The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Assessment
2.3. Ultrasound Imaging of Joints and Entheses
- Semi-quantitative grey scale (GS) for grading synovial hypertrophy (0–3) in each joint:
- Grade 0: normal joint with no synovial hypertrophy;
- Grade 1: synovial hypertrophy up to the level of the horizontal line connecting the bone surfaces of an examined joint;
- Grade 2: synovial hypertrophy extending beyond the joint line but with the upper surface flat to the underlying bones;
- Grade 3: synovial hypertrophy extending beyond the joint line but with the upper surface convex to the underlying bones;
- Power Doppler ultrasound (PDUS) semi-quantitative scale (0–3) in each joint:
- Grade 0: no Doppler activity;
- Grade 1: up to three single Doppler spots, or up to one confluent spot and two single spots, or up to two confluent spots;
- Grade 2: greater than grade 1 but <50% Doppler signals in the total GS background;
- Grade 3: greater than grade 2 and >50% Doppler signals of the GS background [38].
2.4. Statistical Analysis
3. Results
3.1. Characteristics of This Study’s Group
3.2. Differences between Patients with axSpA and pSpA
3.3. The SII and SIRI Values in Defined Groups of Patients with SpA
3.4. The NLR, PLR, and LMR Values in Defined Groups of Patients with SpA
3.5. Relationships between SII, SIRI, NLR, PLR, LMR, Disease Activity Markers, and US Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coletto, L.A.; Rizzo, C.; Guggino, G.; Caporali, R.; Alivernini, S.; D’Agostino, M.A. The Role of Neutrophils in Spondyloarthritis: A Journey across the Spectrum of Disease Manifestations. Int. J. Mol. Sci. 2023, 24, 4108. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ramos, S.; Rafael-Vidal, C.; Pego-Reigosa, J.M.; García, S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022, 11, 515. [Google Scholar] [CrossRef] [PubMed]
- Stavre, Z.; Bridgewood, C.; Zhou, Q.; Maeda, Y.; Huang, T.T.; Karman, J.; Khan, A.; Giryes, S.; Sharif, K.; McGonagle, D.; et al. A role for neutrophils in early enthesitis in spondyloarthritis. Arthritis Res. Ther. 2022, 24, 24. [Google Scholar] [CrossRef]
- Salaffi, F.; Siragusano, C.; Alciati, A.; Cassone, G.; D’Angelo, S.; Guiducci, S.; Favalli, E.G.; Conti, F.; Gremese, E.; Iannone, F.; et al. Axial Spondyloarthritis: Reshape the Future-From the “2022 GISEA International Symposium”. J. Clin. Med. 2022, 11, 7537. [Google Scholar] [CrossRef]
- Carron, P.; De Craemer, A.S.; Van den Bosch, F. Peripheral spondyloarthritis: A neglected entity-state of the art. RMD Open 2020, 6, e001136. [Google Scholar] [CrossRef]
- Seng, J.J.B.; Kwan, Y.H.; Low, L.L.; Thumboo, J.; Fong, W.S.W. Role of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and mean platelet volume (MPV) in assessing disease control in Asian patients with axial spondyloarthritis. Biomarkers 2018, 23, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Gökmen, F.; Akbal, A.; Reşorlu, H.; Gökmen, E.; Güven, M.; Aras, A.B.; Erbağ, G.; Kömürcü, E.; Akbal, E.; Coşar, M. Neutrophil-Lymphocyte Ratio Connected to Treatment Options and Inflammation Markers of Ankylosing Spondylitis. J. Clin. Lab. Anal. 2015, 29, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Erkol Inal, E.; Sunar, I.; Saratas, S.; Ergoglu, P.; Inal, S.; Yener, M. May Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios Indicate Disease Activity in Ankylosing Spondylitis? Arch. Rheumatol. 2015, 30, 130–137. [Google Scholar] [CrossRef]
