Diaphragm Dysfunction and ICU-Acquired Weakness in Septic Shock Patients with or without Mechanical Ventilation: A Pilot Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements of Diaphragm Thickness
2.3. Data Definition and Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, N.; Harhay, M.O.; Small, D.S.; Prescott, H.C.; Bowles, K.H.; Gaieski, D.F.; Mikkelsen, M.E. Temporal trends in incidence, sepsis‒related mortality, and hospital‒based acute care after sepsis. Crit. Care Med. 2018, 46, 354–360. [Google Scholar] [CrossRef]
- Gaieski, D.F.; Edwards, J.M.; Kallan, M.J.; Carr, B.G. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit. Care Med. 2013, 41, 1167–1174. [Google Scholar] [CrossRef]
- Maley, J.H.; Mikkelsen, M.E. Short‒term gains with long‒term consequences: The evolving story of sepsis survivorship. Clin. Chest Med. 2016, 37, 367–380. [Google Scholar] [CrossRef]
- Baby, S.; George, C.; Osahan, N.M. Intensive care unit-acquired neuromuscular weakness: A prospective study on incidence, clinical course, and outcomes. Indian J. Crit. Care Med. 2021, 25, 1006–1012. [Google Scholar] [CrossRef]
- Sato, S.; Miyazaki, S.; Tamaki, A.; Yoshimura, Y.; Arai, H.; Fujiwara, D.; Katsura, H.; Kawagoshi, A.; Kozu, R.; Maeda, K.; et al. Respiratory sarcopenia: A position paper by four professional organizations. Geriatr. Gerontol. Int. 2019, 19, 91–97. [Google Scholar] [CrossRef]
- Formenti, P.; Umbrello, M.; Coppola, S.; Froio, S.; Chiumello, D. Clinical review: Peripheral muscular ultrasound in the ICU. Ann. Intensiv. Care 2019, 17, 57. [Google Scholar] [CrossRef] [Green Version]
- Goligher, E.C.; Dres, M.; Fan, E.; Rubenfeld, G.D.; Scales, D.C.; Herridge, M.S.; Vorona, S.; Sklar, M.C.; Rittayamai, N.; Lanys, A.; et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am. J. Respir. Crit. Care Med. 2018, 197, 204–213. [Google Scholar] [CrossRef]
- Vivier, E.; Roussey, A.; Doroszewski, F.; Rosselli, S.; Pommier, C.; Carteaux, G.; Dessap, A.M. Atrophy of diaphragm and pectoral muscles in critically ill patients. Anesthesiology 2019, 131, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Le Neindre, A.; Wormser, J.; Luperto, M.; Bruel, C.; Misset, B.; Bouhemad, B.; Philippart, F. Diaphragm function in patients with sepsis and septic shock: A longitudinal ultrasound study. Aust. Crit. Care 2023, 36, 239–246. [Google Scholar] [CrossRef]
- Demoule, A.; Molinari, N.; Jung, B.; Prodanovic, H.; Chanques, G.; Matecki, S.; Mayaux, J.; Similowski, T.; Jaber, S. Patterns of diaphragm function in critically ill patients receiving prolonged mechanical ventilation: A prospective longitudinal study. Ann. Intensiv. Care 2016, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Ge, H.; Xu, L.; Guo, F.; Zhang, G.; Wu, Y. Alterations in diaphragmatic function assessed by ultrasonography in mechanically ventilated patients with sepsis. J. Clin. Ultrasound 2019, 47, 206–211. [Google Scholar] [CrossRef]
- Jung, B.; Nougaret, S.; Conseil, M.; Coisel, Y.; Futier, E.; Chanques, G.; Molinari, N.; Lacampagne, A.; Matecki, S.; Jaber, S. Sepsis is associated with a preferential diaphragmatic atrophy: A critically ill patient study using tridimensional computed tomography. Anesthesiology 2014, 120, 1182–1191. [Google Scholar] [CrossRef]
