J. Oncol. 2021, 2021, 9959946. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Briese, W.; Blieninger, J.; Brossart, P.; Bisht, S.; Feldmann, G. Development of Skin Rash Predicts Outcome of Anti-PD-1- and Anti-CTLA4-Based Immune Checkpoint Inhibitor Therapy in Non-Small Cell Lung Cancer or Squamous Cell Carcinoma of the Head and Neck: A Single-Center Analysis. Oncol. Res. Treat. 2021, 44, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Nakanishi, Y.; Gemma, A.; Nakagawa, K.; Sakamoto, T.; Akamatsu, A.; Ohe, Y. Real-world safety of nivolumab in patients with non-small-cell lung cancer in Japan: Postmarketing surveillance. Cancer Sci. 2021, 112, 4692–4701. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.; Choi, H.C.; Ho, P.P.; Lau, J.K.; Tse, R.P.; Au, J.; Lam, V.; Liu, R.; Ho, I.; Wong, C.; et al. Immune-Related Endocrine Dysfunctions in Combined Modalities of Treatment: Real-World Data. Cancers 2021, 13, 3797. [Google Scholar] [CrossRef]
- Makker, V.; Taylor, M.H.; Oaknin, A.; Casado Herraez, A.; Orlowski, R.; Dutta, L.; Ren, M.; Zale, M.; O’Malley, D.M. Characterization and Management of Adverse Reactions in Patients with Advanced Endometrial Carcinoma Treated with Lenvatinib Plus Pembrolizumab. Oncologist 2021, 26, e1599–e1608. [Google Scholar] [CrossRef]
- Trullas, A.; Delgado, J.; Genazzani, A.; Mueller-Berghaus, J.; Migali, C.; Muller-Egert, S.; Zander, H.; Enzmann, H.; Pignatti, F. The EMA assessment of pembrolizumab as monotherapy for the first-line treatment of adult patients with metastatic microsatellite instability-high or mismatch repair deficient colorectal cancer. ESMO Open 2021, 6, 100145. [Google Scholar] [CrossRef]
- Muir, C.A.; Clifton-Bligh, R.J.; Long, G.V.; Scolyer, R.A.; Lo, S.N.; Carlino, M.S.; Tsang, V.H.M.; Menzies, A.M. Thyroid Immune-related Adverse Events Following Immune Checkpoint Inhibitor Treatment. J. Clin. Endocrinol. Metab. 2021, 106, e3704–e3713. [Google Scholar] [CrossRef]
- Yoon, J.H.; Hong, A.R.; Kim, H.K.; Kang, H.C. Characteristics of Immune-Related Thyroid Adverse Events in Patients Treated with PD-1/PD-L1 Inhibitors. Endocrinol. Metab. 2021, 36, 413–423. [Google Scholar] [CrossRef]
- Griewing, L.M.; Schweizer, C.; Schubert, P.; Rutzner, S.; Eckstein, M.; Frey, B.; Haderlein, M.; Weissmann, T.; Semrau, S.; Gostian, A.O.; et al. Questionnaire-based detection of immune-related adverse events in cancer patients treated with PD-1/PD-L1 immune checkpoint inhibitors. BMC Cancer 2021, 21, 314. [Google Scholar] [CrossRef]
- Alkrekshi, A.; Tamaskar, I. Safety of Immune Checkpoint Inhibitors in Patients with Cancer and Hepatitis C Virus Infection. Oncologist 2021, 26, e827–e830. [Google Scholar] [CrossRef]
- Leddon, J.L.; Chirra, M.; Frankart, A.J.; Agrawal, A.; Roof, L.; Trotier, D.; Shaikh, H.; Stone, T.; Jandarov, R.; Takiar, V.; et al. Hypothyroidism in Head and Neck Squamous Cell Carcinoma Patients Receiving Radiotherapy with or without Immune Checkpoint Inhibitors. Laryngoscope 2021, 131, E2413–E2419. [Google Scholar] [CrossRef]
