ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Classification of the Degree of Atrophy
2.3. Genomic DNA Extraction from Peripheral Blood
2.4. Selection of Tag SNPs of the Candidate Genes
2.5. Polymorphism Analysis
2.5.1. PCR-Restriction Fragment Length Polymorphism Method
2.5.2. PCR-Direct DNA Sequencing Method
2.5.3. PCR-HRM Analysis with a Nonlabelled Probe
2.6. Statistical Analysis
3. Results
3.1. Comparison of Clinical Information
3.2. Analysis of the Correlation between SNPs in ATG5, ATG10, ATG12, and ATG16L1 and GMA
3.3. Biomarkers for Indicating GMA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrero, R.; Heise, K.; Acevedo, J.; Cook, P.; Gonzalez, C.; Gahona, J.; Cortés, R.; Collado, L.; Beltrán, M.E.; Cikutovic, M.; et al. Regional variations in Helicobacter pylori infection, gastric atrophy and gastric cancer risk: The ENIGMA study in Chile. PLoS ONE 2020, 15, e0237515. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.F. The Clinical Evidence Linking Helicobacter pylori to Gastric Cancer. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lahner, E.; Conti, L.; Annibale, B.; Corleto, V.D. Current Perspectives in Atrophic Gastritis. Curr. Gastroenterol. Rep. 2020, 22, 38. [Google Scholar] [CrossRef]
- Hatakeyama, M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 196–219. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Ooki, T.; Murata-Kamiya, N.; Komura, D.; Tahmina, K.; Wu, W.; Takahashi-Kanemitsu, A.; Knight, C.T.; Kunita, A.; Suzuki, N.; et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe 2021, 29, 941.e910–958.e910. [Google Scholar] [CrossRef]
- Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 2004, 4, 688–694. [Google Scholar] [CrossRef]
- Murata-Kamiya, N.; Hatakeyama, M. Helicobacter pylori-induced DNA double-stranded break in the development of gastric cancer. Cancer Sci. 2022, 113, 1909–1918. [Google Scholar] [CrossRef]
- Tsugawa, H.; Suzuki, H.; Saya, H.; Hatakeyama, M.; Hirayama, T.; Hirata, K.; Nagano, O.; Matsuzaki, J.; Hibi, T. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 2012, 12, 764–777. [Google Scholar] [CrossRef]
- Saadat, I.; Higashi, H.; Obuse, C.; Umeda, M.; Murata-Kamiya, N.; Saito, Y.; Lu, H.; Ohnishi, N.; Azuma, T.; Suzuki, A.; et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 2007, 447, 330–333. [Google Scholar] [CrossRef]
- Yamauchi, K.; Choi, I.J.; Lu, H.; Ogiwara, H.; Graham, D.Y.; Yamaoka, Y. Regulation of IL-18 in Helicobacter pylori infection. J. Immunol. 2008, 180, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, H.; Yoshitake, N.; Sasai, T.; Nakamura, T.; Masuyama, A.; Zuiki, T.; Kurashina, K.; Mieda, M.; Sunada, K.; Yamamoto, H.; et al. Relationship between the degree of endoscopic atrophy of the gastric mucosa and carcinogenic risk. Digestion 2015, 91, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Terebiznik, M.R.; Raju, D.; Vázquez, C.L.; Torbricki, K.; Kulkarni, R.; Blanke, S.R.; Yoshimori, T.; Colombo, M.I.; Jones, N.L. Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 2009, 5, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Takahashi-Kanemitsu, A.; Knight, C.T.; Hatakeyama, M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol. Immunol. 2020, 17, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Urabe, Y.; Kagemoto, K.; Yuge, R.; Hayashi, R.; Ono, A.; Hayes, C.N.; Oka, S.; Ito, M.; Nishisaka, T.; et al. Genomic Characterization of Non-Invasive Differentiated-Type Gastric Cancer in the Japanese Population. Cancers 2020, 12, 12020510. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yuan, Z.; Yuan, H.; Wang, L.; Ji, P.; Jin, G.; Dai, J.; Ma, H. ATG12 expression quantitative trait loci associated with head and neck squamous cell carcinoma risk in a Chinese Han population. Mol. Carcinog. 2018, 57, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Rehman, N.U.; Zeng, P.; Mo, Z.; Guo, S.; Liu, Y.; Huang, Y.; Xie, Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants 2021, 10, 10111736. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, K.; Cho, G.W. Autophagy: An evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem. Funct. 2019, 37, 452–458. [Google Scholar] [CrossRef]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef]
- Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Ouyang, L.; Liu, B.; Cheng, Y. Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Lett. 2016, 373, 19–26. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in major human diseases. Embo J. 2021, 40, e108863. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, B.; Pan, X.; Su, J. Prognostic Value of Autophagy-related Proteins in Human Gastric Cancer. Cancer Manag. Res. 2020, 12, 13527–13540. [Google Scholar] [CrossRef] [PubMed]
- White, E. The role for autophagy in cancer. J. Clin. Investig. 2015, 125, 42–46. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, C.; Wu, X.; Cai, Y.; Liu, B.; Wang, C. Genetic variants of autophagy-related genes in the PI3K/Akt/mTOR pathway and risk of gastric cancer in the Chinese population. Gene 2021, 769, 145190. [Google Scholar] [CrossRef]
- Vigen, R.A.; Kodama, Y.; Viset, T.; Fossmark, R.; Waldum, H.; Kidd, M.; Wang, T.C.; Modlin, I.M.; Chen, D.; Zhao, C.M. Immunohistochemical evidence for an impairment of autophagy in tumorigenesis of gastric carcinoids and adenocarcinomas in rodent models and patients. Histol. Histopathol. 2013, 28, 531–542. [Google Scholar] [CrossRef]
- An, C.H.; Kim, M.S.; Yoo, N.J.; Park, S.W.; Lee, S.H. Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers. Pathol. Res. Pract. 2011, 207, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Mommersteeg, M.C.; Simovic, I.; Yu, B.; van Nieuwenburg, S.A.V.; Bruno, I.M.J.; Doukas, M.; Kuipers, E.J.; Spaander, M.C.W.; Peppelenbosch, M.P.; Castaño-Rodríguez, N.; et al. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022, 14, 2015238. [Google Scholar] [CrossRef]
