The Value of Stress-Gated Blood Pool SPECT in Predicting Early Postoperative Period Complications in Ischemic Cardiomyopathy Patients: Focus on Mechanical Dyssynchrony
Abstract
:1. Introduction
2. Methods
2.1. Patient and Study Population
2.2. Study Design and Primary Endpoint
2.3. GBPS Data Acquisition and Processing
2.4. Surgical Techniques
2.5. Echocardiography
2.6. Blood Sampling and Biochemical Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. The Value of Mechanical Dyssynchrony
4.2. The Value of Stress-Induced Mechanical Dyssynchrony
4.3. The Value of Dobutamine Dosage
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Felker, G.M.; Shaw, G.M.; O’Connor, C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. J. Am. Coll. Cardiol. 2002, 39, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; De Backer, D. Circulatory shock. N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Algarni, K.D.; Maganti, M.; Yau, T.M. Predictors of Low Cardiac Output Syndrome After Isolated Coronary Artery Bypass Surgery: Trends Over 20 Years. Ann. Thorac. Surg. 2011, 92, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Soliman Hamad, M.A.; van Straten, A.H.; Schönberger, J.P.; ter Woorst, J.F.; de Wolf, A.M.; Martens, E.J.; van Zundert, A.A. Preoperative ejection fraction as a predictor of survival after cor-onary artery bypass grafting: Comparison with a matched general population. J. Cardiothorac. Surg. 2010, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Lomivorotov, V.V.; Efremov, S.M.; Kirov, M.Y.; Fominskiy, E.V.; Karaskov, A.M. Low-Cardiac-Output Syndrome After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2017, 31, 291–308. [Google Scholar] [CrossRef]
- Andreev, S.L.; Pryakhin, A.S.; Mochula, A.V.; Maltseva, A.N.; Sazonova, S.I.; Shipulin, V.M.; Massalha, S.; Zavadovsky, K.V. Low-dose dobutamine stress gated blood pool SPECT assessment of left ventricular contractile reserve in ischemic cardiomyopathy: A feasibility study. Eur. J. Nucl. Med. 2022, 49, 2219–2231. [Google Scholar] [CrossRef]
- Fudim, M.; Dalgaard, F.; Fathallah, M.; Iskandrian, A.E.; Borges-Neto, S. Mechanical dyssynchrony: How do we measure it, what it means, and what we can do about it. J. Nucl. Cardiol. 2019, 28, 2174–2184. [Google Scholar] [CrossRef]
- AlJaroudi, W. Left ventricular mechanical dyssynchrony in patient with CAD: The Saga continues. J. Nucl. Cardiol. 2020, 28, 3021–3024. [Google Scholar] [CrossRef]
- Mishkina, A.I.; Saushkin, V.V.; Atabekov, T.A.; Sazonova, S.I.; Shipulin, V.V.; Massalha, S.; Batalov, R.E.; Popov, S.V.; Zavadovsky, K.V. The value of cardiac sympathetic activity and mechanical dyssynchrony as cardiac resynchronization therapy response predictors: Comparison between patients with ischemic and non-ischemic heart failure. J. Nucl. Cardiol. 2022, 30, 371–382. [Google Scholar] [CrossRef]
- Fujito, H.; Yoda, S.; Hatta, T.; Miyagawa, M.; Tanaka, Y.; Fukumoto, K.; Suzuki, Y.; Matsumoto, N.; Okumura, Y. Prognostic value of the normalization of left ventricular mechanical dyssynchrony after revascularization in patients with coronary artery disease. Hearth Vessels 2022, 37, 1395–1410. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, M.; Tian, C.; Wei, H.; Gao, M.; Yang, X.; Zhang, X.; Li, X. Prognostic value of ventricular mechanical dyssynchrony in patients with left ventricular aneurysm: A comparative study of medical and surgical treatment. J. Nucl. Cardiol. 2020, 29, 652–660. [Google Scholar] [CrossRef]