- Lecronier, M.; Jung, B.; Molinari, N.; Pinot, J.; Similowski, T.; Jaber, S.; Demoule, A.; Dres, M. Severe but reversible impaired diaphragm function in septic mechanically ventilated patients. Ann. Intensiv. Care 2022, 12, 34. [Google Scholar] [CrossRef]
- Hadda, V.; Kumar, R.; Tiwari, P.; Mittal, S.; Kalaivani, M.; Madan, K.; Mohan, A.; Guleria, R. Decline in diaphragm thickness and clinical outcomes among patients with sepsis. Heart Lung 2021, 50, 284–291. [Google Scholar] [CrossRef]
- Schepens, T.; Verbrugghe, W.; Dams, K.; Corthouts, B.; Parizel, P.M.; Jorens, P.G. The course of diaphragm atrophy in ventilated patients assessed with ultrasound: A longitudinal cohort study. Crit. Care 2015, 19, 422. [Google Scholar] [CrossRef] [Green Version]
- Dres, M.; Dubé, B.-P.; Mayaux, J.; Delemazure, J.; Reuter, D.; Brochard, L.; Similowski, T.; Demoule, A. Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberation from Mechanical Ventilation in Medical Intensive Care Unit Patients. Am. J. Respir. Crit. Care Med. 2017, 195, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Jung, B.; Moury, P.H.; Mahul, M.; de Jong, A.; Galia, F.; Prades, A.; Albaladejo, P.; Chanques, G.; Molinari, N.; Jaber, S. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensiv. Care Med. 2016, 42, 853–861. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Umbrello, M.; Formenti, P. Ultrasonographic Assessment of Diaphragm Function in Critically Ill Subjects. Respir. Care 2016, 61, 542–555. [Google Scholar] [CrossRef] [Green Version]
- Zambon, M.; Greco, M.; Bocchino, S.; Cabrini, L.; Beccaria, P.F.; Zangrillo, A. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: A systematic review. Intensiv. Care Med. 2017, 43, 29–38. [Google Scholar] [CrossRef]
- Matamis, D.; Soilemezi, E.; Tsagourias, M.; Akoumianaki, E.; Dimassi, S.; Boroli, F.; Richard, J.-C.M.; Brochard, L. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensiv. Care Med. 2013, 39, 801–810. [Google Scholar] [CrossRef]
- Dubé, B.-P.; Dres, M.; Mayaux, J.; Demiri, S.; Similowski, T.; Demoule, A. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: Comparison to phrenic stimulation and prognostic implications. Thorax 2017, 72, 811–818. [Google Scholar] [CrossRef] [Green Version]
- De Jonghe, B.; Sharshar, T.; Lefaucheur, J.-P.; Authier, F.-J.; Durand-Zaleski, I.; Boussarsar, M.; Cerf, C.; Renaud, E.; Mesrati, F.; Carlet, J.; et al. Paresis acquired in the intensive care unit: A prospective multicenter study. JAMA 2002, 288, 2859–2867. [Google Scholar] [CrossRef] [Green Version]
- Dres, M.; Goligher, E.C.; Heunks, L.M.A.; Brochard, L.J. Critical illness-associated diaphragm weakness. Intensiv. Care Med. 2017, 43, 1441–1452. [Google Scholar] [CrossRef]