- Al-Osami, M.H.; Awadh, N.I.; Khalid, K.B.; Awadh, A.I. Neutrophil/lymphocyte and platelet/lymphocyte ratios as potential markers of disease activity in patients with Ankylosing spondylitis: A case-control study. Adv. Rheumatol. 2020, 60, 13. [Google Scholar] [CrossRef]
- Zhuang, J.; Huang, Y.; Liang, G. Clinical significance of the monocyte:lymphocyte ratio for ankylosing spondylitis patients with thoracolumbar kyphotic deformities. J. Int. Med. Res. 2020, 48, 300060519893167. [Google Scholar] [CrossRef]
- Wang, J.; Su, J.; Yuan, Y.; Jin, X.; Shen, B.; Lu, G. The role of lymphocyte-monocyte ratio on axial spondyloarthritis diagnosis and sacroiliitis staging. BMC Musculoskelet. Disord. 2021, 22, 86. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Kim, A.; Song, B.W.; Kim, Y.K.; Kim, G.T.; Ahn, E.Y.; So, M.W.; Lee, S.G. High Baseline Neutrophil-to-Lymphocyte Ratio Could Serve as a Biomarker for Tumor Necrosis Factor-Alpha Blockers and Their Discontinuation in Patients with Ankylosing Spondylitis. Pharmaceuticals 2023, 16, 379. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, W.; Zheng, S.; Feng, F.; Huang, Z.; Huang, Q.; Guo, X.; Huang, Z.; Huang, X.; Pan, X.; et al. Relationship between monocytes to lymphocytes ratio and axial spondyloarthritis. Int. Immunopharmacol. 2018, 57, 43–46. [Google Scholar] [CrossRef]
- Walzik, D.; Joisten, N.; Zacher, J.; Zimmer, P. Transferring clinically established immune inflammation markers into exercise physiology: Focus on neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and systemic immune-inflammation index. Eur. J. Appl. Physiol. 2021, 121, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Targońska-Stępniak, B.; Zwolak, R.; Piotrowski, M.; Grzechnik, K.; Majdan, M. The Relationship between Hematological Markers of Systemic Inflammation (Neutrophil-To-Lymphocyte, Platelet-To-Lymphocyte, Lymphocyte-To-Monocyte Ratios) and Ultrasound Disease Activity Parameters in Patients with Rheumatoid Arthritis. J. Clin. Med. 2020, 9, 2760. [Google Scholar] [CrossRef]
- Satis, S. New Inflammatory Marker Associated with Disease Activity in Rheumatoid Arthritis: The Systemic Immune-Inflammation Index. Curr. Health Sci. J. 2021, 47, 553–557. [Google Scholar]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef]
- Aziz, M.H.; Sideras, K.; Aziz, N.A.; Mauff, K.; Haen, R.; Roos, D.; Saida, L.; Suker, M.; van der Harst, E.; Mieog, J.S.; et al. The Systemic-immune-inflammation Index Independently Predicts Survival and Recurrence in Resectable Pancreatic Cancer and its Prognostic Value Depends on Bilirubin Levels: A Retrospective Multicenter Cohort Study. Ann. Surg. 2019, 270, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, C.; Wu, L.; Li, Z.; Li, H.; Zhang, J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J. Clin. Med. 2023, 12, 1128. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, J.; Li, Y.Y.; Li, K.P.; Zhang, Q. The association between systemic immune-inflammation index and rheumatoid arthritis: Evidence from NHANES 1999–2018. Arthritis Res. Ther. 2023, 25, 34. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, H.; Jung, S.M.; Song, J.J.; Park, Y.B.; Lee, S.W. Systemic immune-inflammation index could estimate the cross-sectional high activity and the poor outcomes in immunosuppressive drug-naïve patients with antineutrophil cytoplasmic antibody-associated vasculitis. Nephrology 2019, 24, 711–717. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Hayran, Y.; Akpinar, U.; Yalcin, B. Systemic Immune-Inflammation Index (SII) Predicts Increased Severity in Psoriasis and Psoriatic Arthritis. Curr. Health Sci. J. 2020, 46, 352–357. [Google Scholar]
