A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+TM and SonoCNSTM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. SonoCNS™
2.3. 5DCNS+™
2.4. Analysis by the Operator
2.5. Statistics
3. Results
4. Discussion
4.1. Biometric Measurement of Fetal Brain
4.2. Importance of Accurate Biometry
4.3. Additional Value of the Coronal Planes
4.4. Image Quality
4.5. Similar Approaches
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeo, L.; Romero, R. Fetal Intelligent Navigation Echocardiography (FINE): A novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet. Gynecol. 2013, 42, 268–284. [Google Scholar] [CrossRef]
- Kusunose, K.; Abe, T.; Haga, A.; Fukuda, D.; Yamada, H.; Harada, M.; Sata, M. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality from Echocardiographic Images. JACC Cardiovasc. Imaging 2019, 13 Pt 1, 374–381. [Google Scholar] [CrossRef]
- Arnaout, R.; Curran, L.; Zhao, Y.; Levine, J.C.; Chinn, E.; Moon-Grady, A.J. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat. Med. 2021, 27, 882–891. [Google Scholar] [CrossRef]
- Garcia-Canadilla, P.; Sanchez-Martinez, S.; Crispi, F.; Bijnens, B. Machine Learning in Fetal Cardiology: What to Expect. Fetal Diagn. Ther. 2020, 47, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Garne, E.; Loane, M.; Addor, M.-C.; Boyd, P.A.; Barisic, I.; Dolk, H. Congenital hydrocephalus—Prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur. J. Paediatr. Neurol. 2010, 14, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Welp, A.; Gembicki, M.; Dracopoulos, C.; Scharf, J.L.; Rody, A.; Weichert, J. Applicability of a semiautomated volumetric approach (5D CNS+™) for detailed antenatal reconstruction of abnormal fetal CNS anatomy. BMC Med. Imaging 2022, 22, 154. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.K.; Wellesley, D.G.; Barisic, I.; Addor, M.-C.; Bergman, J.E.H.; Braz, P.; Cavero-Carbonell, C.; Draper, E.S.; Gatt, M.; Haeusler, M.; et al. Epidemiology of congenital cerebral anomalies in Europe: A multicentre, population-based EUROCAT study. Arch. Dis. Child. 2019, 104, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Veyver, I.B.V.D. Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: A practical review. Prenat. Diagn. 2019, 39, 666–678. [Google Scholar] [CrossRef]
- Pluym, I.D.; Afshar, Y.; Holliman, K.; Kwan, L.; Bolagani, A.; Mok, T.; Silver, B.; Ramirez, E.; Han, C.S.; Platt, L.D. Accuracy of automated three-dimensional ultrasound imaging technique for fetal head biometry. Ultrasound Obstet. Gynecol. 2020, 57, 798–803. [Google Scholar] [CrossRef]
- Karl, K.; Kainer, F.; Heling, K.-S.; Chaoui, R. Fetale Neurosonografie: Die erweiterte Untersuchung des ZNS beim Fetus. Ultraschall Med. Eur. J. Ultrasound 2011, 32, 342–361. [Google Scholar] [CrossRef]
- Chitty, L.S.; Pilu, G. The challenge of imaging the fetal central nervous system: An aid to prenatal diagnosis, management and prognosis. Prenat. Diagn. 2009, 29, 301–302. [Google Scholar] [CrossRef]
- Yang, F.; Leung, K.Y.; Lee, Y.P.; Chan, H.Y.; Tang, M.H.Y. Fetal biometry by an inexperienced operator using two- and three-dimensional ultrasound. Ultrasound Obstet. Gynecol. 2010, 35, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Welp, A.; Gembicki, M.; Rody, A.; Weichert, J. Validation of a semiautomated volumetric approach for fetal neurosonography using 5DCNS+ in clinical data from > 1100 consecutive pregnancies. Child’s Nerv. Syst. 2020, 36, 2989–2995. [Google Scholar] [CrossRef]
