How to Select Patients for Left Ventricular Assist Devices? A Guide for Clinical Practice
Abstract
:1. Introduction
2. Indications for LVADs
- ►
- Bridge to Transplant (BTT): Indicated in patients on the orthotopic heart transplant list unable to maintain adequate end-organ perfusion with GDMT alone;
- ►
- Bridge to Candidacy (BTC): Suitable in selected patients with temporary contraindications to orthotopic heart transplantation that could be reversed after support with an LVAD (e.g., increased pulmonary vascular resistance, functional kidney disease);
- ►
- Destination Therapy (DT): Recommended in patients with an absolute and permanent contraindication to orthotopic heart transplantation, in whom an LVAD is used as a long-term therapy.
3. Clues to Prompt Initiation of LVAD Evaluation
3.1. Clinical and Laboratory Red Flags
3.2. Echocardiographic Red Flags
- ►
- Marked left ventricular dilatation (left ventricular end-diastolic diameter of >80 mm);
- ►
- Left ventricular ejection fraction of ≤25%;
- ►
- Persistent restrictive mitral filling patterns or echocardiographic findings suggesting pulmonary hypertension despite aggressive diuretic therapy and therapy with inodilators (i.e., milrinone, levosimendan) [34].
3.3. Invasive Hemodynamics Red Flags
4. Assessment of Patients
4.1. Blood Investigation
- ►
- Kidney function: Because the presence of advanced chronic kidney disease (CKD) strongly affects the LVAD post implantation prognosis [37], evaluation of serum creatinine blood urea nitrogen, creatinine clearance, and proteinuria is recommended in all patients (COR I, LOE C). Such assessments should be done in hemodynamically stable patients or after an adequate period of stabilization with diuretics, inotropes, and/or temporary mechanical circulatory support, if clinically indicated (COR I, LOE C). In patients with CKD status >IV–V (i.e., an estimated glomerular filtration rate of <30 mL/min/1.73 m2), the implantation of an LVAD should also be carefully evaluated by a multidisciplinary team (COR IIa, LOE C) as the anticipation of permanent dialysis is a contraindication to LVAD implantation (COR III, LOE C).
- ►
- Hepatic function: Severe hepatic dysfunction is strongly related to an adverse prognosis post-LVAD implantation [38], so a liver enzyme and hepatic protein synthesis evaluation is mandatory in all patients.
- ►
- Blood glucose and glycated hemoglobin: Diabetes has been associated with infection and late mortality in LVAD patients [39], so in all LVAD candidates, the presence of diabetes should be carefully evaluated (COR I, LOE C). Patients with uncontrolled diabetes should undergo optimization of their glycemic control (endocrine expertise recommended; COR I, LOE C), and patients with diabetes-related organ damage (proliferative retinopathy, vasculopathy, nephropathy) have a relative contraindication for LVAD implantation (COR IIb, LOE C).
- ►
- Platelet count and coagulation parameters: Because major post-LVAD complications include both thrombotic (particularly pump thrombosis) and hemorrhagic (mainly gastrointestinal) events [40,41], all patients should undergo preoperative evaluation of their international normalized ratio of prothrombin time, activated prothrombin time, and platelet count (COR I, LOE C). Baseline abnormalities in coagulation parameters not due to drug therapy or an altered platelet count (thrombocythemia and thrombocytosis) should be promptly evaluated to determine their etiology before LVAD implantation (COR I, LOE C).
4.2. Echocardiography
- ►
- Right ventricle evaluation: Most echocardiography-based predictors of right ventricular failure (RVF) post-LVAD implantation are based on assessing RV systolic–diastolic function. However, it was recently demonstrated that evaluating the RV–pulmonary artery (PA) parameters may increase the possibility of predicting postimplant RVF [42]. A systolic tricuspid annulus plane excursion (TAPSE) of <8 mm has been associated with RVF [43,44]; similarly, a right ventricular free wall s′ value on tissue Doppler of <5–8 cm/s [45] and an RV fractional area change (FAC) value of <25–30% [45] are associated with postimplant RVF. RV diastolic dysfunction also provides essential information on the occurrence of RVF after LVAD implantation. Indeed, a preimplant tricuspid E/e′ ratio of >10 predicts RVF [46]. Finally, recently, measures of the RV–PA coupling, which are less affected by afterload changes [47], have been shown to predict the onset of post-LVAD RHF. Specifically, a value of <24 obtained from the product of the peak systolic longitudinal strain rate of RV and the mean RV–PA gradient [48] or an RV load adaptation index of <14 [49] identifies patients with a failing RV unable to adapt to the increase in blood flow post-LVAD implantation.