- McDermott, D.F.; Lee, J.L.; Ziobro, M.; Suarez, C.; Langiewicz, P.; Matveev, V.B.; Wiechno, P.; Gafanov, R.A.; Tomczak, P.; Pouliot, F.; et al. Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2021, 39, 1029–1039. [Google Scholar] [CrossRef]
- De Azevedo, S.J.; de Melo, A.C.; Roberts, L.; Caro, I.; Xue, C.; Wainstein, A. First-line atezolizumab monotherapy in patients with advanced BRAF(V600) wild-type melanoma. Pigment Cell Melanoma Res. 2021, 34, 973–977. [Google Scholar] [CrossRef]
- Almutairi, A.R.; Erstad, B.L.; McBride, A.; Slack, M.; Abraham, I. Immune checkpoint inhibitors-associated risk of immune-related hypothyroidism in older patients with advanced melanoma: A real-world analysis of US SEER-Medicare data. Expert Opin. Drug Saf. 2021, 20, 489–497. [Google Scholar] [CrossRef]
- Zayas-Soriano, M.; Bonete-Sanchez, M.; Campillo-Lopez, J.; Marcos-Ribes, B.; Hernandez-Guio, A.; Aznar-Saliente, M.T. Clinical efficacy and safety of anti PD-1/PD-L1 antibodies as monotherapy in patients with non-small-cell lung cancer. Farm. Hosp. 2020, 45, 22–27. [Google Scholar] [CrossRef]
- Robert, C.; Hwu, W.J.; Hamid, O.; Ribas, A.; Weber, J.S.; Daud, A.I.; Hodi, F.S.; Wolchok, J.D.; Mitchell, T.C.; Hersey, P.; et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: A landmark analysis in patients with advanced melanoma. Eur. J. Cancer 2021, 144, 182–191. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, R.; Xiao, H.; Pu, D.; Long, Y.; Ding, Z.; Liu, J.; Ma, X. Thyroid function abnormality induced by PD-1 inhibitors have a positive impact on survival in patients with non-small cell lung cancer. Int. Immunopharmacol. 2021, 91, 107296. [Google Scholar] [CrossRef]
- De Leo, S.; Lee, S.Y.; Braverman, L.E. Hyperthyroidism. Lancet 2016, 388, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Iwama, S.; Kobayashi, T.; Yasuda, Y.; Arima, H. Immune checkpoint inhibitor-related thyroid dysfunction. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101660. [Google Scholar] [CrossRef]
- Inaguma, S.; Wang, Z.; Lasota, J.; Sarlomo-Rikala, M.; McCue, P.A.; Ikeda, H.; Miettinen, M. Comprehensive Immunohistochemical Study of Programmed Cell Death Ligand 1 (PD-L1): Analysis in 5536 Cases Revealed Consistent Expression in Trophoblastic Tumors. Am. J. Surg. Pathol. 2016, 40, 1133–1142. [Google Scholar] [CrossRef] [Green Version]
- Angell, T.E.; Min, L.; Wieczorek, T.J.; Hodi, F.S. Unique Cytologic Features of Thyroiditis Caused by Immune Checkpoint Inhibitor Therapy for Malignant Melanoma. Genes Dis. 2018, 5, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Neppl, C.; Kaderli, R.M.; Trepp, R.; Schmitt, A.M.; Berger, M.D.; Wehrli, M.; Seiler, C.A.; Langer, R. Histology of Nivolumab-Induced Thyroiditis. Thyroid 2018, 28, 1727–1728. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, Y.; Iwama, S.; Sugiyama, D.; Okuji, T.; Kobayashi, T.; Ito, M.; Okada, N.; Enomoto, A.; Ito, S.; Yan, Y.; et al. CD4. Sci. Transl. Med. 2021, 13, eabb7495. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Ariyasu, H.; Iwakura, H.; Kurimoto, C.; Takeshima, K.; Morita, S.; Furuta, H.; Hotomi, M.; Akamizu, T. Distinct clinical features and prognosis between persistent and temporary thyroid dysfunctions by immune-checkpoint inhibitors. Endocr. J. 2021, 68, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef]
