The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review
Abstract
:1. Introduction
2. Role of Interleukins in Wound Healing
- a.
- IL-2 and tissue healing role.
- b.
- Role of IL-6 in tissue healing.
3. Role of CD31
4. Role of CD34
5. Role of Platelet Rich Plasma (PRP)
6. Role of Adipose Tissue-Derived Mesenchymal Stem Cells (ADSCs)
7. Interactions between IL-2, IL-6, CD31, and CD34 with PRP and/or ADSCs in Use with Absorbable Meshes
8. Recent Advances and Challenges
9. Conclusions
- Immune cells, growth factors, and extracellular matrix components are central to the wound-healing process. Immune cells help clear debris and pathogens, while growth factors stimulate cell division and tissue regrowth. Extracellular matrix components provide the structural framework for new tissue formation.
- The involvement of cytoskeletal elements and proteins like the ‘Formin’ family shed light on the intricate cellular mechanisms driving wound healing. These mechanisms contribute to cell migration, proliferation, and tissue reorganization during the healing process.
- Incorporating absorbable meshes into wound repair strategies presents a promising avenue for enhancing healing outcomes. These meshes act as scaffolds that support the regeneration of tissue. They facilitate interactions with growth factors, cytokines, and various cellular components, such as interleukins, CD31, CD34, platelet-rich plasma (PRP), and adipose-derived stem cells (ADSCs). These interactions have the potential to expedite and optimize the healing process.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Komi, D.E.A.; Khomtchouk, K.; Maria, P.L.S. A Review of the Contribution of MasT-cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.J.; Hofma, B.R.; Cowin, A.J. Pathophysiology of Wound Healing. In Mechanisms of Vascular Disease; Springer: Berlin/Heidelberg, Germany, 2020; pp. 541–561. [Google Scholar]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Kiwanuka, E.; Junker, J.; Eriksson, E. Harnessing growth factors to influence wound healing. Clin. Plast. Surg. 2012, 39, 239–248. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.M.; Omar, E.; Pai, D.R.; Sood, S. Cellular events and biomarkers of wound healing. Indian J. Plast. Surg. 2012, 45, 220–228. [Google Scholar]
- Patel, S.; Maheshwari, A.; Chandra, A. Biomarkers for wound healing and their evaluation. J. Wound Care 2016, 25, 46–55. [Google Scholar] [CrossRef]
- Ahangar, P.; Strudwick, X.L.; Cowin, A.J. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb. Perspect. Biol. 2022, 14, a041235. [Google Scholar] [CrossRef]
- Pegoraro, A.F.; Janmey, P.; Weitz, D.A. Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harb. Perspect. Biol. 2017, 9, a022038. [Google Scholar] [CrossRef]
- Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492. [Google Scholar] [CrossRef]
- Strudwick, X.L.; Cowin, A.J. Cytoskeletal Regulation of Dermal Regeneration. Cells 2012, 1, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Pollard, T.D. Actin and Actin-Binding Proteins. Cold Spring Harb. Perspect. Biol. 2016, 8, a018226. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nature 2022, 18, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Baylón, K.; Rodríguez-Camarillo, P.; Elías-Zúñiga, A.; Díaz-Elizondo, J.A.; Gilkerson, R.; Lozano, K. Past, present and future of surgical meshes: A review. Membranes 2017, 7, 47. [Google Scholar] [CrossRef]
- Öberg, S.; Andresen, K.; Rosenberg, J. Absorbable Meshes in Inguinal Hernia Surgery: A Systematic Review and Meta-Analysis. Surg. Innov. 2017, 24, 289–298. [Google Scholar] [CrossRef]