- ►
- Valvular evaluation: Aortic valve regurgitation results in recirculation and reduced forward flow in patients with LVADs [50]. Therefore, the presence of more than mild aortic valve regurgitation is an indication for valve replacement with a biological valve (COR I, LOE C). Conversely, mild to moderate aortic stenosis does not impact LVAD function unless there is concomitant valve insufficiency [51]; therefore, it is common practice to replace the aortic valve only in patients with pre-existing severe aortic stenosis (COR I, LOE C). Significant mitral stenosis prevents inflow to the LVAD [52]; therefore, moderate or more significant mitral stenosis indicates the need for commissurotomy or valve replacement with a biological valve (COR I, LOE C). Mitral insufficiency, even of severe grade, is not a contraindication because left ventricular unloading almost always reduces the severity of mitral regurgitation [53,54]; on the other hand, since significant tricuspid regurgitation contributes to the occurrence of RVF [55,56], repair or replacement with a bioprosthetic valve should be performed in patients with a moderate or greater degree of tricuspid valve insufficiency that is anticipated to persist after LVAD support (COR IIb, LOE B).
4.3. Other Imaging Techniques
- ►
- Chest imaging: Evaluation of the intrathoracic anatomy is mandated in the preoperative assessment for LVAD surgery [58]. Therefore, chest radiography should be performed in all patients (COR I, LOE C). In patients with suspected intrathoracic abnormalities or previous cardiac surgery, computed tomography (CT) or magnetic resonance imaging should be used to better define the thoracic anatomy (COR I, LOE C).
- ►
- Liver imaging: In patients whose clinical history and/or laboratory investigations suggest hepatic dysfunction, screening for fibrosis or cirrhosis via ultrasonography or CT scan (COR I, LOE C) is necessary. Since fibrosis in the absence of significant portal hypertension may not be a contraindication to LVAD implantation [59], especially in the case of a normal hepatic synthetic capacity, a consultation with a hepatologist is indicated in such patients (COR I, LOE C). Conversely, cirrhosis or advanced hepatic dysfunction represents a contraindication to LVADs. A biopsy may be required to assess for cirrhosis. An analysis of 524 advHFrEF patients undergoing LVAD implantation showed that patients who had a MELDIX (End-Stage Liver Disease eXcluding International Normalized Ratio model) score of >14 had poorer short- and long-term survival, as well as an increased risk of early right ventricular dysfunction [60]. For this reason, patients with confirmed cirrhosis or an increased MELD score of >14 are not eligible for an LVAD (COR II, LOE B).
- ►
- Gastrointestinal imaging: Gastrointestinal bleeding is present in 15–30% of LVAD patients; the rate is higher in patients with previous gastrointestinal bleeding or colon polyposis [61]. Therefore, in patients with precedent gastrointestinal bleeding or with suspected unexplained iron deficiency anemia [62], screening with upper and lower endoscopy should be considered (COR IIa, LOE C).