- Kuronuma, K.; Miller, R.J.; Otaki, Y.; Van Kriekinge, S.D.; Diniz, M.A.; Sharir, T.; Hu, L.-H.; Gransar, H.; Liang, J.X.; Parekh, T.; et al. Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results from the REFINE SPECT Registry. Circ. Cardiovasc. Imaging 2021, 14, e012386. [Google Scholar] [CrossRef] [PubMed]
- Salimian, S. Left ventricular mechanical dyssynchrony under stress: Isn’t it time to conduct a prospective multicenter study? J. Nucl. Cardiol. 2019, 27, 2258–2260. [Google Scholar] [CrossRef] [PubMed]
- Legallois, D.; Marie, P.-Y.; Franken, P.R.; Djaballah, W.; Agostini, D.; Manrique, A. Comparison of the dyssynchrony parameters recorded with gated SPECT in ischemic cardiomyopathy according to their repeatability at rest and to their ability to detect a synchrony reserve under dobutamine infusion. J. Nucl. Cardiol. 2018, 27, 2247–2257. [Google Scholar] [CrossRef]
- Henzlova, M.J.; Duvall, W.L.; Einstein, A.J.; Travin, M.I.; Verberne, H.J. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J. Nucl. Cardiol. 2016, 23, 606–639. [Google Scholar] [CrossRef] [PubMed]
- Maganti, M.D.; Rao, V.; Borger, M.A.; Ivanov, J.; David, T.E. Predictors of Low Cardiac Output Syndrome After Isolated Aortic Valve Surgery. Circulation 2005, 112, I448–I452. [Google Scholar] [CrossRef]
- Corbett, J.R.; Akinboboye, O.O.; Bacharach, S.L.; Borer, J.S.; Botvinick, E.H.; DePuey, E.G.; Ficaro, E.P.; Hansen, C.L.; Henzlova, M.J.; Vankriekinge, S. Equilibrium radionuclide angiocardiography. J. Nucl. Cardiol. 2006, 13, e56–e79. [Google Scholar] [CrossRef]
- Buckberg, G.; Athanasuleas, C.; Conte, J. Surgical ventricular restoration for the treatment of heart failure. Nat. Rev. Cardiol. 2012, 9, 703–716. [Google Scholar] [CrossRef]
- Castelvecchio, S.; Pappalardo, O.A.; Menicanti, L. Myocardial reconstruction in ischaemic cardiomyopathy. Eur. J. Cardio-Thoracic Surg. 2019, 55, i49–i56. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Goldberg, A.S.; Alraies, M.C.; Cerqueira, M.D.; Jaber, W.A.; AlJaroudi, W.A. Prognostic value of left ventricular mechanical dyssynchrony by phase analysis in patients with non-ischemic cardiomyopathy with ejection fraction 35–50% and QRS < 150 ms. J. Nucl. Cardiol. 2013, 21, 57–66. [Google Scholar] [CrossRef]
- Cho, S.G.; Jabin, Z.; Park, K.S.; Kim, J.; Kang, S.R.; Kwon, S.Y.; Jeong, G.C.; Song, M.; Kim, J.S.; Cho, J.Y.; et al. Clinical values of left ventricular mechanical dyssynchrony assessment by gated myocardial perfusion SPECT in patients with acute myocardial infarction and Multivessel Disease. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 259–266. [Google Scholar] [CrossRef]
- Sakatani, T.; Kasahara, T.; Irie, D.; Tsubakimoto, Y.; Matsuo, A.; Fujita, H.; Inoue, K. Prognostic value of left ventricular mechanical dyssynchrony induced by exercise stress in patients with normal myocardial perfusion single-photon emission computed tomography. J. Nucl. Cardiol. 2020, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kano, N.; Okumura, T.; Isobe, S.; Sawamura, A.; Watanabe, N.; Fukaya, K.; Mori, H.; Morimoto, R.; Kato, K.; Bando, Y.K.; et al. Left ventricular phase entropy: Novel prognostic predictor in patients with dilated cardiomyopathy and narrow QRS. J. Nucl. Cardiol. 