Augmented and Virtual Reality for Preoperative Trauma Planning, Focusing on Orbital Reconstructions: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Preoperative Planning Time
3.2. Operative Time
3.3. Technical Accuracy and Outcome
3.4. Complications
3.5. Satisfaction Score
3.6. Education
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Full search string:
Database | #Refs | #Refs after Deduplication |
---|---|---|
PubMed (Medline) | 2156 | |
Embase | 2482 | |
Web of Science | 1442 | |
Cochrane (Core Collection) | 301 | |
Total | 6381 | 3757 |
- PubMed (Medline)
- (“orbital fractures”[Mesh] OR ((“orbit surgery”[tiab] OR orbit*[tiab] OR blow-out*[tiab] OR “orbitozygoma*”[tiab] OR orbital-wall[tiab] OR orbital-floor[tiab]) AND (“Fractures, Bone”[Mesh:NoExp] OR fracture*[tiab]))) AND (“orbital implants”[Mesh] OR orbital-implant*[tiab] OR patient-specific-implant*[tiab] OR “Imaging, Three-Dimensional”[Mesh] OR 3D[tiab] OR three-Dimensional[tiab] OR 3-D[tiab] OR “Virtual Reality”[Mesh] OR virtual*[tiab] OR augmented-realit*[tiab] OR mixed-realit*[tiab] OR “Reconstructive Surgical Procedures”[Mesh:NoExp] OR reconstructive-surg*[tiab] OR computer-assisted[tiab] OR computer-aided[tiab] OR navigation*[tiab] OR management[tiab] OR preoperative-plan*[tiab] OR planning*[tiab] OR pre-operative-plan*[tiab] OR pre-surg*[tiab] OR presurg*[tiab] OR pre-plan*[tiab] OR preplan*[tiab] OR preoperative-care[tiab] OR preparation*[tiab])
- Embase
- (‘orbital fractures’/exp OR ((‘orbit surg*’:ti,ab,kw OR ‘orbit*’:ti,ab,kw OR ‘blow out*’:ti,ab,kw OR ‘orbitozygoma*’:ti,ab,kw OR ‘orbital wall’:ti,ab,kw OR ‘orbital floor’:ti,ab,kw) AND ‘fracture*’:ti,ab,kw)) AND (‘orbital implants’/exp OR ‘orbital implant*’:ti,ab,kw OR ‘patient specific implant’/exp OR ‘three-dimensional imaging’/exp OR ‘three dimensional’:ti,ab,kw OR ‘3d’:ti,ab,kw OR ‘virtual reality’/exp OR ‘virtual*’:ti,ab,kw OR ‘augmented reality’/exp OR ‘augmented realit*’:ti,ab,kw OR ‘mixed realit*’:ti,ab,kw OR ‘reconstructive surgery’/exp OR ‘reconstructive surg*’:ti,ab,kw OR ‘computer assisted’:ti,ab,kw OR ‘computer aided’:ti,ab,kw OR navigation*:ti,ab,kw OR management:ti,ab,kw OR ‘preoperative plan*’:ti,ab,kw OR ‘planning*’:ti,ab,kw OR ‘pre operative plan*’:ti,ab,kw OR ‘pre surg*’:ti,ab,kw OR ‘presurg*’:ti,ab,kw OR ‘pre plan*’:ti,ab,kw OR ‘preplan*’:ti,ab,kw OR ‘preoperative care’:ti,ab,kw OR ‘preparation*’:ti,ab,kw)
- Web Of Science
- (TS=(“orbital fractures*” OR ((“orbit surgery” OR “orbit*” OR “orbitozygoma*” OR “blow out” or “orbital wall” or “orbital floor”) NEAR/6 “Fracture*”))) AND (TS=(“orbital implant*” OR “patient specific implant” OR “three dimensional” OR “3D” OR “3 D” OR “virtual*” OR “augmented realit*” OR “mixed realit*” OR “reconstructive surg*” OR “computer assisted” OR “computer aided” OR navigation* OR management OR “preoperative plan*” OR “planning*” OR “pre operative plan*” OR “pre surg*” OR “presurg*” OR “pre plan*” OR “preplan*” OR “preoperative care” OR “preparation*”))
- Cochrane (Core Collection)
