Analysis of Clinical Profiles and Echocardiographic Cardiac Outcomes in Peripartum Cardiomyopathy (PPCM) vs. PPCM with Co-Existing Hypertensive Pregnancy Disorder (HPD-PPCM) Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Search Strategy and Study Selection
2.4. Data Analysis and Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Risk of Bias
3.4. Study Outcomes
3.4.1. Clinical Profiles
Chronic Hypertension
Systolic Blood Pressure (SBP)
Diastolic Blood Pressure
Medical Therapy Initiated after Diagnosis (Furosemide)
Medical Therapy Initiated after Diagnosis (Beta-Blocker)
3.4.2. Echocardiographic Findings
The Impact of PPCM vs. HPD-PPCM on LVEF Reduction
The Impact of PPCM vs. HPD-PPCM on LV Dilation
The Impact of PPCM vs. HPD-PPCM on Relative Wall Thickness Reduction
4. Discussion
4.1. Principal Findings
4.2. The Implication for Clinical Practice
4.3. Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sliwa, K.; Hilfiker-Kleiner, D.; Petrie, M.C.; Mebazaa, A.; Pieske, B.; Buchmann, E.; Regitz-Zagrosek, V.; Schaufelberger, M.; Tavazzi, L.; van Veldhuisen, D.J.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: A position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 2010, 12, 767–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, N.; Rendon, I.S.H.; Arany, Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2013, 62, 1715–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliwa, K.; Skudicky, D.; Bergemann, A.; Candy, G.; Puren, A.; Sareli, P. Peripartum cardiomyopathy: Analysis of clinical outcome, left ventricular function, plasma levels of cytokines and Fas/APO-1. J. Am. Coll. Cardiol. 2000, 35, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Kahn, K.; Houle, B.; Arteche, A.; Collinson, M.A.; Tollman, S.M.; Stein, A. Young children’s probability of dying before and after their mother’s death: A rural South African population-based surveillance study. PLoS Med. 2013, 10, e1001409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fett, J.; Murphy, J. Infant survival in Haiti after maternal death from peripartum cardiomyopathy. Int. J. Gynecol. Obstet. 2006, 94, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Hull, E.; Hidden, E. Postpartal heart failure. South Med. J. 1938, 31, 265–270. [Google Scholar] [CrossRef]
- Amos, A.M.; Jaber, W.A.; Russell, S.D. Improved outcomes in peripartum cardiomyopathy with contemporary. Am. Heart J. 2006, 152, 509–513. [Google Scholar] [CrossRef]
- Witlin, A.G.; Mabie, W.C.; Sibai, B.M. Peripartum cardiomyopathy: An ominous diagnosis. Am. J. Obstet. Gynecol. 1997, 176, 182–188. [Google Scholar] [CrossRef]
- Gunderson, E.P.; Croen, L.A.; Chiang, V.; Yoshida, C.K.; Walton, D.; Go, A.S. Epidemiology of peripartum cardiomyopathy: Incidence, predictors, and outcomes. Obstet. Gynecol. 2011, 118, 583–591. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.-H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Damp, J.; Givertz, M.M.; Semigran, M.; Alharethi, R.; Ewald, G.; Felker, G.M.; Bozkurt, B.; Boehmer, J.; Haythe, J.; Skopicki, H.; et al. Relaxin-2 and soluble Flt1 levels in peripartum cardiomyopathy: Results of the multicenter IPAC study. JACC Heart Fail. 2016, 4, 380–388. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.M.; Elkayam, U.; Alharethi, R.; Damp, J.; Hsich, E.; Ewald, G.; Modi, K.; Alexis, J.D.; Ramani, G.V.; Semigran, M.J.; et al. Clinical outcomes for peripartum cardiomyopathy in North America: Results of the IPAC study (Investigations of Pregnancy-Associated Cardiomyopathy). J. Am. Coll. Cardiol. 2015, 66, 905–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isezuo, S.A.; Abubakar, S.A. Epidemiologic profile of peripartum cardiomyopathy in a tertiary care hospital. Ethn. Dis. 2007, 17, 228–233. [Google Scholar] [PubMed]
