A Critical Reassessment of the Kidney Risk Caused by Tetrastarch Products in the Perioperative and Intensive Care Environments
Abstract
:1. Introduction
2. The Brief Pathophysiology of AKI
3. The Diagnostic Uncertainties of AKI
4. Studies Conducted with 6% HES 130/0.4 or 0.42 Analyzing Its Renal Effects
Study | Trial Design/Country/ Type of Patients | Study Fluids | Indication and Dose (Planned, Maximal and Cumulative) of HES | Endpoints | Definition of Renal Endpoint |
---|---|---|---|---|---|
Septic patients | |||||
Perner, 2009–2011, published in 2012 (6S) [40] |
| 6% (130/0.42) HES–398 patients Ringer’s acetate–400 patients | Indication: volumen expansion Planned: 33 mL/kg daily Daily maximal: 50 mL/kg (exceeded only in case of two patients) Cumulative: 44 mL/kg (IQR: 24–75 mL/kg) (~3168 mL/patients) |
|
|
Müller, 2015 [86] |
| 6% (130/0.42) HES–398 patients Ringer’s acetate–400 patients | Indication: volumen expansion Planned: 33 mL/kg daily Daily maximal: 50 mL/kg) (exceeded only in case of two patients) Cumulative: 44 mL/kg (IQR: 24–75 mL/kg) (~3168 mL/patients) |
|
|
Dubin, 2010 [93] |
| 6% (130/0.4) HES–9 patients 0.9% saline–11 patients | Indication: intravenous volume expansion to increase microvascular flow index (MFI) Planned: unknown Daily maximal: unknown Cumulative: unknown |
|
|
Guidet, 2012 (CRYSTMAS) [41] |
| 6% (130/0.42) HES–100 patients 0.9% saline–96 patients | Indication: (initial) hemodynamic stabilization Planned: unknown Fluid intake prior randomization: 35.5 ± 25.3 mL/kg) Daily maximal: 50 mL × kg−1 × d−1 on the first day; 25 mL × kg−1 × d−1 from the second to the fourth day Cumulative: 1379 ± 886 mL, 2615 ± 1499 mL over four consecutive days |
|
|
Myburgh, 2012 (CHEST) [38,39] |
| 6% (130/0.42) HES–3315 patients 0.9% saline–3336 patients | Indication: correction of hypovolemia Planned: unknown Daily maximal: unknown. Daily dose: 526 ± 425 mL (~6.6 ± 5.3 mL/kg) Cumulative: unknown |
|
|
Annane, 2013 (CRISTAL) [84] |
| Crystalloid infusions–1443 patients (isotonic saline, hypertonic saline, buffered solutions) Colloid–1414 patients (hypooncotic (eg. gelatines, 4% or 5% of albumin), hyperoncotic (eg. dextrans, hydroxy-ethyl starches and 20% or 25% of albumin) | Indication: fluid resuscitation Planned: unknown Daily maximal: 30 mL/kg Cumulative: 1500 mL (95% CI: 1000–2000 mL), (~21.4 mL/kg [14.3–28.6 mL/kg]) 973 patients (68.8%), duration 2 (95% CI: 1–2) days |
|
|
Cardiac surgery patients | |||||
Gallandat 2000 [50] |
| 6% (130/0.42) HES in saline–30 patients 6% (200/0.5) HES–29 patients | Indication: acute normovolemic hemodilution + priming the heart-lung machine + intra/postoperative fluid management Planned: 500 mL for hemodilution, 1000 mL for priming the heart-lung machine Daily maximal: 3000 mL (~36.1 mL/kg) Cumulative: intraoperatively: 1475 ± 100 mL (~17.8 mL/kg), postoperatively: 1150 ± 511 mL (~13.9 mL/kg), total: 2550 ± 561 mL (31.0 ± 7.4 mL/kg) in 130/0.4 HES group |
|
|
Van der Linden, 2005 [52] |
| 6% (130/0.4) HES–64 patients modified fluid gelatine–68 patients | Indication: priming the heart-lung machine + postoperative fluid management Planned: not reported Daily maximal: 50 mL × kg−1 × d−1 Cumulative: 21.3 ± 8.3 mL/kg (~1683 ± 656 mL) intraoperatively, 27.5 ± 12.6 mL/kg (~2173 ± 995 mL) postoperatively, 48.9 ± 17.2 mL/kg (~3863 ± 1359 mL) total |
|
|
Ooi, 2009 [72] |
| 6% (130/0.4) HES–45 patients succinylated gelatine–45 patients | Indication: priming the heart-lung machine + intra/postoperative fluid management Planned: not reported Daily maximal: 50 mL × kg−1 × d−1 Cumulative: intraoperatively: 1225.6 ± 158.3 mL (~17.5 mL/kg), first 24 h postoperatively: 716.7 ± 910.2 mL (~10.2 mL/kg), total: 1942.3 ± 1046.1 mL (27.7 mL/kg) in HES group |
|
|
Skhirtladze, 2014 [94] |
| HA group: 5% albumin up to 50 mL × kg−1 × day−1–76 patients HES group: 6% HES 130/0.4 up to 50 mL × kg−1 × day−1–81 patients RL group: RL up to 50 mL × kg−1 × day−1–79 patients | Indication: priming the heart-lung machine + intra/postoperative fluid management Planned: 1500 mL for priming, intraoperative dose was restricted to 33 mL × kg−1 × d−1 Daily maximal: 50 mL × kg−1 × d−1 Cumulative: intraoperatively: 2500 (IQR: 2250–2750) mL, postoperatively: 625 (IQR: 50–1000) mL, total: 3000 (IQR: 2750–3500) mL in HES group |
|
|
Joosten, 2016 [77] |
| 6% (130/0.4) maize HES–59 patients 6% (130/0.42) potato HES–59 patients | Indication: priming the heart-lung machine + intra/postoperative fluid management Planned: 1000 mL for priming (~13 mL/kg), intraoperative dose in 250 mL boluses to maintain SVV <13% Daily maximal: 50 mL × kg−1 × d−1 Cumulative: intraoperatively: 1000 mL (IQR: 000–1250 mL) (~13 [IQR: 13–16 mL/kg]) in maize and 1000 mL (IQR: 1000–1200 mL) (~13 [IQR: 13–16 mL/kg]) in potato HES (NS); up to POD2: 1950 mL (IQR: 1250–2325 mL) (~25 [IQR: 16–29 mL/kg]) mL in maize HES and 2000 mL (IQR: 1500–2700 mL) (~27 [IQR: 20–66 mL/kg]) mL in potato HES (NS) |
|
|
Svendsen, 2018 [91] |
| 6% (130/0.42) HES–20 patients Ringer’s acetate–20 patients | Indication: priming the heart-lung machine Planned: 1700 mL for priming Daily maximal: unknown Cumulative: unknown |
|
|
Duncan, 2020 [69] |