- Tan, M.H.; Iyengar, R.; Mizokami-Stout, K.; Yentz, S.; MacEachern, M.P.; Shen, L.Y.; Redman, B.; Gianchandani, R. Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: A scoping review of case reports. Clin. Diabetes Endocrinol. 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Muir, C.A.; Menzies, A.M.; Clifton-Bligh, R.; Tsang, V.H.M. Thyroid Toxicity Following Immune Checkpoint Inhibitor Treatment in Advanced Cancer. Thyroid 2020, 30, 1458–1469. [Google Scholar] [CrossRef]
- Bai, X.; Chen, X.; Wu, X.; Huang, Y.; Zhuang, Y.; Lin, X. Immune checkpoint inhibitor-associated thyroid dysfunction: A disproportionality analysis using the WHO Adverse Drug Reaction Database, VigiBase. Eur. J. Endocrinol. 2020, 182, 1–9. [Google Scholar] [CrossRef]
- Lee, H.; Hodi, F.S.; Giobbie-Hurder, A.; Ott, P.A.; Buchbinder, E.I.; Haq, R.; Tolaney, S.; Barroso-Sousa, R.; Zhang, K.; Donahue, H.; et al. Characterization of Thyroid Disorders in Patients Receiving Immune Checkpoint Inhibition Therapy. Cancer Immunol. Res. 2017, 5, 1133–1140. [Google Scholar] [CrossRef] [Green Version]
- Okada, N.; Iwama, S.; Okuji, T.; Kobayashi, T.; Yasuda, Y.; Wada, E.; Onoue, T.; Goto, M.; Sugiyama, M.; Tsunekawa, T.; et al. Anti-thyroid antibodies and thyroid echo pattern at baseline as risk factors for thyroid dysfunction induced by anti-programmed cell death-1 antibodies: A prospective study. Br. J. Cancer 2020, 122, 771–777. [Google Scholar] [CrossRef]
- Kurihara, S.; Oikawa, Y.; Nakajima, R.; Satomura, A.; Tanaka, R.; Kagamu, H.; Shimada, A. Simultaneous development of Graves’ disease and type 1 diabetes during anti-programmed cell death-1 therapy: A case report. J. Diabetes Investig. 2020, 11, 1006–1009. [Google Scholar] [CrossRef]
- Gan, E.H.; Mitchell, A.L.; Plummer, R.; Pearce, S.; Perros, P. Tremelimumab-Induced Graves Hyperthyroidism. Eur. Thyroid J. 2017, 6, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Yonezaki, K.; Kobayashi, T.; Imachi, H.; Yoshimoto, T.; Kikuchi, F.; Fukunaga, K.; Sato, S.; Ibata, T.; Yamaji, N.; Lyu, J.; et al. Combination therapy of ipilimumab and nivolumab induced thyroid storm in a patient with Hashimoto’s disease and diabetes mellitus: A case report. J. Med. Case Rep. 2018, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Orlov, S.; Salari, F.; Kashat, L.; Walfish, P.G. Induction of painless thyroiditis in patients receiving programmed death 1 receptor immunotherapy for metastatic malignancies. J. Clin. Endocrinol. Metab. 2015, 100, 1738–1741. [Google Scholar] [CrossRef]
- O’Malley, G.; Lee, H.J.; Parekh, S.; Galsky, M.D.; Smith, C.B.; Friedlander, P.; Yanagisawa, R.T.; Gallagher, E.J. Rapid Evolution of Thyroid Dysfunction in Patients Treated with Nivolumab. Endocr. Pract. 2017, 23, 1223–1231. [Google Scholar] [CrossRef]
- Delivanis, D.A.; Gustafson, M.P.; Bornschlegl, S.; Merten, M.M.; Kottschade, L.; Withers, S.; Dietz, A.B.; Ryder, M. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights into Underlying Involved Mechanisms. J. Clin. Endocrinol. Metab. 2017, 102, 2770–2780. [Google Scholar] [CrossRef]