- Barasa, A.; Goloskokova, V.; Ladfors, L.; Patel, H.; Schaufelberger, M. Symptomatic recovery and pharmacological management in a clinical cohort with peripartum cardiomyopathy. J. Matern.-Fetal Neonatal Med. 2017, 31, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Lindley, K.J.; Conner, S.N.; Cahill, A.G.; Novak, E.; Mann, D.L. Impact of preeclampsia on clinical and functional outcomes in women with peripartum cardiomyopathy. Circ. Heart Fail. 2017, 10, e003797. [Google Scholar] [CrossRef]
- Demakis, J.G.; Rahimtoola, S.H. Peripartum cardiomyopathy. Circulation 1971, 44, 964–968. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.D.; Moons, K.G.M.; Snell, K.I.E.; Ensor, J.; Hooft, L.; Altman, D.G.; Hayden, J.; Collins, G.S.; Debray, T.P.A. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019, 364, k4597. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 2008, 61, 991–996. [Google Scholar] [CrossRef]
- Malhamé, I.; Dayan, N.; Moura, C.S.; Samuel, M.; Vinet, E.; Pilote, L. Peripartum cardiomyopathy with co-incident preeclampsia: A cohort study of clinical risk factors and outcomes among commercially insured women. Pregnancy Hypertens. 2019, 17, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Ntusi, N.B.A.; Badri, M.; Gumedze, F.; Sliwa, K.; Mayosi, B.M. Pregnancy-associated heart failure: A comparison of clinical presentation and outcome between hypertensive heart failure of pregnancy and idiopathic peripartum cardiomyopathy. PLoS ONE 2015, 10, e0133466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, C.A.; Kitakaze, M.; Ishibashi-Ueda, H.; Nakatani, S.; Murohara, T.; Tomoike, H.; Ikeda, T. Different characteristics of peripartum cardiomyopathy between patients complicated with and without hypertensive disorders—Results from the japanese nationwide survey of peripartum cardiomyopathy. Circ. J. 2011, 75, 1975–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ersbøll, A.S.; Johansen, M.; Damm, P.; Rasmussen, S.; Vejlstrup, N.G.; Gustafsson, F. Peripartum cardiomyopathy in Denmark: A retrospective, population-based study of incidence, management and outcome. Eur. J. Heart Fail. 2017, 19, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Lewey, J.; Levine, L.D.; Elovitz, M.A.; Irizarry, O.C.; Arany, Z. Importance of early diagnosis in peripartum cardiomyopathy. Hypertension 2020, 75, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Behrens, I.; Basit, S.; Lykke, J.A.; Ranthe, M.F.; Wohlfahrt, J.; Bundgaard, H.; Melbye, M.; Boyd, H.A. Hypertensive disorders of pregnancy and peripartum cardiomyopathy: A nationwide cohort study. PLoS ONE 2019, 14, e0211857. [Google Scholar] [CrossRef] [Green Version]
- Hilfiker-Kleiner, D.; Kaminski, K.; Podewski, E.; Bonda, T.; Schaefer, A.; Sliwa, K.; Forster, O.; Quint, A.; Landmesser, U.; Doerries, C.; et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 2007, 128, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Khurana, S.; Liby, K.; Buckley, A.R.; Ben-Jonathan, N. Proteolysis of human prolactin: Resistance to cathepsin D and formation of a nonangiostatic, C-terminal 16K fragment by thrombin1. Endocrinology 1999, 140, 4127–4132. [Google Scholar] [CrossRef]
- Patten, I.S.; Rana, S.; Shahul, S.; Rowe, G.C.; Jang, C.; Liu, L.; Hacker, M.R.; Rhee, J.S.; Mitchell, J.; Mahmood, F.; et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 2012, 485, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Shahul, S.; Rhee, J.; Hacker, M.R.; Gulati, G.; Mitchell, J.D.; Hess, P.; Mahmood, F.; Arany, Z.; Rana, S.; Talmor, D. Subclinical left ventricular dysfunction in preeclamptic women with preserved left ventricular ejection fraction: A 2D speckle-tracking imaging study. Circ. Cardiovasc. Imaging 2012, 5, 734–773. [Google Scholar] [CrossRef] [Green Version]
- Melchiorre, K.; Sutherland, G.R.; Watt-Coote, I.; Liberati, M.; Thilaganathan, B. Severe myocardial impairment and chamber dysfunction in preterm preeclampsia. Hypertens. Pregnancy 2010, 31, 454–471. [Google Scholar] [CrossRef]
- Jackson, A.M.; Petrie, M.C.; Frogoudaki, A.; Laroche, C.; Gustafsson, F.; Ibrahim, B.; Mebazaa, A.; Johnson, M.R.; Seferovic, P.M.; Regitz-Zagrosek, V.; et al. Hypertensive disorders in women with peripartum cardiomyopathy: Insights from the ESC EORP PPCM Registry. Eur. J. Heart Fail. 2021, 23, 2058–2069. [Google Scholar] [CrossRef]