| 6% (130/0.42) HES–69 patients 5% human albumin–72 patients | Indication: hypovolemia Planned: 250 or 500 mL boluses if hypovolemia detected by monitoring of cardiac index, HR, systolic blood pressure, vasopressor requirement and CVP/PCWP or in case of severe acute surgical haemorrhage Daily maximal: 35 mL × kg−1 × day−1 Cumulative: unknown |
|
|
Postoperative patients after abdominal surgery | |||||
Mahmood 2007 [63] |
| 6% 200/0.62 HES–21 patients 6% 130/0.4 HES–21 patients 4% gelatine–20 patients | Indication: maintenance infusion during and after the surgery Planned: 3 mL/kg bolus of colloid followed by a maintenance rate of 2 mL × kg−1 × h−1 during surgery and increased to maintain a urine output greater than 0.5 mL × kg−1 × h−1. Further colloid administration was based on maintenance of MAP over 85 mmHg and CVP between 8 and 10 cmH2O Daily maximal: 3911 ± 1783 mL (~51 ± 23 mL/kg) in 130/0.4 HES group Cumulative: from 8 h before surgery to 24 h after the surgery: 3443 ± 1769 mL (~45 ± 23 mL/kg) in 200/0.62 HES group 3911 ± 1783 mL (~51 ± 23 mL/kg) in 130/0.4 HES group |
|
|
Godet, 2008 [70] |
| 6% (130/0.42) HES in saline–29 patients 3% modified fluid gelatine–31 patients | Indication: maintenance infusion during and after the surgery Planned: according to anesthesiologist’s judgement during surgery based on MAP, CVP, fluid balance and the need of catecholamines Daily maximal: 50 mL × kg−1 × d−1 Cumulative: Day 1: 1709 ± 836 mL (23.9 ± 11.9 mL/kg) Day 2: 1577 ± 714 mL (21.8 ± 9.5 mL/kg) Day 3: 1780 ± 752 mL (24.8 ± 10.5 mL/kg) Day 4: 1862 ± 1171 mL (25.4 ± 15.4 mL/kg) Day 5: 1874 ± 1308 mL (26.2 ± 17.7 mL/kg) Day 6: 1779 ± 1204 mL (24.0 ± 16.2 mL/kg) Total (day 1– day 6): 10 237 ± 4561 mL (139.7 ± 58.2 mL/kg) |
|
|
Mukhtar 2009 [64] |
| 6% 130/0.4 HES–20 patients 5% albumin–20 patients | Indication: maintenance infusion during and after the surgery Planned: 250 mL bolus based on maintenance of CVP and/or PAOP between 5 and 7 cmH2O Daily maximal: 50 mL × kg−1 × d−1 during the intraoperative period and first 4 postoperative days Cumulative: intraoperatively: 3080 ± 417 mL, postoperatively: 6229 ± 1140 mL in 130/0.4 HES group |
|
|
Yang 2011 [53] |
| 6% (130/0.4) HES–30 patients 20% human-albumin–30 patients Ringer’s lactate–30 patients | Indication: maintenance infusion during and after the surgery Planned: 1000 mL/d (~16 mL/kg) in POD1–3 and 500 mL/d (~8 mL/kg) on POD4–5 Daily maximal: unknown Cumulative: intraoperatively: 3484.6 ± 1072.5 mL (~56 ± 17 mL/kg), total: 10,235.0 ± 393.9 mL (~165 ± 6 mL/kg) in 130/0.4 HES group |
|
|
Demir, 2015 [92] |
| 6% (130/0.4) HES–18 patients 4% gelatine–18 patients | Indication: maintenance infusion during the surgery Planned: according to hemodynamic data (SVV, CVP, MAP) Daily maximal: unknown Cumulative: 2.3 ± 0.8 L (~32 ± 11 mL/kg) in 130/0.4 HES group |
|
|
Ghodraty, 2017 [74] |
| 6% (130/0.4) HES–46 patients Ringer’s lactate–45 patients | Indication: maintenance infusion during the surgery Planned: 2 mL × kg−1 × h−1 as a maintenance fluid plus fluid loss in 1:1 ratio Daily maximal: unknown Cumulative: 10.4 ± 4.1 mL/kg |
|
|
Joosten, 2018 [83] |
| 6% (130/0.4) waxy maize HES in balanced crystalloids–80 patients balanced crystalloids–80 patients | Indication: maintenance infusion during the surgery Planned: EGDT (multiple 100-mL mini-fluid challenges) based on hemodynamic measurements (SVV; closed-loop system) Daily maximal: 33 mL/kg Cumulative: 900 mL (IQR: 400–1300 mL) (~13 mL/kg [IQR: 6–18 mL/kg]) intraoperatively. Only one patient (1%) reached the maximal dose |
|
|
Kammerer, 2018 [95] |
| 6% (130/0.4) HES–47 patients 5% human-albumin–53 patients | Indication: replacement of blood loss in 1:1 ratio during the surgery, postoperative fluid management Planned: replacement of blood loss in 1:1 ratio during the surgery, postoperative fluid management Daily maximal: 30 mL/kg Cumulative: 2000 ± 969 mL (~27 ± 13 mL/kg) |
|
|
Werner, 2018 [89] |
| balanced 10% HES 130/0.42–20 patients balanced 6% HES 130/0.42–22 patients balanced crystalloid–21 patients | Indication: intraoperative fluid management Planned: EGDT (multiple 100-mL mini-fluid challenges) based on hemodynamic measurements (SVV) Daily maximal: 30 mL/kg for 10% HES; 50 mL/kg for 6% HES Cumulative: 2250 (IQR: 1750–3000 mL); 33.3 mL/kg (IQR: 28.2–46.2 mL/kg for 6% HES) |
|
|
Kabon, 2019 [78] |
| 6% HES 130/0.4 in 0.9% saline–523 patients Ringer’s lactate–534 patients | Indication: intraoperative volume replacement Planned: 250 mL over 5 min based on esophageal Doppler measurements (stroke volume, corrected aortic flow time) Daily maximal: 1500 mL Cumulative: 1 (IQR: 0.5–1.5) liter |
|
|
Futier, 2020 (FLASH) [73] |
| 6% HES 130/0.4 in 0.9% saline–389 patients 0.9% saline–386 patients | Indication: intraoperative volume replacement Planned: 250 mL over 5 min to maximize stroke volume; in case of less than a 10% increase in stroke volume, the study fluid administration was stopped Daily maximal: 30 mL × kg−1 × d−1 (100 patients [10.5%] of patients received more) Cumulative: intraoperatively: 1000 mL (IQR: 750–1500 mL) (~12 mL/kg [IQR: 9–18 mL/kg]); postoperatively: 500 mL (IQR: 500–750 mL) (~6 mL/kg [IQR: 6–9 mL/kg]); POD2: 500 mL (IQR: 250–1000 mL) (~6 mL/kg [IQR: 3–14 mL/kg]); total: 33.4 ± 3.4 mL/kg in HES group (~2739 ± 279 mL) |