- Weichert, J.; Welp, A.; Scharf, J.L.; Dracopoulos, C.; Becker, W.-H.; Gembicki, M. The Use of Artificial Intelligence in Automation in the Fields of Gynaecology and Obstetrics—An Assessment of the State of Play. Geburtshilfe Frauenheilkd. 2021, 81, 1203–1216. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Capponi, A.; Persico, N.; Ghi, T.; Nazzaro, G.; Boito, S.; Pietrolucci, M.E.; Arduini, D. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains. J. Ultrasound Med. 2016, 35, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, G.A.; Hossu, G.; Bertholdt, C.; Noble, P.; Morel, O.; Grangé, G. Artificial intelligence assistance for fetal head biometry: Assessment of automated measurement software. Diagn. Interv. Imaging 2018, 99, 709–716. [Google Scholar] [CrossRef]
- Zeng, Y.; Tsui, P.-H.; Wu, W.; Zhou, Z.; Wu, S. Fetal Ultrasound Image Segmentation for Automatic Head Circumference Biometry Using Deeply Supervised Attention-Gated V-Net. J. Digit. Imaging 2021, 34, 134–148. [Google Scholar] [CrossRef]
- Matsuzawa, N.; Poon, L.C.; Machida, M.; Nakamura, T.; Uenishi, K.; Wah, Y.M.; Moungmaithong, S.; Itakura, A.; Chiyo, H.; Pooh, R.K. Cat-Ear-Line: A Sonographic Sign of Cortical Development? J. Ultrasound Med. 2022, 42, 1445–1457. [Google Scholar] [CrossRef]
- Melamed, N.; Yogev, Y.; Meizner, I.; Mashiach, R.; Bardin, R.; Ben-Haroush, A. Sonographic Fetal Weight Estimation: Which model should be used? J. Ultrasound Med. 2009, 28, 617–629. [Google Scholar] [CrossRef]
- Faschingbauer, F.; Heimrich, J.; Raabe, E.; Kehl, S.; Schneider, M.; Schmid, M.; Beckmann, M.W.; Hepp, T.; Lübke, A.; Mayr, A.; et al. Longitudinal Assessment of Examiner Experience and the Accuracy of Sonographic Fetal Weight Estimation at Term. J. Ultrasound Med. 2016, 36, 163–174. [Google Scholar] [CrossRef]
- Wilcox, A.J. On the importance and the unimportance of birthweight. Leuk. Res. 2001, 30, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Park, A.L.; Fell, D.B. Mortality in Infants Affected by Preterm Birth and Severe Small-for-Gestational Age Birth Weight. Pediatrics 2017, 140, e20171881. [Google Scholar] [CrossRef] [PubMed]
- Linder, N.; Lahat, Y.; Kogan, A.; Fridman, E.; Kouadio, F.; Melamed, N.; Yogev, Y.; Klinger, G. Macrosomic newborns of non-diabetic mothers: Anthropometric measurements and neonatal complications. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F353–F358. [Google Scholar] [CrossRef] [PubMed]
- Sarris, I.; Ohuma, E.; Ioannou, C.; Sande, J.; Altman, D.G.; Papageorghiou, A.T.; on behalf of the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). Fetal biometry: How well can offline measurements from three-dimensional volumes substitute real-time two-dimensional measurements? Ultrasound Obstet. Gynecol. 2013, 42, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Pretscher, J.; Kehl, S.; Stelzl, P.; Stumpfe, F.M.; Mayr, A.; Schmid, M.; Staerk, C.; Schild, R.; Beckmann, M.W.; Faschingbauer, F. Influence of Sonographic Fetal Weight Estimation Inaccuracies in Macrosomia on Perinatal Outcome. Ultraschall der Med. Eur. J. Ultrasound 2020, 43, e56–e64. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Deter, R.; Sangi-Haghpeykar, H.; Yeo, L.; Romero, R. Prospective validation of fetal weight estimation using fractional limb volume. Ultrasound Obstet. Gynecol. 2013, 41, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Mack, L.M.; Kim, S.Y.; Lee, S.; Sangi-Haghpeykar, H.; Lee, W. Automated Fractional Limb Volume Measurements Improve the Precision of Birth Weight Predictions in Late Third-Trimester Fetuses. J. Ultrasound Med. 2017, 36, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Gembicki, M.; Offerman, D.R.; Weichert, J. Semiautomatic Assessment of Fetal Fractional Limb Volume for Weight Prediction in Clinical Praxis: How Does It Perform in Routine Use? J. Ultrasound Med. 2021, 41, 355–364. [Google Scholar] [CrossRef]