- Kelesoglu Dincer, A.B.; Sezer, S. Systemic Immune Inflammation Index as a Reliable Disease Activity Marker in Psoriatic Arthritis. J. Coll. Physicians Surg. Pak. 2022, 32, 773–778. [Google Scholar] [PubMed]
- Wu, J.; Yan, L.; Chai, K. Systemic immune-inflammation index is associated with disease activity in patients with ankylosing spondylitis. J. Clin. Lab. Anal. 2021, 35, e23964. [Google Scholar] [CrossRef] [PubMed]
- Şan, H.; Şan, A.U. Correlation Between Diagnostic Imaging Findings of Sacroiliitis and Inflammation Parameters. Akt. Rheumatol. 2022, 47, 61–68. [Google Scholar] [CrossRef]
- Zhou, Q.; Su, S.; You, W.; Wang, T.; Ren, T.; Zhu, L. Systemic Inflammation Response Index as a Prognostic Marker in Cancer Patients: A Systematic Review and Meta-Analysis of 38 Cohorts. Dose Response 2021, 19, 15593258211064744. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, S.; Wang, Q.; Deng, C.; Feng, Y.; Ma, F.; Ma, J.A.; Liu, X.; Hu, C.; Hou, T. Systemic Inflammation Response Index (SIRI) Independently Predicts Survival in Advanced Lung Adenocarcinoma Patients Treated with First-Generation EGFR-TKIs. Cancer Manag. Res. 2021, 13, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.B.; Fan, F.H.; Cai, M.Q.; Yu, Y.; Fu, C.L.; Ding, L.Y.; Sun, Y.D.; Sun, J.W.; Shi, Y.W.; Dong, Z.F.; et al. Systemic immune inflammation index and system inflammation response index are potential biomarkers of atrial fibrillation among the patients presenting with ischemic stroke. Eur. J. Med. Res. 2022, 27, 106. [Google Scholar] [CrossRef]
- Mandl, P.; Navarro-Compán, V.; Terslev, L.; Aegerter, P.; Van Der Heijde, D.; D’Agostino, M.A.; Baraliakos, X.; Pedersen, S.J.; Jurik, A.G.; Naredo, E.; et al. EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 2015, 74, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, S.; Valkenburg, H.A.; Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984, 27, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Gladman, D.; Helliwell, P.; Marchesoni, A.; Mease, P.; Mielants, H.; CASPAR Study Group. Classification criteria for psoriatic arthritis: Development of new criteria from a large international study. Arthritis Rheum. 2006, 54, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Garrett, S.; Jenkinson, T.; Kennedy, L.G.; Whitelock, H.; Gaisford, P.; Calin, A. A new approach to defining disease status in ankylosing spondylitis: The Bath Ankylosing Spondylitis Disease Activity Index. J. Rheumatol. 1994, 21, 2286–2291. [Google Scholar] [PubMed]
- Calin, A.; Garrett, S.; Whitelock, H.; Kennedy, L.G.; O’hea, J.; Mallorie, P.; Jenkinson, T. A new approach to defining functional ability in ankylosing spondylitis: The development of the Bath Ankylosing Spondylitis Functional Index. J. Rheumatol. 1994, 21, 2281–2285. [Google Scholar] [PubMed]
- Schoels, M.; Aletaha, D.; Funovits, J.; Kavanaugh, A.; Baker, D.; Smolen, J.S. Application of the DAREA/DAPSA score for assessment of disease activity in psoriatic arthritis. Ann. Rheum. Dis. 2010, 69, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Pincus, T.; Sokka, T.; Kautiainen, H. Further development of a physical function scale on a MDHAQ [corrected] for standard care of patients with rheumatic diseases. J. Rheumatol. 2005, 32, 1432–1439. [Google Scholar] [PubMed]
- Backhaus, M.; Burmester, G.R.; Gerber, T.; Grassi, W.; Machold, K.P.; Swen, W.A.; Wakefield, R.J.; Manger, B. Guidelines for musculoskeletal ultrasound in rheumatology. Ann. Rheum. Dis. 2001, 60, 641–649. [Google Scholar] [CrossRef]