|
|
Others | |||||
Neff 2003 [65] |
| 6% (130/0.42) HES–16 patients 6% (200/0.5) HES + 5% albumin–15 patients | Indication: volume replacement in the ICU for up to 28 days Planned: repetitive large doses Daily maximal: 70 mL × kg−1 × d−1 Cumulative: 2297 ± 610 mL (~30 ± 8 mL/kg) daily; total: 19 ± 16 L (~246 ± 208 mL/kg) (max: 66 L!) 20 mL × kg−1 × day−1: n = 16, mean duration: 4.8 days 30 mL × kg−1 × day−1: n = 16, mean duration: 3.9 days 40 mL × kg−1 × day−1: n = 13, mean duration: 3.1 days 50 mL × kg−1 × day−1: n = 12, mean duration: 2.0 days 60 mL × kg−1 × day−1: n = 10, mean duration: 1.8 days 70 mL × kg−1 × day−1: n = 3, mean duration: 1.0 day |
|
|
James, 2011 (FIRST) [58] |
| 6% (130/0.42) HES–36 patients with penetrating, 20 patients with blunt trauma 0.9% saline–31 patients with penetrating, 22 patients with blunt trauma | Indication: fluid resuscitation Planned: undetermined Daily maximal: 33 mL × kg−1 × d−1 Cumulative: Penetrating trauma: 5093 ± 2733 mL (~70 ± 38 mL/kg); Blunt trauma: 6113 ± 1919 mL (~79 ± 25 mL/kg) |
|
|
Tyagi 2019 [80] |
| 6% (130/0.42) HES–19 patients Ringer’s lactate–19 patients | Indication: intraoperative fluid replacement Planned: If SVV was >10% in supine or lateral position, or >14% in prone position, a bolus of 100 mL of the intervention fluid was infused over 2–4 min Daily maximal: not applicable Cumulative: 689 ± 394 mL (~12 ± 7 mL/kg) |
|
|
Study | Main Outcomes | Authors Conclusion | Additional Information | Does the Study Definitely Support That in Respect of Kidney Function the HES Is | |
---|---|---|---|---|---|
Detrimental | Safe | ||||
Septic patients | |||||
Perner, 2009–2011, published in 2012 (6S) [40] |
|
|
| No | No |
Müller, 2015 [86] |
|
|
| No | Partly yes |
Dubin, 2010 [93] |
|
|
| No | Yes |
Guidet, 2012 (CRYSTMAS) [41] |
|
|
| No | Yes |
Myburgh, 2012 (CHEST) [38,39] |
|
|
| No | No |
Annane, 2013 (CRISTAL) [84] |
|
|
| No | No |
Cardiac surgery patients | |||||
Gallandat 2000 [50] |
|
|
| No | Yes |
Van der Linden, 2005 [52] |
|
|
| No | Yes |
Ooi, 2009 [72] |
|
|
| No | Yes |
Skhirtladze, 2014 [94] |
|
|
| No | Yes |
Joosten, 2016 [77] |
|
|
| No | Yes |
Svendsen, 2018 [91] |
|
|
| No | Yes |
Duncan, 2020 [69] |
|
|
| No | Yes |
Postoperative patients after abdominal surgery | |||||
Mahmood 2007 [63] |
|
|
| No | Yes |
Godet, 2008 [70] |
|
|
| No | Yes |
Mukhtar 2009 [64] |
|
|
| No | Yes |
Yang 2011 [53] |
|
|
| No | Yes |
Demir, 2015 [92] |
|
|
| No | Uncertain |
Ghodraty, 2017 [74] |
|
|
| No | With significant limitations |
Joosten, 2018 [83] |
|
|
| No | Yes |
Kammerer, 2018 [95] |
|
|
| No | Yes |
Werner, 2018 [89] |
|
|
| No | No |
Kabon, 2019 [78] |
|
|
| No | Yes |
Futier, 2020 (FLASH) [73] |
|
|
| No | No |
Others | |||||
Neff 2003 [65] |
|
|
| No | Yes |
James, 2011 (FIRST) [58] |
|
|
| No | With limitations |
Tyagi 2019 [80] |
|
|
| No | No |
5. Studies Supporting the Beneficial Hemodynamic Effects of HES
6. The Role of Hyperchloremia in the Development of AKI
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AaDO2 | Alveolar-Arterial Oxygen Gradient |
AKI | Acute Kidney Injury |
AKIN | Acute Kidney Injury Network |
ARF | Acute Renal Failure |
BUN | Blood Urea Nitrogen |
CABG | Coronary Artery Bypass Grafting |
CI | Confidential Interval |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CrCl | Creatinine Clearance |
CVP | Central Venous Pressure |
EGDT | Early Goal Directed Therapy |
eGFR | estimated Glomerular Filtration Rate |
ELWI | Extravascular Lung Water Index |
EVLW | Extravascular Lung Water |
GEDVI | Global End-Diastolic Volume Index |
GFR | Glomerular Filtration Rate |
HA | Human Albumin |
HES | Hydroxyethyl Starch |
HR | Heart Rate |
ICU | Intensive Care Unit |
IGFBP7 | Insulin-Like Growth Factor-Binding Protein 7 |
IgG | Immunglobulin G |
ITBVI | Intrathoracic Blood Volume Index |
KDIGO | Kidney Disease: Improving Global Outcome |
MAP | Mean Arterial Pressure |
MDRD | Modification of Diet in Renal Disease |
MPAP | Mean Pulmonary Artery Pressure |
NAG | β-N-Acetyl-β-D-Glucosaminidase |
NGAL | Neutrophil Gelatinase-Associated Lipocalin |
NS | Non-Significant |
PAOP | Pulmonary Arterial Occlusion Pressure |
PCWP | Pulmonary Capillary Wedge Pressure |
POD | Postoperative Day |
PRBC | Packed Red Blood Cell |
RAAS | Renin-Angiotensin-Aldosterone System |
RAP | Right Arterial Pressure |
RIFLE | Risk, Injury, Failure, Loss, End-stage renal disease criteria for acute kidney injury |
RR | Relative Risk |
RRT | Renal Replacement Therapy |
SI | Stroke Index |
SIRS | Systemic Inflammatory Response Syndrome |
SOFA | Sepsis-related Organ Failure Assessment |
SvO2 | Mixed Venous Oxygen Saturation |
SVR | Systemic Vascular Resistance |
SVV | Stroke Volume Variation |
TIMP2 | Tissue Inhibitor of Metalloproteinases 2 |
References
- Rheomacrodex. Drug Ther. Bull. 1964, 2, 24. [CrossRef]
- Miladinov, V.D.; Gennadios, A.; Hanna, M.A. Gelatin Manufacturing Process and Product. United States Patent Application Publication Pub. No.: US 2002/0142368A1, 10-3-2002. DigitalCommons@University of Nebraska—Lincoln, Food Science and Technology Department, Faculty Publications in Food Science and Technology. Available online: https://digitalcommons.unl.edu/foodsciefacpub/322/ (accessed on 30 May 2023).
