Prognostic Value of the AST/ALT Ratio versus Bilirubin in Patients with Cardiogenic Shock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients, Design and Data Collection
2.2. Inclusion and Exclusion Criteria, Study Endpoints
2.3. Statistical Methods
2.4. Prognostic Performance of the AST/ALT Ratio and Bilirubin
3. Results
3.1. Study Population
3.2. Association of AST/ALT Ratio and Bilirubin with Clinical and Laboratory Data
3.3. Prognostic Performance of the AST/ALT Ratio and Bilirubin
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghajar, A.; Ordonez, C.P.; Philips, B.; Pinzon, P.Q.; Fleming, L.M.; Motiwala, S.R.; Sriwattanakomen, R.; Ho, J.E.; Grandin, E.W.; Sabe, M.; et al. Cardiogenic shock related cardiovascular disease mortality trends in US population: Heart failure vs. acute myocardial infarction as contributing causes. Int. J. Cardiol. 2022, 367, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.E.; Nehme, Z.; Andrew, E.; Dawson, L.P.; Fernando, H.; Noaman, S.; Stephenson, M.; Anderson, D.; Pellegrino, V.; Cox, S.; et al. Hospital characteristics are associated with clinical outcomes in patients with cardiogenic shock. Shock 2022, 58, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Patnaik, S.; Patel, B.; Ram, P.; Garg, L.; Agarwal, M.; Agrawal, S.; Arora, S.; Patel, N.; Wald, J.; et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin. Res. Cardiol. 2018, 107, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Hsu, C.-Y.; Liu, H.-Y.; Lin, C.-F.; Hung, C.-L.; Huang, C.-Y.; Chien, L.-N. Cardiogenic shock in Taiwan from 2003 to 2017 (CSiT-15 study). Crit. Care 2021, 25, 402. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef] [Green Version]
- Bruoha, S.; Yosefy, C.; Taha, L.; Dvir, D.; Shuvy, M.; Jubeh, R.; Carasso, S.; Glikson, M.; Asher, E. Mechanical Circulatory Support Devices for the Treatment of Cardiogenic Shock Complicating Acute Myocardial Infarction—A Review. J. Clin. Med. 2022, 11, 5241. [Google Scholar] [CrossRef] [PubMed]
- Muzafarova, T.; Motovska, Z. Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction. Biomedicines 2022, 10, 1328. [Google Scholar] [CrossRef]
- Samsky, M.D.; Patel, C.B.; DeWald, T.A.; Smith, A.D.; Felker, G.M.; Rogers, J.G.; Hernandez, A.F. Cardiohepatic interactions in heart failure: An overview and clinical implications. J. Am. Coll. Cardiol. 2013, 61, 2397–2405. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, M.N.M.; Turna, F.; Sahin, I.; Agac, S. Is AST/ALT Ratio a Predictor of In-hospital Mortality in Pulmonary Embolism Patients? J. Coll. Physicians Surg. Pak. 2022, 32, 171–176. [Google Scholar]
- Bezan, A.; Mrsic, E.; Krieger, D.; Stojakovic, T.; Pummer, K.; Zigeuner, R.; Hutterer, G.C.; Pichler, M. The Preoperative AST/ALT (De Ritis) Ratio Represents a Poor Prognostic Factor in a Cohort of Patients with Nonmetastatic Renal Cell Carcinoma. J. Urol. 2015, 194, 30–35. [Google Scholar] [CrossRef]
- Zhou, J.; He, Z.; Ma, S.; Liu, R. AST/ALT ratio as a significant predictor of the incidence risk of prostate cancer. Cancer Med. 2020, 9, 5672–5677. [Google Scholar] [CrossRef]