- Khan, U.; Rizvi, H.; Sano, D.; Chiu, J.; Hadid, T. Nivolumab induced myxedema crisis. J. Immunother. Cancer 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Kimbara, S.; Fujiwara, Y.; Iwama, S.; Ohashi, K.; Kuchiba, A.; Arima, H.; Yamazaki, N.; Kitano, S.; Yamamoto, N.; Ohe, Y. Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab. Cancer Sci. 2018, 109, 3583–3590. [Google Scholar] [CrossRef] [Green Version]
- Luongo, C.; Morra, R.; Gambale, C.; Porcelli, T.; Sessa, F.; Matano, E.; Damiano, V.; Klain, M.; Schlumberger, M.; Salvatore, D. Higher baseline TSH levels predict early hypothyroidism during cancer immunotherapy. J. Endocrinol. Investig. 2021, 44, 1927–1933. [Google Scholar] [CrossRef]
- Pollack, R.M.; Kagan, M.; Lotem, M.; Dresner-Pollak, R. Baseline Tsh Level Is Associated with Risk of Anti-Pd-1-Induced Thyroid Dysfunction. Endocr. Pract. 2019, 25, 824–829. [Google Scholar] [CrossRef]
- Brilli, L.; Danielli, R.; Campanile, M.; Secchi, C.; Ciuoli, C.; Calabro, L.; Pilli, T.; Cartocci, A.; Pacini, F.; Di Giacomo, A.M.; et al. Baseline serum TSH levels predict the absence of thyroid dysfunction in cancer patients treated with immunotherapy. J. Endocrinol. Investig. 2021, 44, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Toi, Y.; Sugawara, S.; Sugisaka, J.; Ono, H.; Kawashima, Y.; Aiba, T.; Kawana, S.; Saito, R.; Aso, M.; Tsurumi, K.; et al. Profiling Preexisting Antibodies in Patients Treated with Anti-PD-1 Therapy for Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Olsson-Brown, A.; Lord, R.; Sacco, J.; Wagg, J.; Coles, M.; Pirmohamed, M. Two distinct clinical patterns of checkpoint inhibitor-induced thyroid dysfunction. Endocr. Connect. 2020, 9, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [Green Version]
- Lima Ferreira, J.; Costa, C.; Marques, B.; Castro, S.; Victor, M.; Oliveira, J.; Santos, A.P.; Sampaio, I.L.; Duarte, H.; Marques, A.P.; et al. Improved survival in patients with thyroid function test abnormalities secondary to immune-checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 299–309. [Google Scholar] [CrossRef]
- Basak, E.A.; van der Meer, J.W.M.; Hurkmans, D.P.; Schreurs, M.W.J.; Oomen-de Hoop, E.; van der Veldt, A.A.M.; Bins, S.; Joosse, A.; Koolen, S.L.W.; Debets, R.; et al. Overt Thyroid Dysfunction and Anti-Thyroid Antibodies Predict Response to Anti-PD-1 Immunotherapy in Cancer Patients. Thyroid 2020, 30, 966–973. [Google Scholar] [CrossRef]
- Chmielewska, I.; Dudzinska, M.; Szczyrek, M.; Swirska, J.; Wojas-Krawczyk, K.; Zwolak, A. Do endocrine adverse events predict longer progression-free survival among patients with non-small-cell lung cancer receiving nivolumab? PLoS ONE 2021, 16, e0257484. [Google Scholar] [CrossRef]
- Chieng, J.H.L.; Htet, Z.W.; Zhao, J.J.; Tai, E.S.; Tay, S.H.; Huang, Y.; Wong, A.; Yang, S.P. Clinical Presentation of Immune-Related Endocrine Adverse Events during Immune Checkpoint Inhibitor Treatment. Cancers 2022, 14, 2687. [Google Scholar] [CrossRef]