- Glover, P.A.; Rudloff, E.; Kirby, R. Hydroxyethyl starch: A review of pharmacokinetics, pharmacodynamics, current products, and potential clinical risks, benefits, and use. J. Vet. Emerg. Crit. Care 2014, 24, 642–661. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.A.A.; Westphal, M.; James, M.F.M.; Kozek-Langenecker, S.; Stocker, R.; Guidet, B.; Van Aken, H.; Warner, M.A.A. Hydroxyethyl Starches: Different Products—Different Effects. Anesthesiology 2009, 111, 187–202. [Google Scholar] [CrossRef] [Green Version]
- von Roten, I.; Madjdpour, C.; Frascarolo, P.; Burmeister, M.-A.; Fisch, A.; Schramm, S.; Bombeli, T.; Spahn, D.R. Molar substitution and C2/C6 ratio of hydroxyethyl starch: Influence on blood coagulation †. BJA Br. J. Anaesth. 2006, 96, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schramm, S.; Thyes, C.; Frascarolo, P.; Buclin, T.; Burki, M.; Fisch, A.; Burmeister, M.-A.; Asmis, L.; Spahn, D.R. Impact of the C2/C6 ratio of high-molecular-weight hydroxyethyl starch on pharmacokinetics and blood coagulation in pigs. Anesthesiology 2007, 107, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Adamik, K.N.; Yozova, I.D. Starch wars-new episodes of the saga. Changes in regulations on hydroxyethyl starch in the European Union. Front. Vet. Sci. 2019, 5, 336. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P.L.; Dalton, J.; Evans, D.; Harrison, P.; Li, Z.; Ternouth, K.; Thirunavukkarasu, V.; Bulmer, M.; Fernando, S.; McLeod, N. Removal of TSE agent from plasma products manufactured in the United Kingdom. Vox Sang. 2013, 104, 299–308. [Google Scholar] [CrossRef]
- Cai, K.; Gierman, T.M.; Hotta, J.A.; Stenland, C.J.; Lee, D.C.; Pifat, D.Y.; Petteway, S.R. Ensuring the biologic safety of plasma-derived therapeutic Proteins: Detection, inactivation, and removal of pathogens. BioDrugs 2005, 19, 79–96. [Google Scholar] [CrossRef]
- Porpiglia, F.; Renard, J.; Billia, M.; Musso, F.; Volpe, A.; Burruni, R.; Terrone, C.; Colla, L.; Piccoli, G.; Podio, V.; et al. Is Renal Warm Ischemia over 30 Minutes during Laparoscopic Partial Nephrectomy Possible? One-Year Results of a Prospective Study. Eur. Urol. 2007, 52, 1170–1178. [Google Scholar] [CrossRef]
- Porpiglia, F.; Fiori, C.; Bertolo, R.; Angusti, T.; Piccoli, G.B.; Podio, V.; Russo, R. The effects of warm ischaemia time on renal function after laparoscopic partial nephrectomy in patients with normal contralateral kidney. World J. Urol. 2012, 30, 257–263. [Google Scholar] [CrossRef]
- Bárdossy, G.; Halász, G.; Gondos, T. The diagnosis of hypovolemia using advanced statistical methods. Comput. Biol. Med. 2011, 41, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J.; Joannidis, M.; Molitoris, B.; Schietz, M.; Okusa, M.D.; Warnock, D.; Laghi, F.; Goldstein, S.L.; Prielipp, R.; Parikh, C.R.; et al. Evaluation and initial management of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2008, 3, 962–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prowle, J.R.; Kirwan, C.J.; Bellomo, R. Fluid management for the prevention and attenuation of acute kidney injury. Nat. Rev. Nephrol. 2014, 10, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Cruces, P.; Salas, C.; Lillo, P.; Salomon, T.; Lillo, F.; Hurtado, D.E. The renal compartment: A hydraulic view. Intensive Care Med. Exp. 2014, 2, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Bagga, A.; Bakkaloglu, A.; Bonventre, J.V.; et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. open 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Erdost, H.A.; Ozkardesler, S.; Akan, M.; Iyilikci, L.; Unek, T.; Ocmen, E.; Dalak, R.M.; Astarcioglu, I. Comparison of the RIFLE, AKIN, and KDIGO Diagnostic Classifications for Acute Renal Injury in Patients Undergoing Liver Transplantation. Transplant. Proc. 2016, 48, 2112–2118. [Google Scholar] [CrossRef]
- Kellum, J.A.; Anders, J.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.-J. Acute kidney injury. Nat. Rev. Dis. Prim. 2021, 7, 52. [Google Scholar] [CrossRef]
- Zarychanski, R.; Abou-Setta, A.M.; Turgeon, A.F.; Houston, B.L.; McIntyre, L.; Marshall, J.C.; Fergusson, D.A. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: A systematic review and meta-analysis. JAMA 2013, 309, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Mutter, T.C.; Ruth, C.A.; Dart, A.B. Hydroxyethyl starch (HES) versus other fluid therapies: Effects on kidney function. Cochrane Database Syst. Rev. 2013, 7, CD007594. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, S.; He, L.; Yu, H.; Yu, H. Hydroxyethyl starch 130/0.4 for volume replacement therapy in surgical patients: A systematic review and meta-analysis of randomized controlled trials. Perioper. Med. 2021, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.; van der Linden, P.; Ripollés-Melchor, J.; James, M.F.M. Safety and efficacy of tetrastarches in surgery and trauma: A systematic review and meta-analysis of randomised controlled trials. Br. J. Anaesth. 2021, 127, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Kurosawa, T.; Sanjo, T. Effect of Hyperosmolality on Vasopressin Secretion in Intradialytic Hypotension: A Mechanistic Study. Am. J. Kidney Dis. 2008, 52, 294–304. [Google Scholar] [CrossRef]