- Kang, M.R.; Kim, M.S.; Oh, J.E.; Kim, Y.R.; Song, S.Y.; Kim, S.S.; Ahn, C.H.; Yoo, N.J.; Lee, S.H. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J. Pathol. 2009, 217, 702–706. [Google Scholar] [CrossRef]
- Toyoshima, O.; Nishizawa, T.; Sakitani, K.; Yamakawa, T.; Takahashi, Y.; Yamamichi, N.; Hata, K.; Seto, Y.; Koike, K.; Watanabe, H.; et al. Serum anti-Helicobacter pylori antibody titer and its association with gastric nodularity, atrophy, and age: A cross-sectional study. World J. Gastroenterol. 2018, 24, 4061–4068. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Sakaguchi, T.; Isomoto, H.; Inamine, T.; Tsukamoto, R.; Fukuda, D.; Ohnita, K.; Kanda, T.; Matsushima, K.; Hirayama, T.; et al. Polymorphism in autophagy-related genes LRP1 and CAPZA1 may promote gastric mucosal atrophy. Genes Environ. 2023, 45, 18. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Jang, J.S. Clinical correlation between serum pepsinogen level and gastric atrophy in gastric neoplasm. Korean J. Intern. Med. 2020, 35, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Tang, B.; Jia, Y.P.; Zhu, P.; Zhuang, Y.; Fang, Y.; Li, Q.; Wang, K.; Zhang, W.J.; Guo, G.; et al. Helicobacter pylori CagA Protein Negatively Regulates Autophagy and Promotes Inflammatory Response via c-Met-PI3K/Akt-mTOR Signaling Pathway. Front. Cell Infect. Microbiol. 2017, 7, 417. [Google Scholar] [CrossRef]
- Brandt, S.; Kwok, T.; Hartig, R.; König, W.; Backert, S. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc. Natl. Acad. Sci. USA 2005, 102, 9300–9305. [Google Scholar] [CrossRef]
- Sugimoto, M.; Yamaoka, Y. Role of Vonoprazan in Helicobacter pylori Eradication Therapy in Japan. Front. Pharmacol. 2018, 9, 1560. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lv, Z.F.; Zhong, Y.; Liu, D.S.; Chen, S.P.; Xie, Y. The internalization of Helicobacter pylori plays a role in the failure of H. pylori eradication. Helicobacter 2017, 22, e12324. [Google Scholar] [CrossRef]
- Hafeez, M.; Qureshi, Z.A.; Khattak, A.L.; Saeed, F.; Asghar, A.; Azam, K.; Khan, M.A. Helicobacter pylori Eradication Therapy: Still a Challenge. Cureus 2021, 13, e14872. [Google Scholar] [CrossRef]
- Huang, H.; Tang, J.; Zhang, L.; Bu, Y.; Zhang, X. miR-874 regulates multiple-drug resistance in gastric cancer by targeting ATG16L1. Int. J. Oncol. 2018, 53, 2769–2779. [Google Scholar] [CrossRef]
- Ge, J.; Chen, Z.; Huang, J.; Chen, J.; Yuan, W.; Deng, Z.; Chen, Z. Upregulation of autophagy-related gene-5 (ATG-5) is associated with chemoresistance in human gastric cancer. PLoS ONE 2014, 9, e110293. [Google Scholar] [CrossRef]
- Tanaka, S.; Nagashima, H.; Uotani, T.; Graham, D.Y.; Yamaoka, Y. Autophagy-related genes in Helicobacter pylori infection. Helicobacter 2017, 22, e12376. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Lin, L. Functional variants of autophagy-related genes are associated with the development of hepatocellular carcinoma. Life Sci. 2019, 235, 116675. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.H.; Bai, X.J.; Han, L.L.; Yuan, Y.; Sun, X.F. Changes with aging in gastric biomarkers levels and in biochemical factors associated with Helicobacter pylori infection in asymptomatic Chinese population. World J. Gastroenterol. 2017, 23, 5945–5953. [Google Scholar] [CrossRef] [PubMed]