- ((([mh “orbital fractures”] OR ([mh “orbital”] AND [mh ^”Fractures, Bone”])) OR ((blow-out* OR orbital* OR ((“orbit surgery” OR orbit* OR orbitozygoma* OR “blow out” OR “orbital wall” OR “orbital floor”) AND fracture*)):ti,ab,kw))) AND (((([mh “orbital implants” ] OR (patient specific implant*) OR [mh “Imaging, Three-Dimensional”] OR [mh “Virtual Reality”] OR [mh ^”Reconstructive Surgical Procedures”])) OR ((3D OR “three Dimensional” OR “3 D” OR virtual* OR (augmented NEXT realit*) OR (mixed NEXT realit*) OR (reconstructive NEXT surg*) OR “computer assisted” OR “computer aided” OR navigation* OR management OR (preoperative NEXT plan*) OR planning* OR (pre NEXT operative NEXT plan*) OR (pre NEXT surg*) OR presurg* OR (pre NEXT plan*) OR preplan* OR “preoperative care” OR preparation*):ti,ab,kw)))
References
- Ellis, E., 3rd. Orbital trauma. Oral. Maxillofac. Surg. Clin. N. Am. 2012, 24, 629–648. [Google Scholar] [CrossRef] [PubMed]
- Kholaki, O.; Hammer, D.A.; Schlieve, T. Management of Orbital Fractures. Atlas Oral Maxillofac. Surg. Clin. N. Am. 2019, 27, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Dubron, K.; Verbist, M.; Shaheen, E.; Dormaar, T.J.; Jacobs, R.; Politis, C. Incidence, Aetiology, and Associated Fracture Patterns of Infraorbital Nerve Injuries Following Zygomaticomaxillary Complex Fractures: A Retrospective Analysis of 272 Patients. Craniomaxillofac. Trauma Reconstr. 2022, 15, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E., 3rd. Reconstruction of orbital floor defects. J. Oral. Maxillofac. Surg. 2012, 70, 2255. [Google Scholar] [CrossRef]
- Guillaume, O.; Geven, M.A.; Varjas, V.; Varga, P.; Gehweiler, D.; Stadelmann, V.A.; Smidt, T.; Zeiter, S.; Sprecher, C.; Bos, R.R.M.; et al. Orbital floor repair using patient specific osteoinductive implant made by stereolithography. Biomaterials 2020, 233, 119721. [Google Scholar] [CrossRef] [PubMed]
- Dubron, K.; Van Camp, P.; Jacobs, R.; Politis, C.; Shaheen, E. Accuracy of virtual planning and intraoperative navigation in zygomaticomaxillary complex fractures: A systematic review. J. Stomatol. Oral. Maxillofac. Surg. 2022, 123, e841–e848. [Google Scholar] [CrossRef]
- Ayoub, A.; Pulijala, Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral. Health 2019, 19, 238. [Google Scholar] [CrossRef] [Green Version]
- Chegini, S.; Edwards, E.; McGurk, M.; Clarkson, M.; Schilling, C. Systematic review of techniques used to validate the registration of augmented-reality images using a head-mounted device to navigate surgery. Br. J. Oral. Maxillofac. Surg. 2023, 61, 19–27. [Google Scholar] [CrossRef]
- Benmahdjoub, M.; van Walsum, T.; van Twisk, P.; Wolvius, E.B. Augmented reality in craniomaxillofacial surgery: Added value and proposed recommendations through a systematic review of the literature. Int. J. Oral. Maxillofac. Surg. 2021, 50, 969–978. [Google Scholar] [CrossRef]
- Sakai, D.; Joyce, K.; Sugimoto, M.; Horikita, N.; Hiyama, A.; Sato, M.; Devitt, A.; Watanabe, M. Augmented, virtual and mixed reality in spinal surgery: A real-world experience. J. Orthop. Surg. Hong Kong 2020, 28, 2309499020952698. [Google Scholar] [CrossRef]
- Kotecha, S.; Ferro, A.; Harrison, P.; Fan, K. Orbital reconstruction: A systematic review and meta-analysis evaluating the role of patient-specific implants. Oral. Maxillofac. Surg. 2022, 27, 213–226. [Google Scholar] [CrossRef]