- Prowle, J.R.; Forni, L.G.; Bell, M.; Chew, M.S.; Edwards, M.; Grams, M.E.; Grocott, M.P.W.; Liu, K.D.; McIlroy, D.; Murray, P.T.; et al. Postoperative acute kidney injury in adult non-cardiac surgery: Joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nat. Rev. Nephrol. 2021, 17, 605–618. [Google Scholar] [CrossRef]
- Kopitkó, C.; Gondos, T.; Fülöp, T.; Medve, L. Reinterpreting Renal Hemodynamics: The Importance of Venous Congestion and Effective Organ Perfusion in Acute Kidney Injury. Am. J. Med. Sci. 2020, 359, 193–205. [Google Scholar] [CrossRef]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.H.W. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Kellum, J.A.; Ronco, C.; Wald, R.; Martensson, J.; Maiden, M.; Bagshaw, S.M.; Glassford, N.J.; Lankadeva, Y.; Vaara, S.T.; et al. Acute kidney injury in sepsis. Intensive Care Med. 2017, 43, 816–828. [Google Scholar] [CrossRef] [Green Version]
- von Groote, T.C.; Ostermann, M.; Forni, L.G.; Meersch-Dini, M.; Zarbock, A.; Schmidt, C.; Hoffmeier, A.; Aken, H.; Wempe, C.; Küllmar, M.; et al. The AKI care bundle: All bundle components are created equal—Are they? Intensive Care Med. 2022, 48, 242–245. [Google Scholar] [CrossRef]
- De Rosa, S.; Samoni, S.; Ronco, C. Creatinine-based definitions: From baseline creatinine to serum creatinine adjustment in intensive care. Crit. Care 2016, 20, 69. [Google Scholar] [CrossRef] [Green Version]
- Siew, E.D.; Matheny, M.E.; Ikizler, T.A.; Lewis, J.B.; Miller, R.A.; Waitman, L.R.; Go, A.S.; Parikh, C.R.; Peterson, J.F. Commonly used surrogates for baseline renal function affect the classification and prognosis of acute kidney injury. Kidney Int. 2010, 77, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; Uchino, S.; Cruz, D.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; MacEdo, E.; et al. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol. Dial. Transplant. 2009, 24, 2739–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lex, D.J.; Tóth, R.; Cserép, Z.; Alexander, S.I.; Breuer, T.; Sápi, E.; Szatmári, A.; Székely, E.; Gál, J.; Székely, A. A comparison of the systems for the identification of postoperative acute kidney injury in pediatric cardiac patients. Ann. Thorac. Surg. 2014, 97, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Palma, C.D.; Mamba, M.; Geldenhuys, J.; Fadahun, O.; Rossaint, R.; Zacharowski, K.; Brand, M.; Díaz-Cambronero, Ó.; Belda, J.; Westphal, M.; et al. PragmaTic, prospEctive, randomized, controlled, double-blind, mulTi-centre, multinational study on the safety and efficacy of a 6% HydroxYethyl Starch (HES) solution versus an electrolyte solution in trauma patients: Study protocol for the TETHYS study. Trials 2022, 23, 456. [Google Scholar] [CrossRef] [PubMed]
- Buhre, W.; de Korte-de Boer, D.; de Abreu, M.G.; Scheeren, T.; Gruenewald, M.; Hoeft, A.; Spahn, D.R.; Zarbock, A.; Daamen, S.; Westphal, M.; et al. Prospective, randomized, controlled, double-blind, multi-center, multinational study on the safety and efficacy of 6% Hydroxyethyl starch (HES) sOlution versus an Electrolyte solutioN In patients undergoing eleCtive abdominal Surgery: Study protocol for the PHOENICS study. Trials 2022, 23, 168. [Google Scholar] [CrossRef]
- Myburgh, J.A.; Finfer, S.; Bellomo, R.; Billot, L.; Cass, A.; Gattas, D.; Glass, P.; Lipman, J.; Liu, B.; McArthur, C.; et al. Hydroxyethyl Starch or Saline for Fluid Resuscitation in Intensive Care. N. Engl. J. Med. 2012, 367, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Crystalloid versus Hydroxyethyl Starch Trial (CHEST) Management Committee. The Crystalloid versus Hydroxyethyl Starch. Intensive Care Med. 2011, 37, 816–823. [Google Scholar] [CrossRef]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Åneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. N. Engl. J. Med. 2012, 367, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Guidet, B.; Martinet, O.; Boulain, T.; Philippart, F.; Poussel, J.F.; Maizel, J.; Forceville, X.; Feissel, M.; Hasselmann, M.; Heininger, A.; et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: The CRYSTMAS study. Crit. Care 2012, 16, R94. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Hu, W.; Xia, Q.; Huang, Z.-W.; Chen, G.-Y.; Jin, X.-D.; Xue, P.; Lu, H.-M.; Ke, N.; Zhang, Z.-D.; et al. Hydroxyethyl Starch Resuscitation Reduces the Risk of Intra-Abdominal Hypertension in Severe Acute Pancreatitis. Pancreas 2011, 40, 1220–1225. [Google Scholar] [CrossRef]
- Jungheinrich, C.; Sauermann, W.; Bepperling, F.; Vogt, N.H. Volume efficacy and reduced influence on measures of coagulation using hydroxyethyl starch 130/0.4 (6%) with an optimised in vivo molecular weight in orthopaedic surgery: A randomised, double-blind study. Drugs R D 2004, 5, 1–9. [Google Scholar] [CrossRef]
- Schortgen, F.; Lacherade, J.C.; Bruneel, F.; Cattaneo, I.; Hemery, F.; Lemaire, F.; Brochard, L. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: A multicentre randomised study. Lancet 2001, 357, 911–916. [Google Scholar] [CrossRef]
- Brunkhorst, F.M.; Engel, C.; Bloos, F.; Meier-Hellmann, A.; Ragaller, M.; Weiler, N.; Moerer, O.; Gruendling, M.; Oppert, M.; Grond, S.; et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 2008, 358, 125–139. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, L.A.; Fergusson, D.; Cook, D.J.; Rankin, N.; Dhingra, V.; Granton, J.; Magder, S.; Stiell, I.; Taljaard, M.; Hebert, P.C. Fluid resuscitation in the management of early septic shock (FINESS): A randomized controlled feasibility trial. Can. J. Anesth. 2008, 55, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Vlachou, E.; Gosling, P.; Moiemen, N.S. Hydroxyethylstarch supplementation in burn resuscitation—A prospective randomised controlled trial. Burns 2010, 36, 984–991. [Google Scholar] [CrossRef]