- Liu, H.; Ding, C.; Hu, L.; Li, M.; Zhou, W.; Wang, T.; Zhu, L.; Bao, H.; Cheng, X. The association between AST/ALT ratio and all-cause and cardiovascular mortality in patients with hypertension. Medicine 2021, 100, e26693. [Google Scholar] [CrossRef]
- Zhao, P.-Y.; Yao, R.-Q.; Ren, C.; Li, S.-Y.; Li, Y.-X.; Zhu, S.-Y.; Yao, Y.-M.; Du, X.-H. De Ritis Ratio as a Significant Prognostic Factor in Patients with Sepsis: A Retrospective Analysis. J. Surg. Res. 2021, 264, 375–385. [Google Scholar] [CrossRef]
- Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Forner, J.; Dulatahu, F.; Brück, L.M.; Hoffmann, U.; Bertsch, T.; Weiß, C.; et al. Diagnostic and prognostic value of the AST/ALT ratio in patients with sepsis and septic shock. Scand. J. Gastroenterol. 2022, 58, 392–402. [Google Scholar] [CrossRef]
- Ewid, M.; Sherif, H.; Allihimy, A.S.; Alharbi, S.A.; Aldrewesh, D.A.; Alkuraydis, S.A.; Abazid, R. AST/ALT ratio predicts the functional severity of chronic heart failure with reduced left ventricular ejection fraction. BMC Res. Notes 2020, 13, 178. [Google Scholar] [CrossRef]
- Liang, W.; He, X.; Wu, D.; Xue, R.; Dong, B.; Owusu-Agyeman, M.; Zhao, J.; Cai, L.; You, Z.; Dong, Y.; et al. Prognostic Implication of Liver Function Tests in Heart Failure With Preserved Ejection Fraction Without Chronic Hepatic Diseases: Insight From TOPCAT Trial. Front. Cardiovasc. Med. 2021, 8, 618816. [Google Scholar] [CrossRef]
- Adamson, C.; Cowan, L.M.; de Boer, R.A.; Diez, M.; Drożdż, J.; Dukát, A.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Ljungman, C.E.; et al. Liver tests and outcomes in heart failure with reduced ejection fraction: Findings from DAPA-HF. Eur. J. Heart Fail. 2022, 24, 1856–1868. [Google Scholar] [CrossRef]
- Ortiz, A.B.; Lamanna, I.; Antonucci, E.; Pozzebon, S.; Dell’anna, A.M.; Vincent, J.L.; Backer, D.D.; Taccone, F.S. Altered liver function in patients undergoing veno-arterial extracorporeal membrane oxygenation (ECMO) therapy. Minerva Anestesiol. 2017, 83, 255–265. [Google Scholar]
- Schopka, S.; Philipp, A.; Lunz, D.; Camboni, D.; Zacher, R.; Rupprecht, L.; Zimmermann, M.; Lubnow, M.; Keyser, A.; Arlt, M.; et al. Single-Center Experience With Extracorporeal Life Support in 103 Nonpostcardiotomy Patients. Artif. Organs 2013, 37, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Tarzia, V.; Bagozzi, L.; Ponzoni, M.; Pradegan, N.; Banchelli, F.; Bortolussi, G.; Bellanti, E.; Bianco, R.; Zanella, F.; Bottio, T.; et al. Prognosticating Mortality of Primary Cardiogenic Shock Requiring Extracorporeal Life Support: The RESCUE Score. Curr. Probl. Cardiol. 2023, 48, 101554. [Google Scholar] [CrossRef] [PubMed]