- Ersbøll, A.S.; Goetze, J.P.; Johansen, M.; Hauge, M.G.; Sliwa, K.; Vejlstrup, N.; Gustafsson, F.; Damm, P. Biomarkers and their relation to cardiac function late after peripartum cardiomyopathy. J. Card. Fail. 2021, 27, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, M.; Momin, E.S.; Mannan, V.; Kashyap, T.; Pervaiz, M.A.; Akram, A.; Khan, A.A.; Elshaikh, A.O. Using echocardiography and biomarkers to determine prognosis in peripartum cardiomyopathy: A systematic review. Cureus 2022, 14, e26130. [Google Scholar] [CrossRef] [PubMed]
- Goli, R.; Li, J.; Brandimarto, J.; Levine, L.D.; Riis, V.; McAfee, Q.; DePalma, S.; Haghighi, A.; Seidman, J.G.; Seidman, C.E.; et al. Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation 2021, 143, 1852–1862. [Google Scholar] [CrossRef] [PubMed]
- Ballo, P.; Betti, I.; Mangialavori, G.; Chiodi, L.; Rapisardi, G.; Zuppiroli, A. Peripartum Cardiomyopathy Presenting with Predominant Left Ventricular Diastolic Dysfunction: Efficacy of Bromocriptine. Case Rep. Med. 2012, 2012, 476903. [Google Scholar] [CrossRef] [Green Version]
- Badianyama, M.; Das, P.K.; Gaddameedi, S.R.; Saukhla, S.; Nagammagari, T.; Bandari, V.; Mohammed, L. A Systematic Review of the Utility of Bromocriptine in Acute Peripartum Cardiomyopathy. Cureus 2021, 13, e18248. [Google Scholar] [CrossRef]
Study | PPCM | HPD-PPCM | p-Value | ||
---|---|---|---|---|---|
Mean (SD) | N | Mean (SD) | N | ||
Design | |||||
Barasa et al. (2017) [14] | Retrospective cohort | ||||
Lindley et al. (2017) [15] | Retrospective cohort | ||||
Ntusi et al. (2015) [22] | Retrospective cohort | ||||
Malhamé et al. (2019) [21] | Prospective cohort | ||||
Sociodemographic Profiles | |||||
Location | |||||
Barasa et al. (2017) [14] | Sweden | ||||
Lindley et al. (2017) [15] | USA | ||||
Ntusi et al. (2015) [22] | USA | ||||
Malhamé et al. (2019) [21] | South Africa | ||||
Maternal Age at Diagnosis | |||||
Lindley et al. (2017) [15] | 29.30 (5.090) | 22 | 27.40 (7.40) | 17 | 0.90 |
Ntusi et al. (2015) [22] | 31.50 (7.50) | 30 | 29.60 (6.60) | 53 | |
Malhamé et al. (2019) [21] | 30.20 (5.80) | 64,220 | 31.80 (6.80) | 283 | |
Gravidity | |||||
Lindley et al. (2017) [15] | 3.10 (1.90) | 22 | 2.60 (2.20) | 17 | 0.13 |
Ntusi et al. (2015) [22] | 2.40 (0.70) | 30 | 2.20 (0.60) | 53 | |
Tobacco Use | (Even, Total) | (Event, Total) | |||
Lindley et al. (2017) [15] | 4 | 22 | 4 | 17 | 0.10 |
Malhamé et al. (2019) [21] | 8 | 283 | 1143 | 64,220 | |
Ntusi et al. (2015) [22] | 7 | 30 | 5 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugrahani, A.D.; Maulana, S.; Tjandraprawira, K.D.; Santoso, D.P.J.; Setiawan, D.; Pribadi, A.; Siddiq, A.; Pramatirta, A.Y.; Aziz, M.A.; Irianti, S. Analysis of Clinical Profiles and Echocardiographic Cardiac Outcomes in Peripartum Cardiomyopathy (PPCM) vs. PPCM with Co-Existing Hypertensive Pregnancy Disorder (HPD-PPCM) Patients: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 5303. https://doi.org/10.3390/jcm12165303
Nugrahani AD, Maulana S, Tjandraprawira KD, Santoso DPJ, Setiawan D, Pribadi A, Siddiq A, Pramatirta AY, Aziz MA, Irianti S. Analysis of Clinical Profiles and Echocardiographic Cardiac Outcomes in Peripartum Cardiomyopathy (PPCM) vs. PPCM with Co-Existing Hypertensive Pregnancy Disorder (HPD-PPCM) Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(16):5303. https://doi.org/10.3390/jcm12165303
Chicago/Turabian StyleNugrahani, Annisa Dewi, Sidik Maulana, Kevin Dominique Tjandraprawira, Dhanny Primantara Johari Santoso, Dani Setiawan, Adhi Pribadi, Amillia Siddiq, Akhmad Yogi Pramatirta, Muhammad Alamsyah Aziz, and Setyorini Irianti. 2023. "Analysis of Clinical Profiles and Echocardiographic Cardiac Outcomes in Peripartum Cardiomyopathy (PPCM) vs. PPCM with Co-Existing Hypertensive Pregnancy Disorder (HPD-PPCM) Patients: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 16: 5303. https://doi.org/10.3390/jcm12165303