- Zampieri, F.G.; Bagshaw, S.M.; Semler, M.W. Fluid Therapy for Critically Ill Adults With Sepsis: A Review. JAMA 2023, 329, 1967–1980. [Google Scholar] [CrossRef]
- Fernández, J.; Monteagudo, J.; Bargallo, X.; Jiménez, W.; Bosch, J.; Arroyo, V.; Navasa, M. A randomized unblinded pilot study comparing albumin versus hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology 2005, 42, 627–634. [Google Scholar] [CrossRef]
- Gallandat Huet, R.C.; Siemons, A.W.; Baus, D.; van Rooyen-Butijn, W.T.; Haagenaars, J.A.; van Oeveren, W.; Bepperling, F. A novel hydroxyethyl starch (Voluven) for effective perioperative plasma volume substitution in cardiac surgery. Comp. A J. Comp. Educ. 2000, 42, 1207–1215. [Google Scholar] [CrossRef]
- Heradstveit, B.E.; Guttormsen, A.B.; Langørgen, J.; Hammersborg, S.M.; Wentzel-Larsen, T.; Fanebust, R.; Larsson, E.M.; Heltne, J.K. Capillary leakage in post-cardiac arrest survivors during therapeutic hypothermia—A prospective, randomised study. Scand. J. Trauma. Resusc. Emerg. Med. 2010, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Van Der Linden, P.J.; De Hert, S.G.; Deraedt, D.; Cromheecke, S.; De Decker, K.; De Paep, R.; Rodrigus, I.; Daper, A.; Trenchant, A. Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: The effects on perioperative bleeding and transfusion needs. Anesth. Analg. 2005, 101, 629–634. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.T.; Yan, L.N.; Xu, M.Q.; Yang, J. yin Alternatives to albumin administration in hepatocellular carcinoma patients undergoing hepatectomy: An open, randomized clinical trial of efficacy and safety. Chin. Med. J. 2011, 124, 1458–1464. [Google Scholar] [CrossRef]
- Choi, Y.S.; Shim, J.K.; Hong, S.W.; Kim, J.C.; Kwak, Y.L. Comparing the effects of 5% albumin and 6% hydroxyethyl starch 130/0.4 on coagulation and inflammatory response when used as priming solutions for cardiopulmonary bypass. Minerva Anestesiol. 2010, 76, 584–591. [Google Scholar]
- Haase, N.; Perner, A.; Hennings, L.I.; Siegemund, M.; Lauridsen, B.; Wetterslev, M.; Wetterslev, J. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: Systematic review with meta-analysis and trial sequential analysis. BMJ 2013, 346, f839. [Google Scholar] [CrossRef] [Green Version]
- Doleček, M.; Svoboda, P.; Kantorová, I.; Scheer, P.; Sas, I.; Bíbrová, J.; Radvanova, J.; Radvan, M. Therapeutic influence of 20% albumin versus 6% hydroxyethylstarch on extravascular lung water in septic patients: A randomized controlled trial. Hepatogastroenterology 2009, 56, 1622–1628. [Google Scholar]
- ESICM 2010 WEDNESDAY SESSIONS 13 October 2010. Intensive Care Med. 2010, 36, 326–433. [CrossRef] [Green Version]
- James, M.F.M.; Michell, W.L.; Joubert, I.A.; Nicol, A.J.; Navsaria, P.H.; Gillespie, R.S. Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: The FIRST trial (Fluids in Resuscitation of Severe Trauma). Br. J. Anaesth. 2011, 107, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Cittanova, M.L.; Leblanc, I.; Legendre, C.; Mouquet, C.; Riou, B.; Coriat, P. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 1996, 348, 1620–1622. [Google Scholar] [CrossRef]
- Dehne, M.G.; Mühling, J.; Sablotzki, A.; Dehne, K.L.; Sucke, N.; Hempelmann, G. Hydroxyethyl starch (HES) does not directly affect renal function in patients with no prior renal impairment. J. Clin. Anesth. 2001, 13, 103–111. [Google Scholar] [CrossRef]
- Diehl, J.T.; Lester, J.L.; Cosgrove, D.M. Clinical Comparison of Hetastarch and Albumin in Postoperative Cardiac Patients. Ann. Thorac. Surg. 1982, 34, 674–679. [Google Scholar] [CrossRef]
- Lee, J.S.; Ahn, S.W.; Song, J.W.; Shim, J.K.; Yoo, K.J.; lan Kwak, Y. Effect of Hydroxyethyl Starch 130/0.4 on Blood loss and Coagulation in patients with recent exposure to dual antiplatelet Therapy undergoing off-pump Coronary artery bypass graft surgery. Circ. J. 2011, 75, 2397–2402. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Gosling, P.; Vohra, R.K. Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatine during aortic aneurysm surgery. Br. J. Surg. 2007, 94, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, A.; Aboulfetouh, F.; Obayah, G.; Salah, M.; Emam, M.; Khater, Y.; Akram, R.; Hoballah, A.; Bahaa, M.; Elmeteini, M.; et al. The safety of modern hydroxyethyl starch in living donor liver transplantation: A comparison with human albumin. Anesth. Analg. 2009, 109, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Neff, T.A.; Doelberg, M.; Jungheinrich, C.; Sauerland, A.; Spahn, D.R.; Stocker, R. Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in Patients with severe head injury. Anesth. Analg. 2003, 96, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Shatney, C.H.; Deepika, K.; Militello, P.R.; Majerus, T.C.; Dawson, R. Ben Efficacy of Hetastarch in the Resuscitation of Patients With Multisystem Trauma and Shock. Arch. Surg. 1983, 118, 804–809. [Google Scholar] [CrossRef]