2017, 25, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- AlJaroudi, W.; Alraies, M.C.; Hachamovitch, R.; Jaber, W.A.; Brunken, R.; Cerqueira, M.D.; Marwick, T. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: A study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS. Eur. J. Nucl. Med. 2012, 39, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Uebleis, C.; Hellweger, S.; Laubender, R.P.; Becker, A.; Sohn, H.-Y.; Lehner, S.; Haug, A.; Bartenstein, P.; Cumming, P.; Van Kriekinge, S.D.; et al. Left ventricular dyssynchrony assessed by gated SPECT phase analysis is an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy. Eur. J. Nucl. Med. 2012, 39, 1561–1569. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, M.; Li, W.; Zhu, Z.; Mi, H.; Li, X.; Zhang, X. Left ventricular mechanical dyssynchrony analzyed by Tc-99m sestamibi SPECT and F-18 FDG PET in patients with ischemic cardiomyopathy and the prognostic value. Int. J. Cardiovasc. Imaging 2020, 36, 2063–2071. [Google Scholar] [CrossRef]
- Shimizu, M.; Iiya, M.; Fujii, H.; Kimura, S.; Suzuki, M.; Nishizaki, M. Left ventricular end-systolic contractile entropy can predict cardiac prognosis in patients with complete left bundle branch block. J. Nucl. Cardiol. 2019, 28, 162–171. [Google Scholar] [CrossRef]
- Nakajima, K.; Okuda, K.; Matsuo, S.; Slomka, P. Making the invisiblevisible: Phase dyssynchrony has potential as a new prognostic marker. J. Nucl. Cardiol. 2019, 26, 298–302. [Google Scholar] [CrossRef]
- Okuda, K.; Nakajima, K. What does entropy reveal in phase analysis of myocardial perfusion SPECT? J. Nucl. Cardiol. 2019, 28, 172–174. [Google Scholar] [CrossRef]
- Zhihao, L.; Jingyu, N.; Lan, L.; Michael, S.; Rui, G.; Xiyun, B.; Xiaozhi, L.; Guanwei, F. SERCA2a: A key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev. 2019, 25, 523–535. [Google Scholar] [CrossRef]
- Okuda, K.; Nakajima, K.; Matsuo, S.; Kashiwaya, S.; Yoneyama, H.; Shibutani, T.; Onoguchi, M.; Hashimoto, M.; Kinuya, S. Comparison of diagnostic performance of four software packages for phase dyssynchrony analysis in gated myocardial perfusion SPECT. EJNMMI Res. 2017, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Borges-Neto, S. A troubled marriage: When electrical and mechanical dyssynchrony don’t go along. J. Nucl. Cardiol. 2018, 26, 1240–1242. [Google Scholar] [CrossRef] [PubMed]
- Cortés, C.M.; Aramayo, G.E.N.; Barboza, P.E.; Crottogini, A.; Embon, M.A. Impact of early post-stress 99mTc sestamibi ECG-gated SPECT myocardial perfusion imaging on the detection of ischemic LV dyssynchrony: An early step in the stunning cascade. Int. J. Cardiovasc. Imaging 2021, 37, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- AlJaroudi, W. Early post-stress LV dyssynchrony: A new marker for significant CAD. J. Nucl. Cardiol. 2014, 21, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- AlJaroudi, W.A.; Hage, F.G. Myocardial stunning by gated SPECT: An old tool reinvented in a stunning turn. J. Nucl. Cardiol. 2017, 26, 841–844. [Google Scholar] [CrossRef]
- Mut, F.; Giubbini, R.; Vitola, J.; Lusa, L.; Sobic-Saranovic, D.; Peix, A.; Bertagna, F.; Bui, D.H.; Cunha, C.; Obaldo, J.; et al. Detection of post-exercise stunning by early gated SPECT myocardial perfusion imaging: Results from the IAEA multi-center study. J. Nucl. Cardiol. 2014, 21, 1168–1176. [Google Scholar] [CrossRef]