4.4. Invasive Hemodynamics
4.5. Psychosocial Evaluation
- ►
- Nonadherence to drug therapy;
- ►
- Unsafe home environment;
- ►
- Absence of social support;
- ►
- Presence of mental illness;
- ►
- Presence of drug or alcohol dependence.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truby, L.K.; Rogers, J.G. Advanced Heart Failure: Epidemiology, Diagnosis, and Therapeutic Approaches. JACC Heart Fail. 2020, 8, 523–536. [Google Scholar] [PubMed]
- Masarone, D.; Kittleson, M.; Petraio, A.; Pacileo, G. Advanced heart failure: State of the art and future directions. Rev. Cardiovasc. Med. 2022, 23, 48–62. [Google Scholar] [PubMed]
- Bhagra, S.K.; Pettit, S.; Parameshwar, J. Cardiac transplantation: Indications, eligibility and current outcomes. Heart 2019, 105, 252–260. [Google Scholar]
- Frigerio, M. Left Ventricular Assist Device: Indication, Timing, and Management. Heart Fail. Clin. 2021, 17, 619–634. [Google Scholar]
- Masarone, D.; Melillo, E.; Gravino, R.; Errigo, V.; Martucci, M.L.; Caiazzo, A.; Petraio, A.; Pölzl, G.; Pacileo, G. Inotropes in Patients with Advanced Heart Failure: Not Only Palliative Care. Heart Fail. Clin. 2021, 17, 587–598. [Google Scholar]
- Mehra, M.R.; Goldstein, D.J.; Cleveland, J.C.; Cowger, J.A.; Hall, S.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Chuang, J.; Wang, A.; et al. Five-Year Outcomes in Patients with Fully Magnetically Levitated vs. Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA 2022, 328, 1233–1242. [Google Scholar]
- Plecash, A.R.; Byrne, D.; Flexman, A.; Toma, M.; Field, T.S. Stroke in Patients with Left Ventricular Assist Devices. Cerebrovasc. Dis. 2022, 51, 3–13. [Google Scholar] [CrossRef]
- Inglis, S.S.; Suh, G.A.; Razonable, R.R.; Schettle, S.D.; Spencer, P.J.; Villavicencio, M.A.; Rosenbaum, A.N. Infections in Patients with Left Ventricular Assist Devices: Current State and Future Perspectives. ASAIO J. 2023, 69, 633–641. [Google Scholar]
- Han, J.J.; Acker, M.A.; Atluri, P. Left Ventricular Assist Devices. Circulation 2018, 138, 2841–2851. [Google Scholar]
- Bravo, C.A.; Navarro, A.G.; Dhaliwal, K.K.; Khorsandi, M.; Keenan, J.E.; Mudigonda, P.; O’Brien, K.D.; Mahr, C. Right heart failure after left ventricular assist device: From mechanisms to treatments. Front. Cardiovasc. Med. 2022, 9, 1023549. [Google Scholar]
- Stevenson, L.W.; Pagani, F.D.; Young, J.B.; Jessup, M.; Miller, L.; Kormos, R.L.; Naftel, D.C.; Ulisney, K.; Desvigne-Nickens, P.; Kirklin, J.K. INTERMACS profiles of advanced heart failure: The current picture. J. Heart Lung Transplant. 2009, 28, 535–541. [Google Scholar]
- Kormos, R.L.; Cowger, J.; Pagani, F.D.; Teuteberg, J.J.; Goldstein, D.J.; Jacobs, J.P.; Higgins, R.S.; Stevenson, L.W.; Stehlik, J.; Atluri, P.; et al. The Society of Thoracic Surgeons Intermacs Database Annual Report: Evolving Indications, Outcomes, and Scientific Partnerships. Ann. Thorac. Surg. 2019, 107, 341–353. [Google Scholar] [PubMed]
- Melendo-Viu, M.; Dobarro, D.; Raposeiras Roubin, S.; Llamas Pernas, C.; Moliz Cordón, C.; Vazquez Lamas, M.; Piñón Esteban, M.; Varela Martínez, M.Á.; Abu Assi, E.; Pita Romero, R.; et al. Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection. Life 2023, 13, 1065–1079. [Google Scholar] [PubMed]
- Bansal, N.; Hailpern, S.M.; Katz, R.; Hall, Y.N.; Tamura, M.K.; Kreuter, W.; O’Hare, A.M. Outcomes associated with left ventricular assist devices among recipients with and without end-stage renal disease. JAMA Intern. Med. 2018, 178, 204–209. [Google Scholar]