- Gander, T.; Essig, H.; Metzler, P.; Lindhorst, D.; Dubois, L.; Rücker, M.; Schumann, P. Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures. J. Cranio-Maxillofac. Surg. 2015, 43, 126–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Li, J.; Chen, S.; Ren, J.; Geng, N. Application of Computer-Aided Design and Individualized Templates for Bilateral Zygomaticomaxillary Complex Fractures. J. Craniofac. Surg. 2022, 33, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. Bmj 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Khelemsky, R.; Hill, B.; Buchbinder, D. Validation of a Novel Cognitive Simulator for Orbital Floor Reconstruction. J. Oral. Maxillofac. Surg. 2017, 75, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zeng, W.; Yin, H.; Yu, Y.; Ju, R.; Tang, W. The Preliminary Application of Augmented Reality in Unilateral Orbitozygomatic Maxillary Complex Fractures Treatment. J. Craniofacial Surg. 2020, 31, 542–548. [Google Scholar] [CrossRef]
- Bouaoud, J.; El Beheiry, M.; Jablon, E.; Schouman, T.; Bertolus, C.; Picard, A.; Masson, J.B.; Khonsari, R.H. DIVA, a 3D virtual reality platform, improves undergraduate craniofacial trauma education. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Azimi, E.; Dave, N.; Qiu, C.; Yang, R.; Kazanzides, P.; IEEE. Augmented Reality Assisted Orbital Floor Reconstruction. In Proceedings of the 2021 IEEE International Conference on Intelligent Reality (ICIR 2021), Virtual Event, 12–13 May 2021; pp. 25–30. [Google Scholar]
- Rahimov, C.R.; Aliyev, D.U.; Rahimov, N.R.; Farzaliyev, I.M. Mixed Reality in the Reconstruction of Orbital Floor: An Experimental and Clinical Evaluative Study. Ann. Maxillofac. Surg. 2022, 12, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Zoabi, A.; Redenski, I.; Oren, D.; Kasem, A.; Zigron, A.; Daoud, S.; Moskovich, L.; Kablan, F.; Srouji, S. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. J. Clin. Med. 2022, 11, 2385. [Google Scholar] [CrossRef]
- Fuessinger, M.A.; Schwarz, S.; Neubauer, J.; Cornelius, C.-P.; Gass, M.; Poxleitner, P.; Zimmerer, R.; Metzger, M.C.; Schlager, S. Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling. J. Cranio-Maxillofac. Surg. 2019, 47, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Chepurnyi, Y.; Zhukovtseva, O.; Kopchak, A.; Kanura, O. Clinical application of automated virtual orbital reconstruction for orbital fracture management with patient-specific implants: A prospective comparative study. J. Cranio-Maxillofac. Surg. 2022, 50, 686–691. [Google Scholar] [CrossRef]
- Willaert, R.; Shaheen, E.; Deferm, J.; Vermeersch, H.; Jacobs, R.; Mombaerts, I. Three-dimensional characterisation of the globe position in the orbit. Graefes Arch Clin. Exp. Ophthalmol. 2020, 258, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.E.; Lichtenstein, J.T.; Winkelmann, M.; Shin, H.O.; Gellrich, N.C.; Essig, H. Development and first clinical application of automated virtual reconstruction of unilateral midface defects. J. Craniomaxillofac. Surg. 2015, 43, 1340–1347. [Google Scholar] [CrossRef]
- Tel, A.; Sembronio, S.; Costa, F.; Stenico, A.S.; Bagatto, D.; D’Agostini, S.; Robiony, M. Endoscopically assisted computer-guided repair of internal orbital floor fractures: An updated protocol for minimally invasive management. J. Cranio-Maxillofac. Surg. 2019, 47, 1943–1951. [Google Scholar] [CrossRef]
- Willaert, R.; Degrieck, B.; Orhan, K.; Deferm, J.; Politis, C.; Shaheen, E.; Jacobs, R. Semi-automatic magnetic resonance imaging based orbital fat volumetry: Reliability and correlation with computed tomography. Int. J. Oral. Maxillofac. Surg. 2021, 50, 416–422. [Google Scholar] [CrossRef]