- Lanone, S.; Taillé, C.; Boczkowski, J.; Aubier, M. Diaphragmatic fatigue during sepsis and septic shock. Intensiv. Care Med. 2005, 31, 1611–1617. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensiv. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Hussain, S.N.A.; Giaid, A.; El Dawiri, Q.; Sakkal, D.; Hattori, R.; Guo, Y. Expression of nitric oxide synthases and GTP cyclohydrolase I in the ventilatory and limb muscles during endotoxemia. Am. J. Respir. Cell. Mol. Biol. 1997, 17, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-C.; Ebihara, S.; EL Dwairi, Q.; Hussain, S.N.A.; Yang, L.; Gottfried, S.B.; Comtois, A.; Petrof, B.J. Diaphragm sarcolemmal injury is induced by sepsis and alleviated by nitric oxide synthase inhibition. Am. J. Respir. Crit. Care Med. 1998, 158, 1656–1663. [Google Scholar] [CrossRef] [Green Version]
- Susa, Y.; Masuda, Y.; Imaizumi, H.; Namiki, A. Neutralization of receptor for advanced glycation end-products and high mobility group box-1 attenuates septic diaphragm dysfunction in rats with peritonitis. Crit. Care Med. 2009, 37, 2619–2624. [Google Scholar] [CrossRef]
- Gan, X.-Y.; Zhang, J.; Xu, P.; Liu, S.-J.; Guo, Z.-L. Early passive orthostatic training prevents diaphragm atrophy and dysfunction in intensive care unit patients on mechanical ventilation: A retrospective case‒control study. Heart Lung 2023, 59, 37–43. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Gai, Y.; Meng, P.; Lin, H.; Zhao, Y.; Xing, J. Early rehabilitation relieves diaphragm dysfunction induced by prolonged mechanical ventilation: A randomised control study. BMC Pulm. Med. 2021, 21, 106. [Google Scholar] [CrossRef]
Variables | MV Group (n = 11) | non-MV Group (n = 13) | p-Value | |
---|---|---|---|---|
Age, years | 69.0 (66.0, 74.5) | 80.0 (73.0, 87.0) | 0.035 | |
Male | 6 (54.5) | 8 (61.5) | 1.000 | |
BMI, kg/m2 | 24.4 (20.4, 28.3) | 21.4 (18.5, 24.0) | 0.119 | |
Length of hospital stay, days | 26.0 (15.0, 79.0) | 21.0 (14.0, 37.0) | 0.494 | |
Length of ICU stay, days | 10.0 (6.0, 22.0) | 5.0 (4.0, 6.0) | 0.005 | |
Length of MV, days | 5.0 (4.5, 16.0) | |||
Time to start MV, days | 0 (0, 0) | |||
Surgical patients | 2 (18.2) | 0 (0) | 0.199 | |
Noradrenalin use | 11 (100) | 13 (100) | 1.000 | |
Vasopressin use | 11 (100) | 4 (30.8) | <0.001 | |
Systemic steroid use | 8 (72.7) | 3 (23.1) | 0.015 | |
Propofol use | 7 (63.6) | 0 (0) | <0.001 | |
Midazolam use | 10 (90.9) | 0 (0) | <0.001 | |
Renal replacement therapy | 3 (27.3) | 0 (0) | 0.082 | |
Delirium incidence | 8 (72.7) | 7 (53.8) | 0.423 | |
Rehabilitation days, days | 22.0 (11.5, 86.5) | 15.0 (10.0, 30.0) | 0.331 | |
Time to start rehabilitation, days | 1.0 (1.0, 1.0) | 1.0 (1.0, 2.0) | 0.392 | |
Time to initial sitting, days | 2.0 (2.0, 3.0) | 4.0 (2.3, 6.5) | 0.036 | |
Time to initial ambulation, days | 4.0 (3.0, 5.0) | 6.5 (4.0, 13.3) | 0.161 | |
APACHE Ⅱ at ICU admission, points | 26.0 (17.0, 30.0) | 14.0 (12.0, 17.0) | 0.004 | |
SOFA score at ICU admission, points | 11.0 (9.5, 13.0) | 7.0 (6.0, 9.0) | 0.009 | |
Maximum SOFA score in ICU, points | 13.0 (11.0, 14.5) | 8.0 (8.0, 9.0) | <0.001 | |
Clinical frail scale, points | 4.0 (3.0, 5.0) | 4.0 (4.0, 6.0) | 0.228 | |
Charlson comorbidity index, points | 1.0 (0.5, 3.5) | 2.0 (1.0, 4.0) | 0.361 | |
Site of infection | Lungs | 5 (45.5) | 0 (0) | 0.017 |
Abdomen | 3 (27.3) | 9 (69.2) | ||
Urinary tract | 3 (27.3) | 3 (23.1) | ||