- Brodov, Y.; Fish, M.; Rubeaux, M.; Otaki, Y.; Gransar, H.; Lemley, M.; Gerlach, J.; Berman, D.; Germano, G.; Slomka, P. Quantitation of left ventricular ejection fraction reserve from early gated regadenoson stress Tc-99m high-efficiency SPECT. J. Nucl. Cardiol. 2016, 23, 1251–1261. [Google Scholar] [CrossRef]
- Salimian, S.; Thibault, B.; Finnerty, V.; Grégoire, J.; Harel, F. Phase analysis of gated blood pool SPECT for multiple stress testing assessments of ventricular mechanical dyssynchrony in a tachycardia-induced dilated cardiomyopathy canine model. J. Nucl. Cardiol. 2015, 24, 145–157. [Google Scholar] [CrossRef]
- Salimian, S.; Thibault, B.; Finnerty, V.; Grégoire, J.; Harel, F. The effects of dobutamine stress on cardiac mechanical synchrony determined by phase analysis of gated SPECT myocardial perfusion imaging in a canine model. J. Nucl. Cardiol. 2014, 21, 375–383. [Google Scholar] [CrossRef]
- Kita, A.; Onoguchi, M.; Shibutani, T.; Sugimoto, K.; Kosaka, N.; Adachi, T.; Kimura, H. Influence of myocardial count on phase dyssynchrony analysis of gated myocardial perfusion single-photon emission computed tomography. Nucl. Med. Commun. 2019, 40, 124–130. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, H.; Shi, J.; Zhou, Y.; Wang, C.; Li, D.; Shan, Q.; Zhou, W. Myocardial stunning-induced left ventricular dyssynchrony on gated single-photon emission computed tomography myocardial perfusion imaging. Nucl. Med. Commun. 2018, 39, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.J.; Kwong, R.Y.; Scherrer-Crosbie, M.; Taub, C.C.; Blankstein, R.; Lima, J.; Bonow, R.O.; Eshtehardi, P.; Bois, J.P.; American Heart Association Council on Cardiovascular Radiology and Intervention and Council on Clinical Cardiology. State of the Art: Imaging for Myocardial Viability: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Imaging 2020, 13, e000053. [Google Scholar] [CrossRef] [PubMed]
- Hida, S.; Chikamori, T.; Tanaka, H.; Igarashi, Y.; Shiba, C.; Usui, Y.; Hatano, T.; Yamashina, A. Diagnostic Value of Left Ventricular Dyssynchrony After Exercise and at Rest in the Detection of Multivessel Coronary Artery Disease on Single-Photon Emission Computed Tomography. Circ. J. 2012, 76, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
Parameter | Total (n = 57) | CEPOP (n = 17) | NCEPOP (n = 40) | p-Value |
---|---|---|---|---|
Age (years) | 59.7 ± 6.5 | 61 ± 6.1 | 58 ± 7.4 | 0.2 |
Dyslipidemia, n (%) | 41 (72%) | 15 (88%) | 26 (65%) | 0.02 * |
Hypertension, n (%) | 50 (88%) | 16 (94%) | 34 (85%) | 0.21 |
Type 2 DM, n (%) | 13 (23%) | 3 (17%) | 10 (25%) | 0.41 |
NYHA class, n (%): | ||||
II | 31 (55%) | 7 (41%) | 24 (60%) | 0.6 |
III | 28 (45%) | 10 (59%) | 16 (40%) | |
LV EF (%) **, n (%) | 30 (27.5; 35) | 30 (25; 31) | 32 (29; 35) | 0.09 |
LV EDV (mL) **, n (%) | 210 (187; 235) | 229 (199; 273) | 208 (187; 227) | 0.06 |
LV ESV (mL) **, n (%) | 142 (129; 166) | 158 (136; 198) | 136 (128; 157) | 0.01 * |
The number of CA with stenosis > 75%, n (%): | ||||
1 | 7 (12%) | 1 (6%) | 6 (15%) | |
2 | 9 (16%) | 2 (12%) | 7 (18%) | 0.16 |
3 | 41 (72%) | 14 (82%) | 27 (67%) | |
EuroSCORE 2 (%) | 4.3 (2.5; 5.7) | 4.6 (4;1; 6.2) | 3.5 (2.2; 5.2) | 0.1 |
LV reconstruction | 25 (44%) | 7 (41%) | 18 (45%) | 0.77 |
MV repair | 12 (21%) | 6 (35%) | 6 (16%) | 0.15 |
CPB time (min) | 143 (110; 178) | 172 (149; 190) | 124 (110; 173) | 0.06 |