- Engström, A.E.; Vis, M.M.; Bouma, B.J.; Brink, R.B.v.D.; Baan, J.; Claessen, B.E.; Kikkert, W.J.; Sjauw, K.D.; Meuwissen, M.; Koch, K.T.; et al. Right ventricular dysfunction is an independent predictor for mortality in ST-elevation myocardial infarction patients presenting with cardiogenic shock on admission. Eur. J. Heart Fail. 2010, 12, 276–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, H.; Freund, A.; Gimenez, M.R.; de Waha-Thiele, S.; Akin, I.; Pöss, J.; Feistritzer, H.-J.; Fuernau, G.; Graf, T.; Nef, H.; et al. Extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock—Design and rationale of the ECLS-SHOCK trial. Am. Heart J. 2021, 234, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Rusnak, J.; Egner-Walter, S.; Ruka, M.; Dudda, J.; Bertsch, T.; Müller, J.; Mashayekhi, K.; Tajti, P.; Ayoub, M.; et al. Prognosis of cardiogenic shock with and without acute myocardial infarction: Results from a prospective, monocentric registry. Clin. Res. Cardiol. 2023, 1–16. [Google Scholar] [CrossRef]
- Desch, S.; Freund, A.; Akin, I.; Behnes, M.; Preusch, M.R.; Zelniker, T.A.; Skurk, C.; Landmesser, U.; Graf, T.; Eitel, I.; et al. Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation. N. Engl. J. Med. 2021, 385, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; De Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Akin, I.; Sandri, M.; De Waha-Thiele, S.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Nordbeck, P.; Geisler, T.; Landmesser, U.; et al. One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N. Engl. J. Med. 2018, 379, 1699–1710. [Google Scholar] [CrossRef]
- Zeymer, U.; Bueno, H.; Granger, C.B.; Hochman, J.; Huber, K.; Lettino, M.; Price, S.; Schiele, F.; Tubaro, M.; Vranckx, P.; et al. Acute Cardiovascular Care Association position statement for the diagnosis and treatment of patients with acute myocardial infarction complicated by cardiogenic shock: A document of the Acute Cardiovascular Care Association of the European Society of Cardiology. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 183–197. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Maeda, D.; Kagiyama, N.; Jujo, K.; Saito, K.; Kamiya, K.; Saito, H.; Ogasahara, Y.; Maekawa, E.; Konishi, M.; Kitai, T.; et al. Aspartate aminotransferase to alanine aminotransferase ratio is associated with frailty and mortality in older patients with heart failure. Sci. Rep. 2021, 11, 11957. [Google Scholar] [CrossRef]
- Henrion, J. Hypoxic hepatitis. Liver Int. 2012, 32, 1039–1052. [Google Scholar] [CrossRef]
- Seeto, R.K.; Fenn, B.; Rockey, D.C. Ischemic hepatitis: Clinical presentation and pathogenesis. Am. J. Med. 2000, 109, 109–113. [Google Scholar] [CrossRef]
- Henrion, J.; Descamps, O.; Luwaert, R.; Schapira, M.; Parfonry, A.; Heller, F. Hypoxic hepatitis in patients with cardiac failure: Incidence in a coronary care unit and measurement of hepatic blood flow. J. Hepatol. 1994, 21, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Naschitz, J.E.; Slobodin, G.; Lewis, R.J.; Zuckerman, E.; Yeshurun, D. Heart diseases affecting the liver and liver diseases affecting the heart. Am. Heart J. 2000, 140, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaou, M.; Parissis, J.; Yilmaz, M.B.; Seronde, M.-F.; Kivikko, M.; Laribi, S.; Paugam-Burtz, C.; Cai, D.; Pohjanjousi, P.; Laterre, P.-F.; et al. Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur. Heart J. 2012, 34, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.C.; Koelling, T.M.; Pagani, F.D.; Aaronson, K.D. The Right Ventricular Failure Risk Score: A Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. J. Am. Coll. Cardiol. 