- Iagnocco, A.; Finucci, A.; Ceccarelli, F.; Perricone, C.; Iorgoveanu, V.; Valesini, G. Power Doppler ultrasound monitoring of response to anti-tumour necrosis factor alpha treatment in patient with rheumatoid arthritis. Rheumatology 2015, 54, 1890–1896. [Google Scholar] [CrossRef]
- Terslev, L.; Naredo, E.; Iagnocco, A.; Balint, P.V.; Wakefield, R.J.; Aegerter, P.; Aydin, S.Z.; Bachta, A.; Hammer, H.B.; Bruyn, G.A.W.; et al. Outcome Measures in Rheumatology Ultrasound Task Force. Defining enthesitis in spondyloarthritis by ultrasound: Results of a Delphi process and of a reliability reading exercise. Arthritis Care Res. 2014, 66, 741–748. [Google Scholar] [CrossRef]
- Zacher, J.; Wesemann, F.; Joisten, N.; Walzik, D.; Bloch, W.; Predel, G. Cellular Integrative Immune Markers in Elite Athletes. Int. J. Sports Med. 2023, 44, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Kohsari, M.; Moradinazar, M.; Rahimi, Z.; Najafi, F.; Pasdar, Y.; Shakiba, E. New inflammatory biomarkers (lymphocyte and monocyte percentage to high-density lipoprotein cholesterol ratio and lymphocyte to monocyte percentage ratio) and their association with some cardiometabolic diseases. Wien. Klin. Wochenschr. 2022, 134, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Cirakoglu, O.F.; Yilmaz, A.S. Systemic immune-inflammation index is associated with increased carotid intima-media thickness in hypertensive patients. Clin. Exp. Hypertens. 2021, 43, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Jiang, W.; Chen, X.; Yang, L.; Wang, H.; Liu, Y.H. Systemic immune-inflammation index independently predicts poor survival of older adults with hip fracture: A prospective cohort study. BMC Geriatr. 2021, 21, 155. [Google Scholar] [CrossRef] [PubMed]
- Fest, J.; Ruiter, R.; Ikram, M.A.; Voortman, T.; van Erick, C.H.J.; Stricker, B.H. Reference values for white blood-cell-based inflammatory markers in the Rotterdam Study: A population-based prospective cohort study. Sci. Rep. 2018, 8, 10566. [Google Scholar] [CrossRef] [PubMed]
- Filippucci, E.; Smerilli, G.; Di Matteo, A.; Grassi, W. Ultrasound definition of enthesitis in spondyloarthritis and psoriatic arthritis: Arrival or starting point? Ann. Rheum. Dis. 2021, 80, 1373–1375. [Google Scholar] [CrossRef]
Data | Results (n = 100) |
---|---|
Age, years | 42.3 (±11.4) |
Gender, female/male (n,%) | 38 (38.0)/64 (64.0) |
Disease duration, years | 8.0 (3–16) |
Disease duration ≥ 10 years (n,%) | 42 (42.0) |
AS patients PsA patients | 51 (51.0) 49 (49.0) |
Patients with axSpA Patients with pSpA | 62 (62.0) 38 (38.0) |
HLA-B27 (+) SpA patients (n,%) HLA-B27 (+) AS patients (n,%) HLA-B27 (+) PsA patients (n,%) | 74 (74.0) 48 (94.1) 26 (53.1) |
Positive RF-IgM (n,%) | 7 (7.0) |
Extra-articular manifestations (n,%) | 32 (32.0) |
BMI, kg/m2 | 26.6 (24.6–29.8) |
Regular physical activity (n,%) | 36 (64.0) |
Arterial hypertension (n,%) | 44 (44.0) |
Family history of cardiovascular diseases (n,%) | 43 (43.0) |
Diabetes (n,%) | 2 (2.0) |
Current NSAID used (n,%) | 93 (93.0) |
Current synthetic DMARD used (n,%) | 61 (61%) |
Current biological DMARD used (n,%) | 46 (46.0) |
Current low dose GC use (n,%) | 16 (16.0) |
Data | Results |
---|---|
Laboratory results (n = 100) | |
CRP, mg/L | 10.7 (1.6–22.4) |
ESR, mm/h | 20.5 (7–38) |
Hemoglobin, g/dL | 13.8 (±1.6) |
WBC, 109/L | 7.0 (±2.6) |
PLT, 109/L | 282.7 (±84.9) |
Neutrophils, 109/L | 4.8 (±2.0) |
Lymphocytes, 109/L | 1.8 (±0.5) |
Monocytes, 109/L | 0.4 (±0.2) |
NLR | 2.7 (1.9–3.8) |
PLR | 153.1 (119.1–205.5) |
LMR | 4.2 (3.2–5.3) |
SII | 648.2 (469.0–1148.1) |
SIRI | 1.1 (0.7–1.7) |
M-HAQ | 1.1 (±0.8) |
Clinical parameters of axSpA activity (n = 62) | |
VAS back pain (mm) | 48.6 (±26.8) |
BASDAI | 4.6 (±2.4) |