Aortic XCL time (min) | 97 (74; 123) | 125 (76; 133) | 83 (72; 105) | 0.04 * |
eGFR (mL/min/1.73 m2) | 56 (45; 72) | 54.6 (42.3; 76) | 55.5 (44.6; 78) | 0.08 |
NT-proBNP, pg/mL | 678 (458; 882) | 638 (424; 879) | 515 (405; 998) | 0.6 |
Parameter | CEPOP (n = 17) | NCEPOP (n = 40) | p-Value |
---|---|---|---|
EDV rest (mL) | 323 (281; 373) | 265 (242; 306) | 0.007 * |
ESV rest (mL) | 242 (298; 293) | 198 (170; 232) | 0.006 * |
EF rest (%) | 28 (18; 31) | 28 (23;32) | 0.33 |
PER rest (EDV/s) | −1.18 (−1.45; −0.7) | −1.27 (−1.48; −1.0) | 0.24 |
PSD rest (degree) | 56 (40; 72) | 57 (41; 65) | 0.75 |
HBW rest (degree) | 228 (171; 250) | 216 (175; 258) | 0.81 |
PE rest (%) | 76 (70; 81) | 79 (74; 86.5) | 0.35 |
Δ EF rest-10 µg/kg/min (%) | 2.5 (1.5; 6) | 3 (−1; 7) | 0.97 |
Δ EF rest-15 µg/kg/min (%) | 4 (1.2; 9.7) | 4 (−0.7; 8) | 0.74 |
Δ PER rest-10 µg/kg/min (%) | 0.29 (−0.02; 0.44) | 0.18 (−0.03; 0.44) | 0.79 |
Δ PER rest-15 µg/kg/min (%) | 0.32 (0.118; 0.55) | 0.22 (0.04; 0.46) | 0.64 |
Δ PSD rest-10 µg/kg/min (%) | −0.5 (−4; 1.5) | −4 (−7; 1) | 0.16 |
Δ PSD rest-15 µg/kg/min (%) | −2 (−7; 3.5) | −1.5 (−5; 1) | 0.92 |
Δ HBW rest-10 µg/kg/min (%) | −3 (−15; 24) | −12 (−24; 4.5) | 0.12 |
Δ HBW rest-15 µg/kg/min (%) | 0 (−16.5; 18) | −6 (19.5; 11.25) | 0.13 |
Δ PE rest-10 µg/kg/min (%) | 1 (−1; −3.5) | −2 (−4; −1) | <0.001 * |
Δ PE rest-15 µg/kg/min (%) | 2 (−2.7; 8.7) | −1.5 (−5; 0) | 0.01 * |
Parameter | OR | CI (95%) | p-Value |
---|---|---|---|
Univariate logistic regression | |||
Dyslipidemia | 9.75 | 1.16–81.53 | 0.007 |
LV ESV (mL) * | 1.01 | 1.002–1.03 | 0.01 |
Aortic XCL time (min) | 1.02 | 1.002–1.04 | 0.01 |
LV EDV (mL) ** | 1.01 | 1.002–1.02 | 0.005 |
LV ESV (mL) ** | 1.01 | 1.003–1.02 | 0.003 |
∆ PE rest-10 µg/kg/min (%) | 1.85 | 1.27–2.69 | <0.001 |
∆ PE rest-15 µg/kg/min (%) | 1.24 | 1.06–1.44 | <0.001 |
Multivariate logistic regression | |||
Aortic XCL time (min) | 1.02 | 1.001–1.05 | <0.001 |
∆ PE rest-10 µg/kg/min (%) | 1.67 | 1.13–2.49 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shipulin, V.V.; Andreev, S.; Kopeva, K.; Shipulin, V.M.; Zavadovsky, K. The Value of Stress-Gated Blood Pool SPECT in Predicting Early Postoperative Period Complications in Ischemic Cardiomyopathy Patients: Focus on Mechanical Dyssynchrony. J. Clin. Med. 2023, 12, 5328. https://doi.org/10.3390/jcm12165328
Shipulin VV, Andreev S, Kopeva K, Shipulin VM, Zavadovsky K. The Value of Stress-Gated Blood Pool SPECT in Predicting Early Postoperative Period Complications in Ischemic Cardiomyopathy Patients: Focus on Mechanical Dyssynchrony. Journal of Clinical Medicine. 2023; 12(16):5328. https://doi.org/10.3390/jcm12165328
Chicago/Turabian StyleShipulin, Vladimir V., Sergey Andreev, Kristina Kopeva, Vladimir M. Shipulin, and Konstantin Zavadovsky. 2023. "The Value of Stress-Gated Blood Pool SPECT in Predicting Early Postoperative Period Complications in Ischemic Cardiomyopathy Patients: Focus on Mechanical Dyssynchrony" Journal of Clinical Medicine 12, no. 16: 5328. https://doi.org/10.3390/jcm12165328
APA StyleShipulin, V. V., Andreev, S., Kopeva, K., Shipulin, V. M., & Zavadovsky, K. (2023). The Value of Stress-Gated Blood Pool SPECT in Predicting Early Postoperative Period Complications in Ischemic Cardiomyopathy Patients: Focus on Mechanical Dyssynchrony. Journal of Clinical Medicine, 12(16), 5328. https://doi.org/10.3390/jcm12165328