2008, 51, 2163–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrilovic, N.; March, R.; Yin, K.; Lateef, O.; Alimohamed, M.; Bak, E.; Delibasic, M.; Karlson, K.; Edwards, N.; Raman, J. Liver Dysfunction Associated With In-Hospital Mortality in Adult Extracorporeal Membrane Oxygenation Support. Crit. Care Explor. 2021, 3, e0484. [Google Scholar] [CrossRef]
- Huang, R.; Shao, M.; Zhang, C.; Fang, M.; Jin, M.; Han, X.; Liu, N. Serum Total Bilirubin With Hospital Survival in Adults During Extracorporeal Membrane Oxygenation. Front. Med. 2022, 9, 914557. [Google Scholar] [CrossRef]
- Nesseler, N.; Launey, Y.; Aninat, C.; Morel, F.; Mallédant, Y.; Seguin, P. Clinical review: The liver in sepsis. Crit. Care 2012, 16, 235. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.J.; Taneja, A.; Niccum, D.; Kumar, G.; Jacobs, E.; Nanchal, R. The Association of Serum Bilirubin Levels on the Outcomes of Severe Sepsis. J. Intensiv. Care Med. 2015, 30, 23–29. [Google Scholar] [CrossRef]
- Woźnica, E.; Inglot, M.; Woźnica, R.; Łysenko, L. Liver dysfunction in sepsis. Adv. Clin. Exp. Med. 2018, 27, 547–552. [Google Scholar] [CrossRef]
- Yan, J.; Li, S.; Li, S. The role of the liver in sepsis. Int. Rev. Immunol. 2014, 33, 498–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients (n = 157) | Survivor (n = 77) | Non-Survivor (n = 80) | p-Value | ||||
---|---|---|---|---|---|---|---|
Age, median (IQR) | 74 | (64–81) | 73 | (62–81) | 75 | (65–81) | 0.375 |
Male sex, n (%) | 98 | (62.4) | 49 | (63.6) | 49 | (61.3) | 0.758 |
Body mass index, kg/m2 (median (IQR)) | 26.60 | (24.50–30.40) | 26.60 | (24.20–29.90) | 26.85 | (24.70–30.80) | 0.453 |
Vital signs on admission (median (IQR)) | |||||||
Body temperature (°C) | 35.9 | (35.9–36.6) | 36.3 | (35.4–36.6) | 35.6 | (34.5–36.3) | 0.006 |
Heart rate (bpm) | 87 | (71–108) | 88 | (72–109) | 86 | (70–107) | 0.829 |
Systolic blood pressure (mmHg) | 110 | (92–133) | 109 | (92–130) | 110 | (93–135) | 0.927 |
Respiratory rate (breaths/min) | 20 | (18–24) | 20 | (18–23) | 20 | (18–24) | 0.715 |
Prior TAPSE, mm (median (IQR)) | 19 | (15–24) | 21 | (18–25) | 16 | (13–22) | 0.029 |
Cardiovascular risk factors, n (%) | |||||||
Arterial hypertension | 118 | (75.2) | 60 | (77.9) | 58 | (72.5) | 0.432 |
Diabetes mellitus | 64 | (40.8) | 30 | (39.0) | 34 | (42.5) | 0.652 |
Hyperlipidemia | 90 | (57.3) | 47 | (61.0) | 43 | (53.8) | 0.356 |
Smoking | 56 | (35.9) | 31 | (40.8) | 25 | (31.3) | 0.214 |
Prior medical history, n (%) | |||||||
Coronary artery disease | 59 | (37.2) | 29 | (36.2) | 30 | (39.0) | 0.789 |
Congestive heart failure | 62 | (39.5) | 30 | (39.0) | 32 | (40.0) | 0.894 |
Atrial fibrillation | 60 | (38.2) | 31 | (40.3) | 29 | (36.3) | 0.605 |
Chronic kidney disease | 61 | (38.9) | 31 | (40.3) | 30 | (37.5) | 0.723 |
Stroke | 22 | (14.0) | 12 | (15.6) | 10 | (12.5) | 0.578 |
COPD | 26 | (16.6) | 12 | (15.6) | 14 | (17.5) | 0.747 |
Liver cirrhosis | 6 | (3.8) | 5 | (6.59 | 1 | (1.3) | 0.090 |