Characteristics | GMA | Non-GMA | p Value |
---|---|---|---|
Number of subjects | 94 | 106 | - |
Age, mean ± SD (years) | 59.2 ± 9.52 | 54.9 ± 10.93 | 0.002 |
Gender (male/female) | 37/57 | 50/56 | 0.266 |
Gene | SNP | Genotype | Number of | Genetic Model | OR (95% CI) | p Value * | Correction p Value ** | |
---|---|---|---|---|---|---|---|---|
GMA n = 94 (%) | non-GMA n = 106 (%) | |||||||
ATG16L1 | rs6431655 | A/A | 28 (29.8) | 48 (45.3) | Allele model | 1.903 (1.270–2.852) | 0.002 | – |
A/G | 41 (43.6) | 46 (43.4) | Dominant model | 1.951 (1.087–3.500) | 0.024 | 0.027 | ||
G/G | 25 (26.6) | 12 (11.3) | Recessive model | 2.838 (1.334–6.040) | 0.005 | 0.007 | ||
rs6431659 | A/A | 41 (43.6) | 58 (54.7) | Allele model | 1.700 (1.106–2.614) | 0.015 | – | |
A/G | 38 (40.4) | 43 (40.6) | Dominant model | 1.562 (0.893–2.732) | 0.117 | – | ||
G/G | 15 (16.0) | 5 (4.7) | Recessive model | 3.835 (1.337–11.005) | 0.008 | 0.014 | ||
rs6758317 | C/C | 64 (68.1) | 84 (79.2) | Allele model | 1.855 (1.061–3.245) | 0.029 | – | |
C/T | 24 (25.5) | 20 (18.9) | Dominant model | 1.790 (0.945–3.391) | 0.073 | – | ||
T/T | 6 (6.4) | 2 (1.9) | Recessive model | 3.546 (0.698–18.011) | 0.151 | – | ||
rs2241800 | T/T | 57 (67.9) | 72 (60.6) | Allele model | 1.364 (0.828–2.245) | 0.222 | – | |
T/C | 33 (35.1) | 32 (30.2) | Dominant model | 1.375 (0.769–2.458) | 0.283 | – | ||
C/C | 4 (4.3) | 2 (1.9) | Recessive model | 2.311 (0.414–12.916) | 0.423 | – | ||
rs7600743 | A/A | 73 (77.7) | 89 (84.0) | Allele model | 1.346 (0.704–2.574) | 0.367 | – | |
A/G | 20 (21.3) | 15 (14.2) | Dominant model | 1.506 (0.740–3.065) | 0.257 | – | ||
G/G | 1 (1.1) | 2 (1.9) | Recessive model | 0.559 (0.050–6.268) | 1.000 | – | ||
rs3792106 | A/A | 46 (48.9) | 66 (62.3) | Allele model | 1.454 (0.923–2.291) | 0.105 | – | |
A/G | 42 (44.7) | 34 (32.1) | Dominant model | 1.722 (0.980–3.026) | 0.058 | – | ||
G/G | 6 (6.4) | 6 (5.7) | Recessive model | 1.136 (0.354–3.652) | 0.830 | – | ||
rs7587051 | G/G | 26 (27.7) | 41 (38.7) | Allele model | 1.583 (1.063–2.358) | 0.023 | – | |
G/C | 43 (45.7) | 49 (46.2) | Dominant model | 1.650 (0.908–2.999) | 0.099 | – | ||
C/C | 25 (26.6) | 16 (15.1) | Recessive model | 2.038 (1.011–4.110) | 0.044 | 0.058 | ||
rs4663136 | C/C | 33 (35.1) | 55 (51.9) | Allele model | 1.796 (1.184–2.725) | 0.006 | – | |
C/G | 44 (46.8) | 42 (39.6) | Dominant model | 1.994 (1.128–3.524) | 0.017 | 0.018 | ||
G/G | 17 (18.1) | 9 (8.5) | Recessive model | 2.380 (1.005–5.632) | 0.044 | 0.067 | ||
ATG5 | rs3804338 | C/C | 71 (75.5) | 85 (80.2) | Allele model | 1.260 (0.689–2.305) | 0.452 | – |