- Abdel-Khalek, E.E.; Arif, S.E. Randomized trial comparing human albumin and hydroxyethyl starch 6% as plasma expanders for treatment of patients with liver cirrhosis and tense ascites following large volume paracentesis. Arab J. Gastroenterol. 2010, 11, 24–29. [Google Scholar] [CrossRef]
- Altman, C.; Bernard, B.; Roulot, D.; Vitte, R.L.; Ink, O. Randomized comparative multicenter study of hydroxyethyl starch versus albumin as a plasma expander in cirrhotic patients with tense ascites treated with paracentesis. Eur. J. Gastroenterol. Hepatol. 1998, 10, 5–10. [Google Scholar] [CrossRef]
- Duncan, A.E.; Jia, Y.; Soltesz, E.; Leung, S.; Yilmaz, H.O.; Mao, G.; Timur, A.A.; Kottke-Marchant, K.; Rogers, H.J.; Ma, C.; et al. Effect of 6% hydroxyethyl starch 130/0.4 on kidney and haemostatic function in cardiac surgical patients: A randomised controlled trial. Anaesthesia 2020, 75, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- Godet, G.; Lehot, J.J.; Janvier, G.; Steib, A.; De Castro, V.; Coriat, P. Safety of HES 130/0.4 (Voluven®) in patients with preoperative renal dysfunction undergoing abdominal aortic surgery: A prospective, randomized, controlled, parallel-group multicentre trial. Eur. J. Anaesthesiol. 2008, 25, 986–994. [Google Scholar] [CrossRef]
- Lee, K.F.; Lo, E.Y.J.J.; Wong, K.K.C.C.; Fung, A.K.Y.Y.; Chong, C.C.N.N.; Wong, J.; Ng, K.K.C.C.; Lai, P.B.S.S. Acute kidney injury following hepatectomy and its impact on long-term survival for patients with hepatocellular carcinoma. BJS Open 2021, 5, zrab077. [Google Scholar] [CrossRef]
- Ooi Su Min, J.; Ramzisham, A.R.M.; Zamrin, M.D. Is 6% hydroxyethyl starch 130/0.4 safe in coronary artery bypass graft surgery? Asian Cardiovasc. Thorac. Ann. 2009, 17, 368–372. [Google Scholar] [CrossRef]
- Futier, E.; Garot, M.; Godet, T.; Biais, M.; Verzilli, D.; Ouattara, A.; Huet, O.; Lescot, T.; Lebuffe, G.; Dewitte, A.; et al. Effect of Hydroxyethyl Starch vs Saline for Volume Replacement Therapy on Death or Postoperative Complications among High-Risk Patients Undergoing Major Abdominal Surgery: The FLASH Randomized Clinical Trial. JAMA—J. Am. Med. Assoc. 2020, 323, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Ghodraty, M.R.; Rokhtabnak, F.; Dehghan, H.R.; Pournajafian, A.; Baghaee Vaji, M.; Koleini, Z.S.; Porhomayon, J.; Nader, N.D. Crystalloid versus colloid fluids for reduction of postoperative ileus after abdominal operation under combined general and epidural anesthesia. Surgery 2017, 162, 1055–1062. [Google Scholar] [CrossRef]
- Hamaji, A.; Hajjar, L.; Caiero, M.; Almeida, J.; Nakamura, R.E.; Osawa, E.A.; Fukushima, J.; Galas, F.R.; Auler Junior, J.O.C. Volume replacement therapy during hip arthroplasty using hydroxyethyl starch (130/0.4) compared to lactated Ringer decreases allogeneic blood transfusion and postoperative infection. Rev. Bras. Anestesiol. 2013, 63, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Hung, M.H.; Zou, C.; Lin, F.S.; Lin, C.J.; Chan, K.C.; Chen, Y. New 6% hydroxyethyl starch 130/0.4 does not increase blood loss during major abdominal surgery-A randomized, controlled trial. J. Formos. Med. Assoc. 2014, 113, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Joosten, A.; Tircoveanu, R.; Arend, S.; Wauthy, P.; Gottignies, P.; Van Der Linden, P. Impact of balanced tetrastarch raw material on perioperative blood loss: A randomized double blind controlled trial. Br. J. Anaesth. 2016, 117, 442–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabon, B.; Sessler, D.I.; Kurz, A. Effect of Intraoperative Goal-directed Balanced Crystalloid versus Colloid Administration on Major Postoperative Morbidity: A Randomized Trial. Anesthesiology 2019, 130, 728–744. [Google Scholar] [CrossRef] [Green Version]
- Kammerer, T.; Klug, F.; Schwarz, M.; Hilferink, S.; Zwissler, B.; von Dossow, V.; Karl, A.; Müller, H.H.; Rehm, M. Comparison of 6% hydroxyethyl starch and 5% albumin for volume replacement therapy in patients undergoing cystectomy (CHART): Study protocol for a randomized controlled trial. Trials 2015, 16, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, A.; Verma, G.; Luthra, A.; Lahan, S.; Das, S.; Rai, G.; Sethi, A.K. Risk of early postoperative acute kidney injury with stroke volume variation-guided tetrastarch versus Ringer’s lactate. Saudi J. Anaesth. 2019, 13, 9–15. [Google Scholar] [CrossRef]
- Yates, D.R.A.; Davies, S.J.; Milner, H.E.; Wilson, R.J.T. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br. J. Anaesth. 2014, 112, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Lindroos, A.C.B.; Niiya, T.; Silvasti-Lundell, M.; Randell, T.; Hernesniemi, J.; Niemi, T.T. Stroke volume-directed administration of hydroxyethyl starch or Ringer’s acetate in sitting position during craniotomy. Acta Anaesthesiol. Scand. 2013, 57, 729–736. [Google Scholar] [CrossRef]