Author | Study Design | Type of Fracture | Population Size | Male/Female Ratio | Mean Age (y) and SD (±) or Range | VR | MR | AR | Quality Assessment (MINORS) |
---|---|---|---|---|---|---|---|---|---|
Khelemsky et al., 2016 [16]. | Cross-sectional study | Orbital floor | 39 students, 10 experienced surgeons | 18/20 (students) 9/1 (experiences surgeons) | 24.8 ± 2.5 46.6 ± 9.8 | Touch Surgery (Kinosis Ltd., London, UK) | No | No | 13/24 |
Chen et al., 2020 [17]. | Prospective case series | Unilateral orbitozygomatic maxillary complex | 9 patients | 5/4 | 39.1 | Intomimics 16.0 software | (Yes) | HuaxiAR1.0 software system | 11/16 |
Bouaoud et al., 2021 [18]. | Cross-sectional study | Craniofacial trauma, including orbital floor | 50 students, 4 postgraduate students | / | / | DIVA (Data Integration and Visualization in Augmented and Virtual Environments, Pasteur Institute, Paris) | (Yes) | DIVA (Data Integration and Visualization in Augmented and Virtual Environments, Pasteur Institute, Paris) | 6/16 |
Liu et al., 2021 [19]. | Experimental prospective | Orbital fracture, 3D-printed skull | 1 surgeon | / | / | Microsoft Hololens (Microsoft, Redmond, WA, USA) | No | Yes | 8/16 |
Rahimov et al., 2022 [20]. | Experimental prospective | Orbital fracture, 3D-printed skull | 10 residents 5 experienced surgeons | / | / | Microsoft Hololens (Microsoft, Redmond, WA, USA) | Yes | No | 5/16 |
Author | Preoperative Planning Time | Operation Time | Technical Accuracy and Outcome | Complications | Satisfaction Score | Total Cost |
---|---|---|---|---|---|---|
Khelemsky et al., 2016 [16]. | / | / |
| / | / | No info |
Chen et al., 2020 [17]. | 2–5 days | 103.3 min (mean time), 60–135 min (range) |
| None | 9.4/10 (mean), 8/10–10/10 (range) ** | No info |
Bouaoud et al., 2021 [18]. | / | / |
| / | 98% *** | No info |
Liu et al., 2021 [19]. | / | / |
| / | Good | No info |
Rahimov et al., 2022 [20]. | / | / |
| / | / | Increased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubron, K.; Verbist, M.; Jacobs, R.; Olszewski, R.; Shaheen, E.; Willaert, R. Augmented and Virtual Reality for Preoperative Trauma Planning, Focusing on Orbital Reconstructions: A Systematic Review. J. Clin. Med. 2023, 12, 5203. https://doi.org/10.3390/jcm12165203
Dubron K, Verbist M, Jacobs R, Olszewski R, Shaheen E, Willaert R. Augmented and Virtual Reality for Preoperative Trauma Planning, Focusing on Orbital Reconstructions: A Systematic Review. Journal of Clinical Medicine. 2023; 12(16):5203. https://doi.org/10.3390/jcm12165203
Chicago/Turabian StyleDubron, Kathia, Maarten Verbist, Reinhilde Jacobs, Raphael Olszewski, Eman Shaheen, and Robin Willaert. 2023. "Augmented and Virtual Reality for Preoperative Trauma Planning, Focusing on Orbital Reconstructions: A Systematic Review" Journal of Clinical Medicine 12, no. 16: 5203. https://doi.org/10.3390/jcm12165203
APA StyleDubron, K., Verbist, M., Jacobs, R., Olszewski, R., Shaheen, E., & Willaert, R. (2023). Augmented and Virtual Reality for Preoperative Trauma Planning, Focusing on Orbital Reconstructions: A Systematic Review. Journal of Clinical Medicine, 12(16), 5203. https://doi.org/10.3390/jcm12165203