C/T | 21 (22.3) | 19 (17.9) | Dominant model | 1.311 (0.671–2.563) | 0.428 | – | ||
T/T | 2 (2.1) | 2 (1.9) | Recessive model | 1.130 (0.156–8.187) | 1.000 | – | ||
rs573775 | C/C | 37 (39.4) | 39 (36.8) | Allele model | 1.292 (0.860–1.940) | 0.217 | – | |
C/T | 49 (52.1) | 48 (45.3) | Dominant model | 0.897 (0.506–1.589) | 0.709 | – | ||
T/T | 8 (8.5) | 19 (17.9) | Recessive model | 0.426 (0.177–1.025) | 0.052 | – | ||
rs538557 | T/T | 51 (54.3) | 58 (54.7) | Allele model | 1.190 (0.716–1.863) | 0.446 | – | |
T/C | 40 (42.6) | 37 (34.9) | Dominant model | 1.019 (0.583–1.779) | 0.948 | – | ||
C/C | 3 (3.2) | 11 (10.4) | Recessive model | 0.285 (0.077–1.054) | 0.047 | – | ||
rs2245214 | C/C | 23 (24.5) | 31 (29.2) | Allele model | 1.104 (0.746–1.636) | 0.621 | – | |
C/G | 46 (48.9) | 47 (44.3) | Dominant model | 1.276 (0.680–2.395) | 0.448 | – | ||
G/G | 25 (26.6) | 28 (26.4) | Recessive model | 1.009 (0.538–1.893) | 0.977 | – | ||
rs698029 | G/G | 32 (34.0) | 41 (38.7) | Allele model | 1.062 (0.713–1.582) | 0.768 | – | |
G/A | 45 (47.9) | 44 (41.5) | Dominant model | 1.222 (0.685 –2.180) | 0.497 | – | ||
A/A | 17 (18.1) | 21 (19.8) | Recessive model | 0.894 (0.439–1.818) | 0.756 | – | ||
rs1885450 | T/T | 66 (70.2) | 74 (69.8) | Allele model | 0.904 (0.537–1.523) | 0.705 | – | |
T/C | 25 (26.6) | 26 (24.5) | Dominant model | 0.981 (0.535–1.799) | 0.951 | – | ||
C/C | 3 (3.2) | 6 (5.7) | Recessive model | 0.550 (0.134–2.261) | 0.505 | – | ||
rs10088 | T/T | 53 (56.4) | 58 (54.7) | Allele model | 1.262 (0.803–1.983) | 0.312 | – | |
T/C | 38 (40.4) | 37 (34.9) | Dominant model | 0.935 (0.535–1.635) | 0.813 | – | ||
C/C | 3 (3.2) | 11 (10.4) | Recessive model | 0.285 (0.077–1.054) | 0.047 | – | ||
ATG12 | rs26537 | T/T | 38 (40.4) | 40 (37.7) | Allele model | 0.765 (0.507–1.153) | 0.200 | – |
T/C | 50 (53.2) | 49 (46.2) | Dominant model | 0.893 (0.506–1.578) | 0.697 | – | ||
C/C | 6 (6.4) | 17 (16.0) | Recessive model | 0.357 (0.135–0.948) | 0.033 | 0.012 | ||
rs26532 | A/A | 29 (30.9) | 38 (35.8) | Allele model | 1.358 (0.909–2.028) | 0.134 | – | |
A/C | 47 (50.0) | 58 (54.7) | Dominant model | 1.253 (0.694–2.262) | 0.455 | – | ||
C/C | 18 (19.1) | 10 (9.4) | Recessive model | 2.274 (0.992–5.212) | 0.048 | – | ||
ATG10 | rs13153317 | A/A | 37 (39.4) | 52 (49.1) | Allele model | 1.343 (0.889–2.030) | 0.161 | – |
A/C | 42 (44.7) | 41 (38.7) | Dominant model | 1.484 (0.845–2.603) | 0.169 | – | ||
C/C | 15 (16.0) | 13 (12.3) | Recessive model | 1.358 (0.610–3.026) | 0.453 | – | ||
rs3734114 | T/T | 74 (78.7) | 87 (82.1) | Allele model | 1.144 (0.603–2.168) | 0.681 | – | |
T/C | 19 (20.2) | 17 (16.0) | Dominant model | 1.238 (0.614–2.493) | 0.550 | – | ||
C/C | 1 (1.1) | 2 (1.9) | Recessive model | 0.559 (0.050–6.268) | 1.000 | – | ||
rs1835112 | T/T | 39 (41.5) | 36 (34.0) | Allele model | 0.861 (0.577–1.284) | 0.462 | – | |
T/G | 37 (39.4) | 50 (47.2) | Dominant model | 0.725 (0.408–1.288) | 0.273 | – | ||