- Joosten, A.; Delaporte, A.; Ickx, B.; Touihri, K.; Stany, I.; Barvais, L.; Van Obbergh, L.; Loi, P.; Rinehart, J.; Cannesson, M.; et al. Crystalloid versus Colloid for Intraoperative Goal-directed Fluid Therapy Using a Closed-loop System. Anesthesiology 2018, 128, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Siami, S.; Jaber, S.; Martin, C.; Elatrous, S.; Declère, A.D.; Preiser, J.C.; Outin, H.; Troché, G.; Charpentier, C.; et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock—The CRISTAL randomized trial. Jama 2013, 310, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Van Regenmortel, N.; Verbrugghe, W.; Roelant, E.; Van den Wyngaert, T.; Jorens, P.G. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: A retrospective study in a tertiary mixed ICU population. Intensive Care Med. 2018, 44, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.B.; Haase, N.; Lange, T.; Wetterslev, J.; Perner, A. Acute kidney injury with hydroxyethyl starch 130/0.42 in severe sepsis. Acta Anaesthesiol. Scand. 2015, 59, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, H.C.; Jung, C.W.; Choi, Y.; Yoon, H.J.; Kim, S.; Chin, H.J.; Kim, M.; Kim, Y.C.; Kim, D.K.; et al. Intraoperative arterial pressure variability and postoperative acute kidney injury. Clin. J. Am. Soc. Nephrol. 2020, 15, 35–46. [Google Scholar] [CrossRef]
- Xie, Z.; Liao, X.; Yin, W.; Kang, Y.; Guo, J.; Lu, M. Relationship between short-term blood pressure variability and incidence of acute kidney injury in critically ill patients. Kidney Blood Press. Res. 2017, 42, 1238–1246. [Google Scholar] [CrossRef]
- Werner, J.; Hunsicker, O.; Schneider, A.; Stein, H.; Von Heymann, C.; Freitag, A.; Feldheiser, A.; Wernecke, K.D.; Spies, C. Balanced 10% hydroxyethyl starch compared with balanced 6% hydroxyethyl starch and balanced crystalloid using a goal-directed hemodynamic algorithm in pancreatic surgery. Medicine 2018, 97, e0579. [Google Scholar] [CrossRef]
- Datzmann, T.; Hoenicka, M.; Reinelt, H.; Liebold, A.; Gorki, H. Influence of 6% Hydroxyethyl Starch 130/0.4 Versus Crystalloid Solution on Structural Renal Damage Markers After Coronary Artery Bypass Grafting: A Post Hoc Subgroup Analysis of a Prospective Trial. J. Cardiothorac. Vasc. Anesth. 2018, 32, 205–211. [Google Scholar] [CrossRef]
- Svendsen, Ø.S.; Farstad, M.; Mongstad, A.; Haaverstad, R.; Husby, P.; Kvalheim, V.L. Is the use of hydroxyethyl starch as priming solution during cardiac surgery advisable? A randomized, single-center trial. Perfus 2018, 33, 483–489. [Google Scholar] [CrossRef]
- Demir, A.; Aydinli, B.; Toprak, H.I.; Karadeniz, U.; Yilmaz, F.M.; Züngün, C.; Uçar, P.; Güçlü, C.Y.; Bostanci, E.B.; Yilmaz, S. Impact of 6% Starch 130/0.4 and 4% Gelatin Infusion on Kidney Function in Living-Donor Liver Transplantation. Transplant. Proc. 2015, 47, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Pozo, M.O.; Casabella, C.A.; Murias, G.; Pálizas, F.; Moseinco, M.C.; Kanoore Edul, V.S.; Pálizas, F.; Estenssoro, E.; Ince, C. Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. J. Crit. Care 2010, 25, e1–e659. [Google Scholar] [CrossRef]
- Skhirtladze, K.; Base, E.M.; Lassnigg, A.; Kaider, A.; Linke, S.; Dworschak, M.; Hiesmayr, M.J. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.4 6%, and Ringer’s lactate on blood loss and coagulation after cardiac surgery. Br. J. Anaesth. 2014, 112, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Kammerer, T.; Brettner, F.; Hilferink, S.; Hulde, N.; Klug, F.; Pagel, J.; Karl, A.; Ph, D.; Crispin, A.; Hofmann-kiefer, K.; et al. No Differences in Renal Function between Balanced 6% Hydroxyethyl Starch (130/0.4) and 5% Albumin for Volume Replacement Therapy in Patients Undergoing Cystectomy. Anesthesiology 2018, 128, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Gondos, T.; Marjanek, Z.; Ulakcsai, Z.; Szabó, Z.; Bogár, L.; Károlyi, M.; Gartner, B.; Kiss, K.; Havas, A.; Futó, J. Short-term effectiveness of different volume replacement therapies in postoperative hypovolaemic patients. Eur. J. Anaesthesiol. 2010, 27, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, D.; Maki, Y.; Sakamoto, Y.; Kinoshita, J.; Abe, R.; Kotake, Y. Comparison of volume and hemodynamic effects of crystalloid, hydroxyethyl starch, and albumin in patients undergoing major abdominal surgery: A prospective observational study. BMC Anesthesiol. 2020, 20, 141. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A randomized, controlled, double-blind crossover study on the effects of 1-l infusions of 6% hydroxyethyl starch suspended in 0.9% saline (Voluven) and a balanced solution (Plasma Volume Redibag) on blood volume, renal blood flow velocity, and renal corti. Ann. Surg. 2014, 259, 881–887. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg. 2012, 256, 18–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopitkó, C.; Fülöp, T.; Tapolyai, M.; Gondos, T. A Critical Reassessment of the Kidney Risk Caused by Tetrastarch Products in the Perioperative and Intensive Care Environments. J. Clin. Med. 2023, 12, 5262. https://doi.org/10.3390/jcm12165262
Kopitkó C, Fülöp T, Tapolyai M, Gondos T. A Critical Reassessment of the Kidney Risk Caused by Tetrastarch Products in the Perioperative and Intensive Care Environments. Journal of Clinical Medicine. 2023; 12(16):5262. https://doi.org/10.3390/jcm12165262
Chicago/Turabian StyleKopitkó, Csaba, Tibor Fülöp, Mihály Tapolyai, and Tibor Gondos. 2023. "A Critical Reassessment of the Kidney Risk Caused by Tetrastarch Products in the Perioperative and Intensive Care Environments" Journal of Clinical Medicine 12, no. 16: 5262. https://doi.org/10.3390/jcm12165262
APA StyleKopitkó, C., Fülöp, T., Tapolyai, M., & Gondos, T. (2023). A Critical Reassessment of the Kidney Risk Caused by Tetrastarch Products in the Perioperative and Intensive Care Environments. Journal of Clinical Medicine, 12(16), 5262. https://doi.org/10.3390/jcm12165262