Prior medical treatment, n (%) | |||||||
ACE-inhibitor | 49 | (34.3) | 25 | (32.9) | 24 | (35.8) | 0.713 |
ARB | 26 | (18.1) | 16 | (20.8) | 10 | (14.9) | 0.362 |
Beta-blocker | 81 | (56.6) | 44 | (57.9) | 37 | (55.2) | 0.748 |
ARNI | 4 | (2.8) | 3 | (3.9) | 1 | (1.5) | 0.367 |
Aldosterone antagonist | 27 | (18.9) | 11 | (14.5) | 16 | (23.9) | 0.151 |
Diuretics | 76 | (52.8) | 37 | (48.7) | 39 | (57.4) | 0.298 |
ASA | 36 | (22.9) | 22 | (28.6) | 14 | (17.5) | 0.099 |
P2Y12-inhibitor | 12 | (7.6) | 6 | (7.8) | 6 | (7.5) | 0.945 |
Statin | 64 | (44.5) | 39 | (51.3) | 25 | (36.8) | 0.079 |
Amiodarone | 10 | (6.4) | 4 | (5.2) | 6 | (7.5) | 0.554 |
All Patients (n = 157) | Survivor (n = 77) | Non-Survivor (n = 80) | p-Value | ||||
---|---|---|---|---|---|---|---|
Cause of CS, n (%) | |||||||
Acute myocardial infarction | 76 | (48.4) | 30 | (39.0) | 46 | (57.5) | |
Arrhythmic | 17 | (10.8) | 14 | (18.2) | 3 | (3.8) | |
Acute decompensated heart failure | 44 | (28.0) | 20 | (26.0) | 24 | (30.0) | |
Pulmonary embolism | 6 | (3.8) | 2 | (2.6) | 4 | (5.0) | 0.008 |
Vitium | 9 | (5.7) | 6 | (7.8) | 3 | (3.8) | |
Cardiomyopathy | 2 | (1.3) | 2 | (2.6) | 0 | (0.0) | |
Pericardial tamponade | 3 | (1.9) | 3 | (3.9) | 0 | (0.0) | |
Coronary angiography, n (%) | |||||||
No evidence of CAD | 16 | (10.2) | 10 | (13.0) | 6 | (7.5) | 0.256 |
1-vessel-disease | 24 | (15.3) | 12 | (15.6) | 12 | (15.0) | 0.919 |
2-vessel-disease | 20 | (12.7) | 11 | (14.3) | 9 | (11.3) | 0.568 |
3-vessel-disease | 63 | (40.1) | 27 | (35.1) | 36 | (45.0) | 0.204 |
Percutaneous coronary intervention | 76 | (48.4) | 30 | (39.0) | 46 | (57.5) | 0.025 |
Classification of CS, n (%) | |||||||
Stage A | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0.001 |
Stage B | 3 | (1.9) | 3 | (3.9) | 0 | (0.0) | |
Stage C | 59 | (37.6) | 40 | (51.9) | 19 | (23.8) | |
Stage D | 16 | (10.2) | 9 | (11.7) | 7 | (8.8) | |
Stage E | 79 | (50.3) | 25 | (32.5) | 54 | (67.5) | |
Transthoracic echocardiography on day 1 | |||||||
LVEF > 55%, (n, %) | 15 | (9.6) | 9 | (11.7) | 6 | (7.5) | |
LVEF 54–41%, (n, %) | 18 | (11.5) | 13 | (16.9) | 5 | (6.3) | |
LVEF 40–30%, (n, %) | 36 | (22.9) | 22 | (28.9) | 14 | (17.4) | 0.021 |
LVEF < 30%, (n, %) | 79 | (50.3) | 29 | (37.7) | 50 | (62.5) | |
LVEF not documented, (n, %) | 9 | (5.7) | 4 | (5.2) | 5 | (6.3) | |
VCI, cm (median (IQR)) | 2.0 | (1.6–2.3) | 1.9 | (1.5–2.4) | 2.0 | (1.6–2.3) | 0.764 |
TAPSE, mm (median (IQR)) | 15 | (11–18) | 17 | (11–20) | 15 | (11–17) | 0.300 |
Cardiopulmonary resuscitation | |||||||
OHCA, n (%) | 57 | (36.3) | 20 | (26.0) | 37 | (46.3) | 0.001 |
IHCA, n (%) | 22 | (14.0) | 5 | (6.5) | 17 | (21.3) | |
Shockable rhythm, n (%) | 112 | (72.3) | 59 | (77.6) | 53 | (67.1) | 0.143 |
Non-shockable rhythm, n (%) | 43 | (27.7) | 17 | (22.4) | 26 | (32.9) | |
ROSC, min (median IQR) | 13 | (8–20) | 10 | (5–17) | 14 | (10–29) | 0.082 |
Respiratory status | |||||||
Mechanical ventilation, n (%) | 94 | (40.1) | 36 | (46.8) | 58 | (72.5) | 0.001 |
Duration of mechanical ventilation, days, (mean (IQR)) | 2 | (1–6) | 1 | (0–6) | 2 | (1–6) | 0.018 |