G/G | 18 (19.1) | 20 (18.9) | Recessive model | 1.018 (0.502–2.067) | 0.960 | – | ||
rs4703535 | A/A | 71 (75.5) | 83 (78.3) | Allele model | 1.047 (0.579–1.895) | 0.880 | – | |
A/T | 22 (23.4) | 20 (18.9) | Dominant model | 1.169 (0.605–2.260) | 0.642 | – | ||
T/T | 1 (1.1) | 3 (2.8) | Recessive model | 0.369 (0.038–3.611) | 0.624 | – | ||
rs1109524 | T/T | 30 (31.9) | 29 (27.4) | Allele model | 0.782 (0.527–1.159) | 0.220 | – | |
T/C | 42 (44.7) | 44 (41.5) | Dominant model | 0.804 (0.437–1.477) | 0.481 | – | ||
C/C | 22 (23.4) | 33 (31.3) | Recessive model | 0.676 (0.360–1.269) | 0.222 | – | ||
rs4703871 | C/C | 72 (76.6) | 85 (80.2) | Allele model | 1.092 (0.594–2.008) | 0.777 | – | |
C/T | 21 (22.3) | 18 (17.0) | Dominant model | 1.237 (0.630–2.430) | 0.537 | – | ||
T/T | 1 (1.1) | 3 (2.8) | Recessive model | 0.369 (0.038–3.611) | 0.624 | – | ||
rs17245874 | C/C | 38 (40.4) | 29 (27.4) | Allele model | 0.762 (0.513–1.133) | 0.179 | – | |
C/T | 35 (37.2) | 53 (50.0) | Dominant model | 0.555 (0.307–1.005) | 0.051 | – | ||
T/T | 21 (22.3) | 24 (22.6) | Recessive model | 0.983 (0.505–1.912) | 0.959 | – |
Factor | OR (95% CI) | p Value * |
---|---|---|
G/G genotype of rs6431659 in ATG16L1 | 3.579 (1.216–10.532) | 0.021 |
T/T or T/C genotype of rs26537 in ATG12 | 3.466 (1.244–9.659) | 0.017 |
Age (≥58) | 2.570 (1.414–4.672) | 0.002 |
Biomarker | ATG16L1 | ATG12 | Statistical Results | Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|---|---|---|---|
rs6431659 | rs26537 | OR (95% CI) | p Value * | |||||
marker1 | G/G | - | 3.835 (1.336–11.01) | 0.008 | 16.0 | 95.3 | 75.0 | 56.1 |
marker2 | - | T/T or T/C | 2.801 (1.055–7.438) | 0.033 | 93.6 | 16.0 | 49.7 | 73.9 |
marker2 | G/G | T/T or T/C | 3.535 (1.221–10.23) | 0.014 | 14.9 | 95.3 | 73.7 | 55.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, N.; Sakaguchi, T.; Isomoto, H.; Inamine, T.; Ueda, H.; Fukuda, D.; Ohnita, K.; Kanda, T.; Kurumi, H.; Matsushima, K.; et al. ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. J. Clin. Med. 2023, 12, 5384. https://doi.org/10.3390/jcm12165384
Yamaguchi N, Sakaguchi T, Isomoto H, Inamine T, Ueda H, Fukuda D, Ohnita K, Kanda T, Kurumi H, Matsushima K, et al. ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. Journal of Clinical Medicine. 2023; 12(16):5384. https://doi.org/10.3390/jcm12165384
Chicago/Turabian StyleYamaguchi, Naoyuki, Takuki Sakaguchi, Hajime Isomoto, Tatsuo Inamine, Haruka Ueda, Daisuke Fukuda, Ken Ohnita, Tsutomu Kanda, Hiroki Kurumi, Kayoko Matsushima, and et al. 2023. "ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis" Journal of Clinical Medicine 12, no. 16: 5384. https://doi.org/10.3390/jcm12165384
APA StyleYamaguchi, N., Sakaguchi, T., Isomoto, H., Inamine, T., Ueda, H., Fukuda, D., Ohnita, K., Kanda, T., Kurumi, H., Matsushima, K., Hirayama, T., Yashima, K., & Tsukamoto, K. (2023). ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. Journal of Clinical Medicine, 12(16), 5384. https://doi.org/10.3390/jcm12165384