BASFI | 4.1 (±2.3) |
High disease activity (BASDAI > 4) (n,%) | 37 (59.7) |
US parameters of axSpA | |
Active enthesitis (n,%) | 20 (32.3) |
Chronic enthesitis (n,%) | 15 (24.2) |
No signs of enthesitis (n,%) | 27 (43.5) |
Clinical parameters of pSpA activity (n = 38) | |
TJC (68 examined) | 9.8 (±8.3) |
SJC (66 examined) | 4.6 (±3.9) |
PGA (VAS), mm | 47.8 (±23.4) |
Patient pain (VAS), mm | 36.8 (±17.3) |
DAPSA | 24.9 (±14.6) |
Remission/Low Disease Activity (DAPSA ≤ 14) (n,%) | 13 (34.2) |
Morning stiffness, minutes | 75.2 (±70.3) |
US parameters of pSpA | |
GSUS score (hypertrophy) | 3 (2–10) |
PDUS score | 0 (0–2) |
Global score | 5 (2–12) |
Global score = 0 (n,%) | 5 (13.2) |
Parameters | SII | p-Value | SIRI | p-Value |
---|---|---|---|---|
BASDAI ≤ 4 BASDAI > 4 | 488.6 (304.8–717.8) 938.3 (607.7–1214.1) | <0.001 | 0.8 (0.5–1.1) 1.4 (0.9–2.3) | <0.001 |
DAPSA ≤ 14 DAPSA > 14 | 529.9 (308.3–718.5) 713.8 (537.9–1214.1) | 0.02 | NS | |
Disease duration < 10 years ≥10 years | 580.1 (450.1–918.7) 866.6 (537.9–1260.9) | 0.04 | NS | |
No current GC treatment Current GC treatment | 597.2 (450.3–1036.5) 1196.9 (904.8–1652.6) | 0..02 | 1.0 (0.6–1.5) 1.9 (0.9–2.9) | 0.03 |
Parameters | NLR | p-Value | PLR | p-Value | LMR | p-Value |
---|---|---|---|---|---|---|
BASDAI ≤ 4 BASDAI > 4 | 1.9 (1.3–2.9) 3.2 (2.6–3.9) | <0.001 | 146.6 (108.4–165.4) 166.2 (136.3–251.3) | 0.03 | 5.3 (3.8–4.9) 3.3 (2.8–4.5) | <0.001 |
Physical activity regular No regular activity | NS | NS | 4.8 (3.4–5.5) 3.9 (3.0–5.0) | 0.04 | ||
No current GC treatment Current GC treatment | 2.6 (1.8–3.4) 3.7 (2.8–5.0) | 0.01 | NS | NS |
Data/p-Value/R | SII | SIRI | NLR | PLR | LMR |
---|---|---|---|---|---|
BASDAI | <0.001 | <0.001 | 0.002 | 0.01 | <0.001 |
0.4 | 0.39 | 0.37 | 0.3 | −0.43 | |
BASFI | 0.001 | <0.001 | 0.009 | NS | <0.001 |
0.4 | 0.45 | 0.33 | −0.47 | ||
VAS back pain | <0.001 | <0.001 | 0.002 | 0.01 | <0.001 |
0.41 | 0.4 | 0.37 | 0.3 | −0.41 | |
DAPSA | 0.009 | NS | NS | NS | NS |
0.43 | |||||
M-HAQ | 0.007 | 0.004 | NS | NS | 0.008 |
0.27 | 0.28 | −0.27 | |||
CRP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0.6 | 0.61 | 0.5 | 0.35 | −0.51 | |
ESR | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0.43 | 0.41 | 0.37 | 0.38 | −0.33 | |
GSUS score | 0.01 | NS | NS | NS | NS |
0.44 | |||||
Global score | 0.02 | NS | NS | NS | NS |
0.41 |
Data (R2)/ p/b Value | SII | SIRI | NLR | PLR | LMR |
---|---|---|---|---|---|
BASFI (0.21) | NS | 0.02 | NS | NS | NS |
0.47 | |||||
M-HAQ (0.06) | NS | 0.04 | NS | NS | NS |
0.32 | |||||
CRP (0.34) | NS | <0.001 | NS | 0.008 | NS |
0.69 | 0.4 | ||||
ESR (0.32) | NS | NS | NS | 0.02 | NS |
0.35 | |||||
GSUS score (0.19) | 0.009 | NS | NS | NS | NS |
0.46 | |||||
Global score (0.17) | 0.01 | NS | NS | NS | NS |
0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Targońska-Stępniak, B.; Grzechnik, K. The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis. J. Clin. Med. 2023, 12, 5463. https://doi.org/10.3390/jcm12175463
Targońska-Stępniak B, Grzechnik K. The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis. Journal of Clinical Medicine. 2023; 12(17):5463. https://doi.org/10.3390/jcm12175463
Chicago/Turabian StyleTargońska-Stępniak, Bożena, and Krzysztof Grzechnik. 2023. "The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis" Journal of Clinical Medicine 12, no. 17: 5463. https://doi.org/10.3390/jcm12175463
APA StyleTargońska-Stępniak, B., & Grzechnik, K. (2023). The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis. Journal of Clinical Medicine, 12(17), 5463. https://doi.org/10.3390/jcm12175463