- von Kaisenberg, C.; Chaoui, R.; Häusler, M.; Kagan, K.O.; Kozlowski, P.; Merz, E.; Rempen, A.; Steiner, H.; Tercanli, S.; Wisser, J.; et al. Quality Requirements for the early Fetal Ultrasound Assessment at 11–13+6 Weeks of Gestation (DEGUM Levels II and III). Ultraschall der Med. Eur. J. Ultrasound 2016, 37, 297–302. [Google Scholar] [CrossRef]
- AIUM Practice Parameter for the Performance of Detailed Second- and Third-Trimester Diagnostic Obstetric Ultrasound Examinations. J. Ultrasound Med. 2019, 38, 3093–3100. [CrossRef]
- Malinger, G.; Paladini, D.; Haratz, K.K.; Monteagudo, A.; Pilu, G.L.; Timor-Tritsch, I.E. ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 1: Performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet. Gynecol. 2020, 56, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Paladini, D.; Malinger, G.; Birnbaum, R.; Monteagudo, A.; Pilu, G.; Salomon, L.J.; Timor-Tritsch, I.E. ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 2: Performance of targeted neurosonography. Ultrasound Obstet. Gynecol. 2021, 57, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Leitner, Y.; Goez, H.; Gull, I.; Mesterman, R.; Weiner, E.; Jaffa, A.; Harel, S. Antenatal diagnosis of central nervous system anomalies: Can we predict prognosis? J. Child Neurol. 2004, 19, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Paz, Y.G.; Levinsky, D.; Rosen, H.; Barzilay, E. Feasibility of Fetal Proximal Lateral Cerebral Ventricle Measurement. J. Ultrasound Med. 2022, 41, 2933–2938. [Google Scholar] [CrossRef]
- D’Antonio, F.; Khalil, A.; Garel, C.; Pilu, G.; Rizzo, G.; Lerman-Sagie, T.; Bhide, A.; Thilaganathan, B.; Manzoli, L.; Papageorghiou, A.T. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal ultrasound imaging (part 1): Nomenclature, diagnostic accuracy and associated anomalies. Ultrasound Obstet. Gynecol. 2015, 47, 690–697. [Google Scholar] [CrossRef]
- D’Antonio, F.; Khalil, A.; Garel, C.; Pilu, G.; Rizzo, G.; Lerman-Sagie, T.; Bhide, A.; Thilaganathan, B.; Manzoli, L.; Papageorghiou, A.T. Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal imaging (part 2): Neurodevelopmental outcome. Ultrasound Obstet. Gynecol. 2015, 48, 28–37. [Google Scholar] [CrossRef]
- Sherer, D.M.; Sokolovski, M.; Dalloul, M.; Pezzullo, J.C.; Osho, J.A.; Abulafia, O. Nomograms of the axial fetal cerebellar hemisphere circumference and area throughout gestation. Ultrasound Obstet. Gynecol. 2006, 29, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, R.; Heling, K.S.; Kainer, F.; Karl, K. Fetale Neurosonografie mittels 3-dimensionaler multiplanarer Sonografie. Z. Für Geburtshilfe Und Neonatol. 2012, 216, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, S.-L.; Luo, G.-Y.; Norwitz, E.R.; Ouyang, S.-Y.; Wen, H.-X.; Yuan, Y.; Tian, X.-X.; He, J.-M. Ultrasonographic Characteristics of Cortical Sulcus Development in the Human Fetus between 18 and 41 Weeks of Gestation. Chin. Med. J. 2017, 130, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Pooh, R.K.; Machida, M.; Nakamura, T.; Uenishi, K.; Chiyo, H.; Itoh, K.; Yoshimatsu, J.; Ueda, H.; Ogo, K.; Chaemsaithong, P.; et al. Increased Sylvian fissure angle as early sonographic sign of malformation of cortical development. Ultrasound Obstet. Gynecol. 2018, 54, 199–206. [Google Scholar] [CrossRef]