PaO2/FiO2 ratio, (median (IQR)) | 227 | (137–336) | 200 | (140–334) | 242 | (129–354) | 0.557 |
PaO2, mmHg (median (IQR)) | 108 | (78–166) | 101 | (77–141) | 112 | (79–187) | 0.138 |
Pharmacotherapies | |||||||
Norepinephrine dose on admission, µg/kg/min (median (IQR)) | 0.1 | (0.0–0.3) | 0.1 | (0.0–0.2) | 0.2 | (0.1–0.6) | 0.001 |
Dobutamine, n (%) | 48 | (30.6) | 16 | (20.8) | 32 | (40.0) | 0.009 |
Levosimendan, n (%) | 41 | (26.1) | 16 | (20.8) | 25 | (31.3) | 0.135 |
Heparin, n (%) | 91 | (58.0) | 38 | (49.4) | 53 | (66.3) | 0.032 |
Bivalirudin, n (%) | 8 | (5.1) | 2 | (2.6) | 6 | (7.5) | 0.277 |
P2Y12-inhibitor, n (%) | 79 | (50.3) | 36 | (46.8) | 43 | (53.8) | 0.381 |
Mechanical circulatory assist device, n (%) | 17 | (10.8) | 2 | (2.6) | 15 | (18.8) | 0.001 |
VA-ECMO | 12 | (7.6) | 1 | (1.3) | 11 | (13.8) | 0.003 |
Impella | 3 | (1.9) | 1 | (1.3) | 2 | (2.5) | 1.000 |
ECMELLA | 2 | (1.3) | 0 | (0.0) | 2 | (2.5) | 0.497 |
Renal replacement therapy, n (%) | 52 | (33.1) | 15 | (19.5) | 37 | (46.3) | 0.001 |
Blood transfusion, n (%) | |||||||
Red blood cells | 50 | (31.8) | 24 | (31.1) | 26 | (32.5) | 0.858 |
Platelets | 3 | (1.9) | 0 | (0.0) | 3 | (3.8) | 0.245 |
Baseline laboratory values (median (IQR)) | |||||||
pH | 7.29 | (7.20–7.37) | 7.30 | (7.23–7.37) | 7.29 | (7.19–7.38) | 0.635 |
Lactate (mmol/L) | 3.4 | (1.8–6.6) | 2.6 | (1.6–4.4) | 4.6 | (2.4–10.2) | 0.001 |
Sodium (mmol/L) | 138 | (135–141) | 138 | (135–141) | 138 | (135–142) | 0.588 |
Potassium (mmol/L) | 4.3 | (3.8–4.9) | 4.2 | (3.7–4.8) | 4.4 | (3.8–5.0) | 0.366 |
Creatinine (mg/dL) | 1.48 | (1.14–2.39) | 1.30 | (1.05–1.96) | 1.61 | (1.32–2.80) | 0.008 |
Hemoglobin (g/dL) | 12.3 | (10.2–13.9) | 12.4 | (10.1–14.2) | 12.2 | (10.2–13.8) | 0.462 |
WBC (106/mL) | 14.75 | (10.65–18.96) | 13.31 | (9.54–17.64) | 15.66 | (12.63–20.92) | 0.003 |
Platelets (106/mL) | 232 | (178–277) | 226 | (170–304) | 233 | (180–267) | 0.725 |
INR | 1.18 | (1.08–1.43) | 1.15 | (1.06–1.38) | 1.22 | (1.10–1.47) | 0.023 |
D-dimer (mg/L) | 10.59 | (4.14–32.00) | 5.21 | (2.50–14.30) | 19.09 | (8.20–32.00) | 0.001 |
AST (U/L) | 129 | (45–312) | 109 | (38–214) | 169 | (59–516) | 0.016 |
ALT (U/L) | 74 | (31–194) | 53 | (29–122) | 98 | (35–319) | 0.009 |
Bilirubin (mg/dL) | 0.63 | (0.43–0.99) | 0.60 | (0.41–0.99) | 0.65 | (0.46–1.00) | 0.395 |
Troponin I (µg/L) | 1.118 | (0.204–7.992) | 0.456 | (0.144–3.440) | 2.861 | (0.443–19.943) | 0.002 |
NT-pro BNP (pg/mL) | 7839 | (1057–15,349) | 5702 | (480–14,973) | 11226 | (1477–21,645) | 0.206 |
Procalcitonin (ng/mL) | 0.28 | (0.13–0.92) | 0.31 | (0.07–0.80) | 0.28 | (0.19–1.23) | 0.559 |
CRP (mg/L) | 13 | (4–43) | 11 | (4–52) | 20 | (4–38) | 0.977 |
Primary endpoint | |||||||
All-cause mortality at 30 days, n (%) | 80 | (51.0) | 0 | (0.0) | 80 | (100.0) | 0.001 |
Follow-up data, n (%) | |||||||
ICU time, days (median (IQR)) | 4 | (2–8) | 4 | (3–9) | 3 | (2–7) | 0.004 |
Death ICU, n (%) | 81 | (51.6) | 4 | (5.2) | 77 | (96.3) | 0.001 |
AST/ALT Ratio | Bilirubin | |||
---|---|---|---|---|
r | p-Value | r | p-Value | |
Day 1 | ||||