- Saeed, D.; Feldman, D.; Banayosy, A.E.; Birks, E.; Blume, E.; Cowger, J.; Hayward, C.; Jorde, U.; Kremer, J.; MacGowan, G.; et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10-Year Update. J. Heart Lung Transplant. 2023, 42, e1–e222. [Google Scholar] [PubMed]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar]
- Morris, A.A.; Khazanie, P.; Drazner, M.H.; Albert, N.M.; Breathett, K.; Cooper, L.B.; Eisen, H.J.; O’Gara, P.; Russell, S.D.; American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; et al. Guidance for Timely and Appropriate Referral of Patients With Advanced Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e238–e250. [Google Scholar]
- Metra, M.; Tomasoni, D.; Adamo, M.; Bayes-Genis, A.; Filippatos, G.; Abdelhamid, M.; Adamopoulos, S.; Anker, S.D.; Antohi, L.; Böhm, M.; et al. Worsening of chronic heart failure: Definition, epidemiology, management and prevention. A clinical consensus statement by the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2023, 25, 776–779. [Google Scholar]
- Setoguchi, S.; Stevenson, L.W.; Schneeweiss, S. Repeated hospitalizations predict mortality in the community population with heart failure. Am. Heart J. 2007, 154, 260–266. [Google Scholar]
- Chimed, S.; Stassen, J.; Galloo, X.; Meucci, M.C.; van der Bijl, P.; Knuuti, J.; Delgado, V.; Marsan, N.A.; Bax, J.J. Impact of Worsening Heart Failure on Long-Term Prognosis in Patients with Heart Failure with Reduced Ejection Fraction. Am. J. Cardiol. 2022, 184, 63–71. [Google Scholar]
- Tran, R.H.; Aldemerdash, A.; Chang, P.; Sueta, C.A.; Kaufman, B.; Asafu-Adjei, J.; Vardeny, O.; Daubert, E.; Alburikan, K.A.; Kucharska-Newton, A.M.; et al. Guideline-Directed Medical Therapy and Survival Following Hospitalization in Patients with Heart Failure. Pharmacotherapy 2018, 38, 406–416. [Google Scholar] [PubMed]
- Bhagat, A.A.; Greene, S.J.; Vaduganathan, M.; Fonarow, G.C.; Butler, J. Initiation, Continuation, Switching, and Withdrawal of Heart Failure Medical Therapies During Hospitalization. JACC Heart Fail. 2019, 7, 1–12. [Google Scholar] [PubMed]
- Kittleson, M.; Hurwitz, S.; Shah, M.R.; Nohria, A.; Lewis, E.; Givertz, M.; Fang, J.; Jarcho, J.; Mudge, G.; Stevenson, L.W. Development of circulatory-renal limitations to angiotensin-converting enzyme inhibitors identifies patients with severe heart failure and early mortality. J. Am. Coll. Cardiol. 2003, 41, 2029–2035. [Google Scholar]
- Stevenson, L.W. Clinical use of inotropic therapy for heart failure: Looking backward or forward? Part II: Chronic inotropic therapy. Circulation 2003, 108, 492–497. [Google Scholar]
- Eshaghian, S.; Horwich, T.B.; Fonarow, G.C. Relation of loop diuretic dose to mortality in advanced heart failure. Am. J. Cardiol. 2006, 97, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.E.; Johnson, G.W.; Hellkamp, A.S.; Anderson, J.; Callans, D.J.; Raitt, M.H.; Reddy, R.K.; Marchlinski, F.E.; Yee, R.; Guarnieri, T.; et al. Prognostic importance of defibrillator shocks in patients with heart failure. N. Engl. J. Med. 2008, 359, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Tung, R.; Vaseghi, M.; Frankel, D.S.; Vergara, P.; Di Biase, L.; Nagashima, K.; Yu, R.; Vangala, S.; Tseng, C.H.; Choi, E.K.; et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: An International VT Ablation Center Collaborative Group study. Heart Rhythm. 2015, 12, 1997–2007. [Google Scholar]
- Gheorghiade, M.; Abraham, W.T.; Albert, N.M.; Gattis Stough, W.; Greenberg, B.H.; O’Connor, C.M.; She, L.; Yancy, C.W.; Young, J.; Fonarow, G.C.; et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: An analysis from the OPTIMIZE-HF registry. Eur. Heart J. 2007, 28, 980–988. [Google Scholar]