- Kawahira, M.; Kanmura, S.; Mizuno, K.; Machida, K.; Ohtsuka, T.; Sato, M.; Enokida, H.; Yamashita, M.; Kanekura, T.; Arima, S.; et al. Effects of immune checkpoint inhibitor therapy resumption in patients with malignant tumors after moderate-to-severe immune-related adverse events. PLoS ONE 2022, 17, e0267572. [Google Scholar] [CrossRef]
- Allouchery, M.; Lombard, T.; Martin, M.; Rouby, F.; Sassier, M.; Bertin, C.; Atzenhoffer, M.; Miremont-Salame, G.; Perault-Pochat, M.C.; Puyade, M.; et al. Safety of immune checkpoint inhibitor rechallenge after discontinuation for grade >/=2 immune-related adverse events in patients with cancer. J. Immunother. Cancer 2020, 8, e001622. [Google Scholar] [CrossRef]
- Husebye, E.S.; Castinetti, F.; Criseno, S.; Curigliano, G.; Decallonne, B.; Fleseriu, M.; Higham, C.E.; Lupi, I.; Paschou, S.A.; Toth, M.; et al. Endocrine-related adverse conditions in patients receiving immune checkpoint inhibition: An ESE clinical practice guideline. Eur. J. Endocrinol. 2022, 187, G1–G21. [Google Scholar] [CrossRef]
- Brancatella, A.; Viola, N.; Brogioni, S.; Montanelli, L.; Sardella, C.; Vitti, P.; Marcocci, C.; Lupi, I.; Latrofa, F. Graves’ Disease Induced by Immune Checkpoint Inhibitors: A Case Report and Review of the Literature. Eur. Thyroid J. 2019, 8, 192–195. [Google Scholar] [CrossRef]
- Paragliola, R.M.; Corsello, A.; Papi, G.; Melfa, E.; Urbani, A.; Pontecorvi, A.; Corsello, S.M.; Carrozza, C. Immunoassay Interference on Thyroid Function Tests During Treatment with Nivolumab. Thyroid 2020, 30, 1091–1094. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Iyer, P.C.; Cabanillas, M.E.; Waguespack, S.G.; Hu, M.I.; Thosani, S.; Lavis, V.R.; Busaidy, N.L.; Subudhi, S.K.; Diab, A.; Dadu, R. Immune-Related Thyroiditis with Immune Checkpoint Inhibitors. Thyroid 2018, 28, 1243–1251. [Google Scholar] [CrossRef]
- Ma, C.; Hodi, F.S.; Giobbie-Hurder, A.; Wang, X.; Zhou, J.; Zhang, A.; Zhou, Y.; Mao, F.; Angell, T.E.; Andrews, C.P.; et al. The Impact of High-Dose Glucocorticoids on the Outcome of Immune-Checkpoint Inhibitor-Related Thyroid Disorders. Cancer Immunol. Res. 2019, 7, 1214–1220. [Google Scholar] [CrossRef] [Green Version]
- Mosaferi, T.; Tsai, K.; Sovich, S.; Wilhalme, H.; Kathuria-Prakash, N.; Praw, S.S.; Drakaki, A.; Angell, T.E.; Lechner, M.G. Optimal Thyroid Hormone Replacement Dose in Immune Checkpoint Inhibitor-Associated Hypothyroidism Is Distinct from Hashimoto’s Thyroiditis. Thyroid 2022, 32, 496–504. [Google Scholar] [CrossRef]
- Morita, S.; Tsuji, T.; Kishimoto, S.; Uraki, S.; Takeshima, K.; Iwakura, H.; Furuta, H.; Nishi, M.; Inaba, H.; Matsuoka, T.A. Isolated ACTH deficiency following immunization with the BNT162b2 SARS-CoV-2 vaccine: A case report. BMC Endocr. Disord. 2022, 22, 185. [Google Scholar] [CrossRef]
- Taieb, A.; Mounira, E.E. Pilot Findings on SARS-CoV-2 Vaccine-Induced Pituitary Diseases: A Mini Review from Diagnosis to Pathophysiology. Vaccines 2022, 10, 2004. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggermont, A.M.; Chiarion-Sileni, V.; Grob, J.J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015, 16, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Faje, A.T.; Sullivan, R.; Lawrence, D.; Tritos, N.A.; Fadden, R.; Klibanski, A.; Nachtigall, L. Ipilimumab-induced hypophysitis: A detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J. Clin. Endocrinol. Metab. 2014, 99, 4078–4085. [Google Scholar] [CrossRef] [Green Version]