- Poon, L.C.; Sahota, D.S.; Chaemsaithong, P.; Nakamura, T.; Machida, M.; Naruse, K.; Wah, Y.M.; Leung, T.Y.; Pooh, R.K. Transvaginal three-dimensional ultrasound assessment of Sylvian fissures at 18–30 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018, 54, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Quarello, E.; Stirnemann, J.; Ville, Y.; Guibaud, L. Assessment of fetal Sylvian fissure operculization between 22 and 32 weeks: A subjective approach. Ultrasound Obstet. Gynecol. 2008, 32, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Albers, M.E.W.A.; Buisman, E.T.I.A.; Kahn, R.S.; Franx, A.; Onland-Moret, N.C.; de Heus, R. Intra- and interobserver agreement for fetal cerebral measurements in 3D-ultrasonography. Hum. Brain Mapp. 2018, 39, 3277–3284. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, J.; Arámbula-Cosío, F.; Guzmán, M.; Camargo, L.; Gutierrez, B.; Mateus, D.; Navab, N.; Medina-Bañuelos, V. Spatial Compounding of 3-D Fetal Brain Ultrasound Using Probabilistic Maps. Ultrasound Med. Biol. 2018, 44, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhao, D.; Yang, Z.; Wang, B. Automatic display of fetal brain planes and automatic measurements of fetal brain parameters by transabdominal three-dimensional ultrasound. J. Clin. Ultrasound 2019, 48, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Husen, S.C.; Koning, I.V.; Go, A.T.J.I.; van Graafeiland, A.W.; Willemsen, S.P.; Groenenberg, I.A.L.; Steegers-Theunissen, R.P.M. Three-dimensional ultrasound imaging of fetal brain fissures in the growth restricted fetus. PLoS ONE 2019, 14, e0217538. [Google Scholar] [CrossRef] [PubMed]
- Gembicki, M.; Hartge, D.R.; Dracopoulos, C.; Weichert, J. Semiautomatic Fetal Intelligent Navigation Echocardiography Has the Potential to Aid Cardiac Evaluations Even in Less Experienced Hands. J. Ultrasound Med. 2019, 39, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Maiz, N.; Alonso, I.; Belar, M.; Burgos, J.; Irasarri, A.; Molina, F.S.; de Paco, C.; Pijoan, J.I.; Plasencia, W.; Rodó, C.; et al. Three dimensional ultrasonography for advanced neurosonography (Neurosofe-3d). Analysis of acquisition-related factors influencing the quality of the brain volumes. Prenat. Diagn. 2016, 36, 1054–1060. [Google Scholar] [CrossRef]
- Sreelakshmy, R.; Titus, A.; Sasirekha, N.; Logashanmugam, E.; Begam, R.B.; Ramkumar, G.; Raju, R. An Automated Deep Learning Model for the Cerebellum Segmentation from Fetal Brain Images. BioMed Res. Int. 2022, 2022, 8342767. [Google Scholar] [CrossRef]
- Zhao, L.; Asis-Cruz, J.; Feng, X.; Wu, Y.; Kapse, K.; Largent, A.; Quistorff, J.; Lopez, C.; Wu, D.; Qing, K.; et al. Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach. Am. J. Neuroradiol. 2022, 43, 448–454. [Google Scholar] [CrossRef]
- Gofer, S.; Haik, O.; Bardin, R.; Gilboa, Y.; Perlman, S. Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images. J. Ultrasound Med. 2021, 41, 1773–1779. [Google Scholar] [CrossRef]
SonoCNS™ | 5DCNS+™ | |||
---|---|---|---|---|
Bias [mm] | SD of Bias [mm] | Bias [mm] | SD of Bias [mm] | |
HC | −0.8713 | 4.222 | −3.117 | 4.176 |
BPD | −1.265 | 1.609 | −3.339 | 2.260 |
Vp | 0.5577 | 0.8279 | −0.1439 | 0.8981 |
TCD | −0.1623 | 1.344 | −0.3262 | 1.240 |
CM | 0.1310 | 0.6796 | −0.9261 | 1.168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gembicki, M.; Welp, A.; Scharf, J.L.; Dracopoulos, C.; Weichert, J. A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+TM and SonoCNSTM. J. Clin. Med. 2023, 12, 5334. https://doi.org/10.3390/jcm12165334
Gembicki M, Welp A, Scharf JL, Dracopoulos C, Weichert J. A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+TM and SonoCNSTM. Journal of Clinical Medicine. 2023; 12(16):5334. https://doi.org/10.3390/jcm12165334
Chicago/Turabian StyleGembicki, Michael, Amrei Welp, Jann Lennard Scharf, Christoph Dracopoulos, and Jan Weichert. 2023. "A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+TM and SonoCNSTM" Journal of Clinical Medicine 12, no. 16: 5334. https://doi.org/10.3390/jcm12165334
APA StyleGembicki, M., Welp, A., Scharf, J. L., Dracopoulos, C., & Weichert, J. (2023). A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+TM and SonoCNSTM. Journal of Clinical Medicine, 12(16), 5334. https://doi.org/10.3390/jcm12165334