- O’Connor, C.M.; Abraham, W.T.; Albert, N.M.; Clare, R.; Gattis Stough, W.; Gheorghiade, M.; Greenberg, B.H.; Yancy, C.W.; Young, J.B.; Fonarow, G.C. Predictors of mortality after discharge in patients hospitalized with heart failure: An analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am. Heart J. 2008, 156, 662–673. [Google Scholar]
- Binanay, C.; Califf, R.M.; Hasselblad, V.; O’Connor, C.M.; Shah, M.R.; Sopko, G.; Stevenson, L.W.; Francis, G.S.; Leier, C.V.; Miller, L.W.; et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: The ESCAPE trial. JAMA 2005, 294, 1625–1633. [Google Scholar]
- Rothenburger, M.; Wichter, T.; Schmid, C.; Stypmann, J.; Tjan, T.D.; Berendes, E.; Etz, C.; Pioux, A.; Löher, A.; Wenzelburger, F.; et al. Aminoterminal pro type B natriuretic peptide as a predictive and prognostic marker in patients with chronic heart failure. J. Heart Lung Transplant. 2004, 23, 1189–1197. [Google Scholar]
- Klimczak-Tomaniak, D.; de Bakker, M.; Bouwens, E.; Akkerhuis, K.M.; Baart, S.; Rizopoulos, D.; Mouthaan, H.; van Ramshorst, J.; Germans, T.; Constantinescu, A.; et al. Dynamic personalized risk prediction in chronic heart failure patients: A longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study). Sci. Rep. 2022, 12, 2795. [Google Scholar]
- Melillo, E.; Masarone, D.; Oh, J.K.; Verrengia, M.; Valente, F.; Vastarella, R.; Ammendola, E.; Pacileo, R.; Pacileo, G. Echocardiography in Advanced Heart Failure for Diagnosis, Management, and Prognosis. Heart Fail. Clin. 2021, 17, 547–560. [Google Scholar]
- Omar, A.M.; Bansal, M.; Sengupta, P.P. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ. Res. 2016, 119, 357–374. [Google Scholar]
- Kittleson, M.M.; Prestinenzi, P.; Potena, L. Right Heart Catheterization in Patients with Advanced Heart Failure: When to Perform? How to Interpret? Heart Fail. Clin. 2021, 17, 647–660. [Google Scholar]
- Allen, L.A.; Rogers, J.G.; Warnica, J.W.; Disalvo, T.G.; Tasissa, G.; Binanay, C.; O’Connor, C.M.; Califf, R.M.; Leier, C.V.; Shah, M.R.; et al. High mortality without ESCAPE: The registry of heart failure patients receiving pulmonary artery catheters without randomization. J. Card. Fail. 2008, 14, 661–669. [Google Scholar]
- Bhagra, S.K.; Pettit, S.; Parameshwar, J. Implantable left ventricular assist device: Indications, eligibility and current outcomes. Heart 2022, 108, 233–241. [Google Scholar]
- Sandoval, E.; Carillo, J.A.; Singh, S.K. Prometheus’ predicament: How to address contemporary left ventricular assist devices in patients with liver dysfunction. J. Thorac. Cardiovasc. Surg. 2016, 151, 236–237. [Google Scholar] [CrossRef] [Green Version]
- Asleh, R.; Briasoulis, A.; Schettle, S.D.; Tchantchaleishvili, V.; Pereira, N.L.; Edwards, B.S.; Clavell, A.L.; Maltais, S.; Joyce, D.L.; Joyce, L.D.; et al. Impact of Diabetes Mellitus on Outcomes in Patients Supported With Left Ventricular Assist Devices: A Single Institutional 9-Year Experience. Circ. Heart Fail. 2017, 10, e004213. [Google Scholar]
- Kushnir, V.M.; Sharma, S.; Ewald, G.A.; Seccombe, J.; Novak, E.; Wang, I.W.; Joseph, S.M.; Gyawali, C.P. Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest. Endosc. 2012, 75, 973–979. [Google Scholar]
- Nozdrzykowski, M.; Bauer, J.M.; Schulz, U.; Jawad, K.; Bireta, C.; Eifert, S.; Sandri, M.; Jozwiak-Nozdrzykowska, J.; Borger, M.A.; Saeed, D. Stroke and pump thrombosis following left ventricular assist device implantation: The impact of the implantation technique. Front. Cardiovasc. Med. 2023, 10, 974527. [Google Scholar]