- Faje, A.; Reynolds, K.; Zubiri, L.; Lawrence, D.; Cohen, J.V.; Sullivan, R.J.; Nachtigall, L.; Tritos, N. Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis. Eur. J. Endocrinol. 2019, 181, 211–219. [Google Scholar] [CrossRef]
- Levy, M.; Abeillon, J.; Dalle, S.; Assaad, S.; Borson-Chazot, F.; Disse, E.; Raverot, G.; Cugnet-Anceau, C. Anti-PD1 and Anti-PDL1-Induced Hypophysitis: A Cohort Study of 17 Patients with Longitudinal Follow-Up. J. Clin. Med. 2020, 9, 3280. [Google Scholar] [CrossRef]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 2014, 6, 230ra45. [Google Scholar] [CrossRef]
- Caturegli, P.; Di Dalmazi, G.; Lombardi, M.; Grosso, F.; Larman, H.B.; Larman, T.; Taverna, G.; Cosottini, M.; Lupi, I. Hypophysitis Secondary to Cytotoxic T-Lymphocyte-Associated Protein 4 Blockade: Insights into Pathogenesis from an Autopsy Series. Am. J. Pathol. 2016, 186, 3225–3235. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Chen, X.; Wu, X.; Huang, Y.; Zhuang, Y.; Chen, Y.; Feng, C.; Lin, X. Immune checkpoint inhibitor-associated pituitary adverse events: An observational, retrospective, disproportionality study. J. Endocrinol. Investig. 2020, 43, 1473–1483. [Google Scholar] [CrossRef]
- Barnabei, A.; Strigari, L.; Corsello, A.; Paragliola, R.M.; Falzone, L.; Salvatori, R.; Corsello, S.M.; Torino, F. Immune Checkpoint Inhibitor-Induced Central Diabetes Insipidus: Looking for the Needle in the Haystack or a Very Rare Side-Effect to Promptly Diagnose? Front. Oncol. 2022, 12, 798517. [Google Scholar] [CrossRef]
- Iwama, S.; Sugimura, Y.; Kiyota, A.; Kato, T.; Enomoto, A.; Suzuki, H.; Iwata, N.; Takeuchi, S.; Nakashima, K.; Takagi, H.; et al. Rabphilin-3A as a Targeted Autoantigen in Lymphocytic Infundibulo-neurohypophysitis. J. Clin. Endocrinol. Metab. 2015, 100, E946–E954. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, E.; Cartin-Ceba, R.; Specks, U.; Leavitt, J.; Erickson, B.; Erickson, D. Pituitary dysfunction in granulomatosis with polyangiitis: The Mayo Clinic experience. J. Clin. Endocrinol. Metab. 2014, 99, 3988–3994. [Google Scholar] [CrossRef] [Green Version]
- Trainer, H.; Hulse, P.; Higham, C.E.; Trainer, P.; Lorigan, P. Hyponatraemia secondary to nivolumab-induced primary adrenal failure. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016, 16–0108. [Google Scholar] [CrossRef]
- Hescot, S.; Haissaguerre, M.; Pautier, P.; Kuhn, E.; Schlumberger, M.; Berdelou, A. Immunotherapy-induced Addison’s disease: A rare, persistent and potentially lethal side-effect. Eur. J. Cancer 2018, 97, 57–58. [Google Scholar] [CrossRef]