Soft tissue and bone | 0 (0) | 1 (7.7) |
Thickness at Expiration (mm) | Thickening Fraction (%) | |||||
---|---|---|---|---|---|---|
Baseline | Final | p-Value | Baseline | Final | p-Value | |
All patients (n = 24) | 1.1 (0.9–1.2) | 1.0 (0.9–1.2) | 0.063 | 0 (0–8.8) | 7.2 (0–16.8) | 0.209 |
MV group (n = 11) | 1.1 (1.0–1.2) | 0.9 (0.9–1.1) | 0.044 | 0 (0–0) | 0 (0–18.3) | 0.042 |
non-MV group (n = 13) | 1.0 (0.9–1.2) | 1.1 (0.9–1.3) | 0.587 | 8.3 (0–11.1) | 7.7 (0–15.0) | 0.953 |
Diaphragm Dysfunction | ICU-AW | Overlap | |
---|---|---|---|
MV group (n = 11) | 8 (72.7) | 6 (54.5) | 6 (54.5) |
non-MV group (n = 13) | 10 (76.9) | 3 (23.1) | 3 (23.1) |
MV Group | Non-MV Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Diaphragm Dysfunction | ICU-AW | Diaphragm Dysfunction | ICU-AW | |||||||||
Yes (n = 8) | No (n = 3) | p-Value | Yes (n = 6) | No (n = 5) | p-Value | Yes (n = 10) | No (n = 3) | p-Value | Yes (n = 3) | No (n = 10) | p-Value | |
Hospital mortality | 3 (37.5) | 0 (0) | 0.100 | 3 (50.0) | 0 (0) | 0.182 | 0 (0) | 0 (0) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Rehabilitation hospital | 3 (37.5) | 0 (0) | 0.464 | 3 (50.0) | 0 (0) | 0.018 | 2 (20.0) | 0 (0) | 1.000 | 0 (0) | 2 (20.0) | 1.000 |
ICU LOS | 11.0 (8.0–26.0) | 5.5 (5.3–5.8) | 0.145 | 22.0 (12.8–29.0) | 6.0 (5.0–6.0) | 0.004 | 5.0 (3.5–6.5) | 4.5 (4.3–4.8) | 0.769 | 4.0 (3.5–6.5) | 5.0 (4.0–6.0) | 0.811 |
Hospital LOS | 37.0 (16.0–92.0) | 15.0 (13.0–17.0) | 0.218 | 79.0 (44.3–92.8) | 14.0 (13.0–16.0) | 0.004 | 21.0 (13.5–42.0) | 20.0 (18.5–21.5) | 1.000 | 47.0 (30.0–52.0) | 19.0 (14.3–32.0) | 0.469 |
Weaningfailure | 1 (12.5) | 0 (0) | 1.000 | 1 (16.7) | 0 (0) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, Y.; Morisawa, T.; Okamoto, H.; Nakanishi, N.; Matsumoto, N.; Saitoh, M.; Takahashi, T.; Fujiwara, T. Diaphragm Dysfunction and ICU-Acquired Weakness in Septic Shock Patients with or without Mechanical Ventilation: A Pilot Prospective Observational Study. J. Clin. Med. 2023, 12, 5191. https://doi.org/10.3390/jcm12165191
Takahashi Y, Morisawa T, Okamoto H, Nakanishi N, Matsumoto N, Saitoh M, Takahashi T, Fujiwara T. Diaphragm Dysfunction and ICU-Acquired Weakness in Septic Shock Patients with or without Mechanical Ventilation: A Pilot Prospective Observational Study. Journal of Clinical Medicine. 2023; 12(16):5191. https://doi.org/10.3390/jcm12165191
Chicago/Turabian StyleTakahashi, Yuta, Tomoyuki Morisawa, Hiroshi Okamoto, Nobuto Nakanishi, Noriko Matsumoto, Masakazu Saitoh, Tetsuya Takahashi, and Toshiyuki Fujiwara. 2023. "Diaphragm Dysfunction and ICU-Acquired Weakness in Septic Shock Patients with or without Mechanical Ventilation: A Pilot Prospective Observational Study" Journal of Clinical Medicine 12, no. 16: 5191. https://doi.org/10.3390/jcm12165191
APA StyleTakahashi, Y., Morisawa, T., Okamoto, H., Nakanishi, N., Matsumoto, N., Saitoh, M., Takahashi, T., & Fujiwara, T. (2023). Diaphragm Dysfunction and ICU-Acquired Weakness in Septic Shock Patients with or without Mechanical Ventilation: A Pilot Prospective Observational Study. Journal of Clinical Medicine, 12(16), 5191. https://doi.org/10.3390/jcm12165191