Age | −0.084 | 0.296 | 0.077 | 0.361 |
Platelet count (106/mL) | 0.006 | 0.941 | −0.254 | 0.002 |
Albumin (g/L) | −0.011 | 0.900 | −0.164 | 0.058 |
AST/ALT ratio | - | - | 0.164 | 0.052 |
Bilirubin (mg/dL) | 0.164 | 0.052 | - | - |
CRP (mg/L) | 0.008 | 0.921 | 0.276 | 0.001 |
Procalcitonin (ng/mL) | 0.225 | 0.092 | 0.412 | 0.002 |
cTNI (µg/L) | 0.366 | 0.001 | 0.138 | 0.130 |
NT-pro BNP (pg/mL) | 0.191 | 0.096 | 0.338 | 0.003 |
LVEF | 0.086 | 0.297 | 0.254 | 0.003 |
TAPSE | 0.016 | 0.907 | −0.227 | 0.117 |
AST/ALT Ratio | Bilirubin | p-Value | |
---|---|---|---|
Day 1 | 0.497 (0.406–0.588) p = 0.944 | 0.541 (0.446–0.637) p = 0.395 | 0.511 |
Day 2 | 0.539 (0.428–0.649) p = 0.491 | 0.547 (0.440–0.654) p = 0.388 | 0.919 |
Day 3 | 0.601 (0.475–0.727) p = 0.112 | 0.487 (0.362–0.613) p = 0.843 | 0.200 |
Day 4 | 0.692 (0.565–0.819) p = 0.008 | 0.491 (0.351–0.631) p = 0.901 | 0.042 |
Day 8 | 0.756 (0.596–0.917) p = 0.012 | 0.617 (0.427–0.807) p = 0.248 | 0.306 |
Variables | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.012 | 0.994–1.030 | 0.192 | 0.991 | 0.954–1.028 | 0.618 |
Sex | 1.078 | 0.688–1.691 | 0.742 | 1.264 | 0.522–3.061 | 0.603 |
BMI (kg/m2) | 1.008 | 0.965–1.053 | 0.714 | 1.048 | 0.946–1.162 | 0.368 |
Mechanical circulatory assist device | 2.788 | 1.574–4.937 | 0.001 | 2.825 | 0.685–11.644 | 0.151 |
Renal replacement therapy | 2.145 | 1.378–3.339 | 0.001 | 0.797 | 0.277–2.294 | 0.674 |
Creatinine (mg/dL) | 1.307 | 0.964–1.774 | 0.085 | 1.286 | 0.864–1.914 | 0.215 |
Lactate (mmol/L) | 1.135 | 1.020–1.262 | 0.020 | 1.410 | 1.100–1.809 | 0.007 |
Bilirubin > 0.69 (mg/dL) | 1.159 | 0.552–2.432 | 0.696 | 0.606 | 0.217–1.690 | 0.338 |
AST/ALT ratio > 1.34 | 2.826 | 1.227–6.510 | 0.015 | 2.830 | 1.054–7.601 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schupp, T.; Rusnak, J.; Weidner, K.; Ruka, M.; Egner-Walter, S.; Dudda, J.; Forner, J.; Bertsch, T.; Mashayekhi, K.; Ayoub, M.; et al. Prognostic Value of the AST/ALT Ratio versus Bilirubin in Patients with Cardiogenic Shock. J. Clin. Med. 2023, 12, 5275. https://doi.org/10.3390/jcm12165275
Schupp T, Rusnak J, Weidner K, Ruka M, Egner-Walter S, Dudda J, Forner J, Bertsch T, Mashayekhi K, Ayoub M, et al. Prognostic Value of the AST/ALT Ratio versus Bilirubin in Patients with Cardiogenic Shock. Journal of Clinical Medicine. 2023; 12(16):5275. https://doi.org/10.3390/jcm12165275
Chicago/Turabian StyleSchupp, Tobias, Jonas Rusnak, Kathrin Weidner, Marinela Ruka, Sascha Egner-Walter, Jonas Dudda, Jan Forner, Thomas Bertsch, Kambis Mashayekhi, Mohamed Ayoub, and et al. 2023. "Prognostic Value of the AST/ALT Ratio versus Bilirubin in Patients with Cardiogenic Shock" Journal of Clinical Medicine 12, no. 16: 5275. https://doi.org/10.3390/jcm12165275
APA StyleSchupp, T., Rusnak, J., Weidner, K., Ruka, M., Egner-Walter, S., Dudda, J., Forner, J., Bertsch, T., Mashayekhi, K., Ayoub, M., Akin, M., Kittel, M., Behnes, M., & Akin, I. (2023). Prognostic Value of the AST/ALT Ratio versus Bilirubin in Patients with Cardiogenic Shock. Journal of Clinical Medicine, 12(16), 5275. https://doi.org/10.3390/jcm12165275