- Paepegaey, A.C.; Lheure, C.; Ratour, C.; Lethielleux, G.; Clerc, J.; Bertherat, J.; Kramkimel, N.; Groussin, L. Polyendocrinopathy Resulting from Pembrolizumab in a Patient with a Malignant Melanoma. J. Endocr. Soc. 2017, 1, 646–649. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, S.R.; Allolio, B.; Arlt, W.; Barthel, A.; Don-Wauchope, A.; Hammer, G.D.; Husebye, E.S.; Merke, D.P.; Murad, M.H.; Stratakis, C.A.; et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 364–389. [Google Scholar] [CrossRef] [Green Version]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced with Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, M.; Imagawa, A. Type 1 diabetes related to immune checkpoint inhibitors. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101657. [Google Scholar] [CrossRef] [PubMed]
- Takada, S.; Hirokazu, H.; Yamagishi, K.; Hideki, S.; Masayuki, E. Predictors of the Onset of Type 1 Diabetes Obtained from Real-World Data Analysis in Cancer Patients Treated with Immune Checkpoint Inhibitors. Asian Pac. J. Cancer Prev. 2020, 21, 1697–1699. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, R.; Haseda, F.; Tsutsumi, C.; Hiromine, Y.; Noso, S.; Kawabata, Y.; Mitsui, S.; Terasaki, J.; Ikegami, H.; Imagawa, A.; et al. Low programmed cell death-1 (PD-1) expression in peripheral CD4(+) T cells in Japanese patients with autoimmune type 1 diabetes. Clin. Exp. Immunol. 2015, 180, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneda, S.; Imagawa, A.; Hosokawa, Y.; Baden, M.Y.; Kimura, T.; Uno, S.; Fukui, K.; Goto, K.; Uemura, M.; Eguchi, H.; et al. T-Lymphocyte Infiltration to Islets in the Pancreas of a Patient Who Developed Type 1 Diabetes After Administration of Immune Checkpoint Inhibitors. Diabetes Care 2019, 42, e116–e118. [Google Scholar] [CrossRef] [Green Version]
- Baden, M.Y.; Imagawa, A.; Abiru, N.; Awata, T.; Ikegami, H.; Uchigata, Y.; Oikawa, Y.; Osawa, H.; Kajio, H.; Kawasaki, E.; et al. Characteristics and clinical course of type 1 diabetes mellitus related to anti-programmed cell death-1 therapy. Diabetol. Int. 2019, 10, 58–66. [Google Scholar] [CrossRef]
- Akturk, H.K.; Kahramangil, D.; Sarwal, A.; Hoffecker, L.; Murad, M.H.; Michels, A.W. Immune checkpoint inhibitor-induced Type 1 diabetes: A systematic review and meta-analysis. Diabet. Med. 2019, 36, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
Drug Name | Ig Isotype and Physiological Function |
---|---|
Ipilimumab | Target: CTLA-4 |
Ig isotype: IgG1 | |
Physiological function: Depleting Treg cells | |
Tremelimumab | Target: CTLA-4 |
Ig isotype: IgG2 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Pembrolizumab | Target: PD-1 |
Ig isotype: IgG4 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Nivolumab | Target: PD-1 |
Ig isotype: IgG4 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Cemiplimab | Target: PD-1 |
Ig isotype: IgG4 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Dostarlimab | Target: PD-1 |
Ig isotype: IgG4 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Atenolizumab | Target: PD-L1 |
Ig isotype: IgG1 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Durvalumab | Target: PD-L1 |
Ig isotype: IgG1 | |
Physiological function: Neutralizing inhibitory signal in T cells | |
Avelumab | Target: PD-L1 |
Ig isotype: IgG1 | |
Physiological function: Neutralizing inhibitory signal in T cells; Antibody-dependent cellular cytotoxicity |
Author | Anti-PD-1 | Anti-PD-L1 | Anti-CTLA-4 | |||