- Rodenas-Alesina, E.; Brahmbhatt, D.H.; Rao, V.; Salvatori, M.; Billia, F. Prediction, prevention, and management of right ventricular failure after left ventricular assist device implantation: A comprehensive review. Front. Cardiovasc. Med. 2022, 9, 1040251. [Google Scholar]
- Raymer, D.S.; Moreno, J.D.; Sintek, M.A.; Nassif, M.E.; Sparrow, C.T.; Adamo, L.; Novak, E.L.; LaRue, S.J.; Vader, J.M. The combination of Tricuspid Annular Plane Systolic Excursion and HeartMate Risk Score Predicts Right Ventricular Failure after Left Ventricular Assist Device Implantation. ASAIO J. 2019, 6, 247–251. [Google Scholar]
- Chriqui, L.E.; Monney, P.; Kirsch, M.; Tozzi, P. Prediction of right ventricular failure after left ventricular assist device implantation in patients with heart failure: A meta-analysis comparing echocardiographic parameters. Interact. Cardiovasc. Thorac. Surg. 2021, 33, 784–792. [Google Scholar]
- Kato, T.S.; Jiang, J.; Schulze, P.C.; Jorde, U.; Uriel, N.; Kitada, S.; Takayama, H.; Naka, Y.; Mancini, D.; Gillam, L.; et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail. 2013, 1, 216–222. [Google Scholar]
- Raina, A.; Seetha Rammohan, H.R.; Gertz, Z.M.; Rame, J.E.; Woo, Y.J.; Kirkpatrick, J.N. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J. Card. Fail. 2013, 19, 16–24. [Google Scholar]
- He, Q.; Lin, Y.; Zhu, Y.; Gao, L.; Ji, M.; Zhang, L.; Xie, M.; Li, Y. Clinical Usefulness of Right Ventricle-Pulmonary Artery Coupling in Cardiovascular Disease. J. Clin. Med. 2023, 12, 2526–2534. [Google Scholar]
- Dandel, M.; Potapov, E.; Krabatsch, T.; Stepanenko, A.; Löw, A.; Vierecke, J.; Knosalla, C.; Hetzer, R. Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation 2013, 128, S14–S23. [Google Scholar]
- Dandel, M.; Javier, M.F.D.M.; Javier Delmo, E.M.D.; Hetzer, R. Accurate assessment of right heart function before and after long-term left ventricular assist device implantation. Expert Rev. Cardiovasc. Ther. 2020, 18, 289–308. [Google Scholar]
- Bouabdallaoui, N.; El-Hamamsy, I.; Pham, M.; Giraldeau, G.; Parent, M.C.; Carrier, M.; Rouleau, J.L.; Ducharme, A. Aortic regurgitation in patients with a left ventricular assist device: A contemporary review. J. Heart Lung Transplant. 2018, 37, 1289–1297. [Google Scholar]
- Acharya, D.; Kazui, T.; Al Rameni, D.; Acharya, T.; Betterton, E.; Juneman, E.; Loyaga-Rendon, R.; Lotun, K.; Shetty, R.; Chatterjee, A. Aortic valve disorders and left ventricular assist devices. Front. Cardiovasc. Med. 2023, 10, 1098348. [Google Scholar]
- Wang, T.S.; Hernandez, A.F.; Felker, G.M.; Milano, C.A.; Rogers, J.G.; Patel, C.B. Valvular heart disease in patients supported with left ventricular assist devices. Circ. Heart Fail. 2014, 7, 215–222. [Google Scholar]
- Noly, P.E.; Duggal, N.; Jiang, M.; Nordsletten, D.; Bonini, M.; Lei, I.; Ela, A.A.E.; Haft, J.W.; Pagani, F.D.; Cascino, T.M.; et al. Role of the mitral valve in left ventricular assist device pathophysiology. Front. Cardiovasc. Med. 2022, 9, 1018295. [Google Scholar]
- Kassis, H.; Cherukuri, K.; Agarwal, R.; Kanwar, M.; Elapavaluru, S.; Sokos, G.G.; Moraca, R.J.; Bailey, S.H.; Murali, S.; Benza, R.L.; et al. Significance of Residual Mitral Regurgitation After Continuous Flow Left Ventricular Assist Device Implantation. JACC Heart Fail. 2017, 5, 81–88. [Google Scholar]
- Westaby, S. Tricuspid regurgitation in left ventricular assist device patients. Eur. J. Cardiothorac. Surg. 2012, 41, 217–218. [Google Scholar] [CrossRef]
- Fujino, T.; Imamura, T.; Nitta, D.; Kim, G.; Smith, B.; Kalantari, S.; Nguyen, A.; Chung, B.; Narang, N.; Holzhauser, L.; et al. Effect of Concomitant Tricuspid Valve Surgery with Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2020, 110, 918–924. [Google Scholar]