---|---|---|---|---|---|---|
Hyperth | HypoT | HyperT | HypoT | HyperT | HypoT | |
Lu et al. [14] | 20.2% | 66.5% | 28.8% | 62.0% | 27.9% | 55.3% |
Hu et al. [15] | 10.3% | 47.7% | ||||
Xu et al. [16] | 14.3% | 7.1% | ||||
Akturk et al. [17] | 3.8% * | 0.0% | 0.0% | |||
Ueba et al. [18] | 4.8% | 6.3% | 9.5% | 3.6% | ||
Huang et al. [19] | 4.3% | |||||
Schulz et al. [20] | 18% ** | |||||
van Laar et al. [21] | 13.7% | 19.6% | ||||
Qu et al. [22] | 0.9% | 12.8% | ||||
Zhao et al. [23] | 8.3% | |||||
Liu et al. [24] | 76.7% | |||||
Hiraoka et al. [25] | 6.7% | |||||
Lu et al. [14] | 22.7% ** | 62.0% ** | ||||
Uhara et al. [26] | 14% | |||||
Wu et al. [27] | 27.5% | |||||
Baek et al. [28] | 8.2% | 20.6% | 9.5% | 14.3% | ||
Schonfeld et al. [29] | 17.5% ** | 0.3% | ||||
Labadzhyan et al. [30] | 23.4% | |||||
Kim et al. [31] | 14.8% | |||||
Phillips et al. [32] | 19% ** | |||||
Sonehara et al. [33] | 12.4% ** | |||||
Marabelle et al. [34] | 11.6 | |||||
Duan et al. [35] | 8.7% | |||||
O’Malley et al. [36] | 7.1% *** | 14.2% *** | ||||
Fuereder et al. [37] | 40.9% | |||||
Ngamphaiboon et al. [38] | 2.7% ** | 7.5% ** | ||||
Fidilio et al. [39] | 46.2% ** | 44.5% ** | ||||
Zhang et al. [40] | 14.8% | |||||
Yu et al. [41] | 24.2% | |||||
Mayer et al. [42] | 7% *** | |||||
Yamamoto et al. [43] | 5.7% | |||||
Chan et al. [44] | 6.2% ** | 17.9% ** | ||||
Makker et al. [45] | 54.3% | |||||
Trullas et al. [46] | 12.4% | |||||
Muir et al. [47] | 31.0% *** | 8.0% *** | ||||
Yoon et al. [48] | 16.7% | 9.7% | ||||
Griewing et al. [49] | 28.0% * | |||||
Alkrekshi et al. [50] | 2.5% ** | |||||
Leddon et al. [51] | 19.1% * | |||||
McDermott et al. [52] | 14.5% | |||||
de Azevedo et al. [53] | 17.3% | |||||
Almutairi et al. [54] | 56.2% | 17.8% | ||||
Zayas-Soriano et al. [55] | 25.7% * | |||||
Robert et al. [56] | 3.0% | 9.1% | ||||
Zhou et al. [57] | 7.9% | 13.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profili, N.I.; Castelli, R.; Gidaro, A.; Merella, A.; Manetti, R.; Palmieri, G.; Maioli, M.; Delitala, A.P. Endocrine Side Effects in Patients Treated with Immune Checkpoint Inhibitors: A Narrative Review. J. Clin. Med. 2023, 12, 5161. https://doi.org/10.3390/jcm12155161
Profili NI, Castelli R, Gidaro A, Merella A, Manetti R, Palmieri G, Maioli M, Delitala AP. Endocrine Side Effects in Patients Treated with Immune Checkpoint Inhibitors: A Narrative Review. Journal of Clinical Medicine. 2023; 12(15):5161. https://doi.org/10.3390/jcm12155161
Chicago/Turabian StyleProfili, Nicia I., Roberto Castelli, Antonio Gidaro, Alessandro Merella, Roberto Manetti, Giuseppe Palmieri, Margherita Maioli, and Alessandro P. Delitala. 2023. "Endocrine Side Effects in Patients Treated with Immune Checkpoint Inhibitors: A Narrative Review" Journal of Clinical Medicine 12, no. 15: 5161. https://doi.org/10.3390/jcm12155161
APA StyleProfili, N. I., Castelli, R., Gidaro, A., Merella, A., Manetti, R., Palmieri, G., Maioli, M., & Delitala, A. P. (2023). Endocrine Side Effects in Patients Treated with Immune Checkpoint Inhibitors: A Narrative Review. Journal of Clinical Medicine, 12(15), 5161. https://doi.org/10.3390/jcm12155161