- John, R.; Naka, Y.; Park, S.J.; Sai-Sudhakar, C.; Salerno, C.; Sundareswaran, K.S.; Farrar, D.J.; Milano, C.A. Impact of concurrent surgical valve procedures in patients receiving continuous-flow devices. J. Thorac. Cardiovasc. Surg. 2014, 147, 581–589. [Google Scholar]
- Loforte, A.; Gliozzi, G.; Mariani, C.; Cavalli, G.G.; Martin-Suarez, S.; Pacini, D. Ventricular assist devices implantation: Surgical assessment and technical strategies. Cardiovasc. Diagn. Ther. 2021, 11, 277–291. [Google Scholar]
- Belzile, D.; Turgeon, P.Y.; Leblanc, E.; Massot, M.; Bourgault, C.; Morin, J.; Dupuis, C.; Bilodeau, M.; Laflamme, M.; Charbonneau, E.; et al. Non-invasive diagnostic imaging tests largely underdiagnose cardiac cirrhosis in patients undergoing advanced therapy evaluation: How can we identify the high-risk patient? Clin. Transplant. 2021, 35, e14277. [Google Scholar]
- Critsinelis, A.; Kurihara, C.; Volkovicher, N.; Kawabori, M.; Sugiura, T.; Manon, M., 2nd; Wang, S.; Civitello, A.B.; Morgan, J.A. Model of End-Stage Liver Disease-eXcluding International Normalized Ratio (MELD-XI) Scoring System to Predict Outcomes in Patients Who Undergo Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2018, 106, 513–519. [Google Scholar]
- Cushing, K.; Kushnir, V. Gastrointestinal Bleeding Following LVAD Placement from Top to Bottom. Dig. Dis. Sci. 2016, 61, 1440–1447. [Google Scholar]
- Kapuria, D.; Khumri, T.; Shamim, S.; Surana, P.; Khan, S.; Al-Khalisi, N.; Aggarwal, S.; Koh, C.; Chhabra, R. Characterization and timing of gastrointestinal bleeding in continuous flow left ventricular assist device recipients. Heliyon 2020, 6, e04695. [Google Scholar]
- Cochran, J.M.; Alam, A.; Guerrero-Miranda, C.Y. Importance of right heart catheterization in advanced heart failure management. Rev. Cardiovasc. Med. 2022, 23, 12. [Google Scholar] [CrossRef]
- Shehab, S.; Newton, P.J.; Allida, S.M.; Jansz, P.C.; Hayward, C.S. Biventricular mechanical support devices—Clinical perspectives. Expert Rev. Med. Devices 2016, 13, 353–365. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Breathett, K.; Donald, E.M.; Nakagawa, S.; Takeda, K.; Takayama, H.; Truby, L.K.; Sayer, G.; Colombo, P.C.; Yuzefpolskaya, M.; et al. Psychosocial Risk and Its Association with Outcomes in Continuous-Flow Left Ventricular Assist Device Patients. Circ. Heart Fail. 2020, 13, e006910. [Google Scholar]
- Maukel, L.M.; Weidner, G.; Jan, B.; Spaderna, H. Adverse events after left ventricular assist device implantation linked to psychosocial risk in women and men. J. Heart Lung Transplant. 2023, in press. [CrossRef]
ISHLT (2023) | ||
Indications | COR | LOE |
As a bridge to transplant AdvHFrEF patients with severe symptoms (NYHA functional class IIIB–IV) refractory to maximal medical management, who are inotrope dependent or on temporary mechanical circulatory support if transplant is unlikely to occur in the short term | I | A |
As destination therapy AdvHFrEF patients ineligible for heart transplant with severe symptoms (NYHA functional class IIIB–IV) refractory to maximal medical management, who are inotrope dependent or on temporary mechanical circulatory support | I | A |
ACC/AHA guidelines (2022) | ||
AdvHFrEF patients with NYHA functional class IV symptoms despite GDMT and device therapy who are deemed to be dependent on inotropes or mechanical circulatory support | I | A |
AdvHFrEF with NYHA functional class IV symptoms despite GDMT | IIa | B |
ESC Guidelines (2021) | ||
Indications | COR | LOE |
AdvHFrEF patients with severe symptoms despite GDMT and device therapy who have at least one of the following:
| NA | NA |
EACTS (2019) | ||
As destination therapy/bridge to transplant AdvHFrEF in NYHA functional class IIIB–IV with LVEF < 25% and at least one of the following criteria:
| IIa | B |
As a bridge to candidacy AdvHFrEF in NYHA functional class IIIB–IV with LVEF < 25% and
| IIb | B |
Clinical |
Two or more episodes of worsening heart failure in the last 12 months |
Down-titration of guideline-directed medical therapy due to hypotension, dizziness, or excessive fatigue |
Need for a high diuretic dose (e.g., >160 mg/d furosemide) |
Inotrope dependence |
Arrhythmic storms |
Laboratory |
Persistent hyponatremia |
Elevated plasma levels of NT-pro brain natriuretic peptides (e.g., >5000 pg/mL) |
Echocardiography |
Left ventricular end-diastolic diameter ≥ 80 mm |
Left ventricular ejection fraction ≤ 25% |
Restrictive filling pattern and/or pulmonary hypertension despite diuretics and inodilators |
Right ventricular dysfunction |
Invasive hemodynamics |
Low cardiac output and high filling pressure despite diuretics and inodilators |
Type of Prosthetic Valve | Recommendation | Note |
---|---|---|
Functioning biological prostheses (regardless of the anatomical site) | No removal or replacement at the time of implant (COR I, LOE C) | A biological valve, whether in the aortic or mitral position, is well tolerated during LVAD support |
Mechanical aortic valve | Replacement with a bioprosthetic valve during LVAD implantation (COR I, LOE B) or path closure when no other options are feasible (COR IIb, LOE C) | Mechanical aortic valves may result in thromboembolic events due to blood stasis around the valve and intermittent valve opening |
Mechanical mitral valve | Replacement of a properly functioning mechanical mitral valve is not recommended (COR III, LOE C) | Exchanging a mechanical mitral valve is technically very complex |
Hemodynamic Parameter | Cut-Off Associated with RVF |
---|---|
Preoperative CVP | >10 mmHg |
CVP/PCWP | >0.63 |
MAP/CVP | <7.5 |
PAPi | <1.85 |
RVSWI | <0.30 mmHg/L/m2 |
SVI | <22.1 mL/m2 during systemic vasodilator drug challenge |
PACI | <0.89 mL/mmHg/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masarone, D.; Houston, B.; Falco, L.; Martucci, M.L.; Catapano, D.; Valente, F.; Gravino, R.; Contaldi, C.; Petraio, A.; De Feo, M.; et al. How to Select Patients for Left Ventricular Assist Devices? A Guide for Clinical Practice. J. Clin. Med. 2023, 12, 5216. https://doi.org/10.3390/jcm12165216
Masarone D, Houston B, Falco L, Martucci ML, Catapano D, Valente F, Gravino R, Contaldi C, Petraio A, De Feo M, et al. How to Select Patients for Left Ventricular Assist Devices? A Guide for Clinical Practice. Journal of Clinical Medicine. 2023; 12(16):5216. https://doi.org/10.3390/jcm12165216
Chicago/Turabian StyleMasarone, Daniele, Brian Houston, Luigi Falco, Maria L. Martucci, Dario Catapano, Fabio Valente, Rita Gravino, Carla Contaldi, Andrea Petraio, Marisa De Feo, and et al. 2023. "How to Select Patients for Left Ventricular Assist Devices? A Guide for Clinical Practice" Journal of Clinical Medicine 12, no. 16: 5216. https://doi.org/10.3390/jcm12165216
APA StyleMasarone, D., Houston, B., Falco, L., Martucci, M. L., Catapano, D., Valente, F., Gravino, R., Contaldi, C., Petraio, A., De Feo, M., Tedford, R. J., & Pacileo, G. (2023). How to Select Patients for Left Ventricular Assist Devices? A Guide for Clinical Practice. Journal of Clinical Medicine, 12(16), 5216. https://doi.org/10.3390/jcm12165216