- Renard, Y.; de Mestier, L.; Henriques, J.; de Boissieu, P.; de Mestier, P.; Fingerhut, A.; Palot, J.P.; Kianmanesh, R. Absorbable Polyglactin vs. Non-Cross-linked Porcine Biological Mesh for the Surgical Treatment of Infected Incisional Hernia. J. Gastrointest. Surg. 2020, 24, 435–443. [Google Scholar] [CrossRef]
- Stoikes, N.F.N.; Scott, J.R.; Badhwar, A.; Deeken, C.R.; Voeller, G.R. Characterization of host response, resorption, and strength properties, and performance in the presence of bacteria for fully absorbable biomaterials for soft tissue repair. Hernia 2017, 21, 771–782. [Google Scholar] [CrossRef]
- Mlodinow, A.S.; Yerneni, K.; Hasse, M.E.; Cruikshank, T.; Kuzycz, M.J.; Ellis, M.F. Evaluation of a Novel Absorbable Mesh in a Porcine Model of Abdominal Wall Repair. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3529. [Google Scholar] [CrossRef]
- Klinge, U.; Schumpelick, V.; Klosterhalfen, B. Functional assessment and tissue response of short-and long-term absorbable surgical meshes. Biomaterials 2001, 22, 1415–1424. [Google Scholar] [CrossRef]
- Hjort, H.; Mathisen, T.; Alves, A.; Clermont, G.; Boutrand, J.P. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics. Hernia 2012, 16, 191–197. [Google Scholar] [CrossRef]
- Ruiz-Jasbon, F.; Norrby, J.; Ivarsson, M.-L.; Björck, S. Inguinal hernia repair using a synthetic long-term resorbable mesh: Results from a 3-year prospective safety and performance study. Hernia 2014, 18, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Miserez, M.; Jairam, A.P.; Boersema, G.S.A.; Bayon, Y.; Jeekel, J.; Lange, J.F. Resorbable Synthetic Meshes for Abdominal Wall Defects in Preclinical Setting: A Literature Review. J. Sur. Res. 2019, 237, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Charleux-Muller, D.; Hurel, R.; Fabacher, T.; Brigand, C.; Rohr, S.; Manfredelli, S.; Passot, G.; Ortega-Deballon, P.; Dubuisson, V.; Renard, Y.; et al. Slowly absorbable mesh in contaminated incisional hernia repair: Results of a French multicenter study. Hernia 2021, 25, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Valverde, S.; Arbós, M.A.; Quiles, M.T.; Espín, E.; Sánchez-Garcia, J.L.; Rodrigues, V.; Pereira, J.A.; Villalobos, R.; García-Alamino, J.M.; Armengol, M.; et al. Use of a bioabsorbable mesh in midline laparotomy closure to prevent incisional hernia: Randomized controlled trial. Hernia 2022, 26, 1405–1406. [Google Scholar] [CrossRef] [PubMed]
- Quesada, B.M.; Adelina, C.E. Use of absorbable meshes in laparoscopic paraesophageal hernia repair. World J. Gastrointest. Surg. 2019, 11, 388–394. [Google Scholar] [CrossRef]
- Markar, S.R.; Karthikesalingam, A.; Alam, F.; Tang, T.Y.; Walsh, S.R.; Sadat, U. Partially or completely absorbable versus non-absorbable mesh repair for inguinal hernia: A systematic review and meta-analysis. Surg. Laparosc. Endosc. Percutan Tech. 2010, 20, 213–219. [Google Scholar] [CrossRef]
- Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Investig. 2007, 117, 1219–1222. [Google Scholar] [CrossRef]
- Brown, C.N.; Finch, J.G. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 2010, 92, 272–278. [Google Scholar] [CrossRef]
- Kao, A.M.; Arnold, M.R.; Augenstein, V.A.; Heniford, B.T. Prevention and treatment strategies for mesh infection in abdominal wall reconstruction. Plast. Reconst. Surg. 2018, 142, 149S–155S. [Google Scholar] [CrossRef]
- Mayagoitia, J.C.; Almaraz, A.; Diaz, C. Two cases of cystic seroma following mesh incisional hernia repair. Hernia 2006, 10, 83–86. [Google Scholar] [CrossRef]
- Bendavid, R.; Lou, W.; Grischkan, D.; Koch, A.; Petersen, K.; Morrison, J.; Iakovlev, V. A mechanism of mesh-related post-herniorrhaphy neuralgia. Hernia 2016, 20, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Lima, H.V.; Rasslan, R.; Novo, F.C.; Lima, T.M.; Damous, S.H.; Bernini, C.O.; Montero, E.F.; Utiyama, E.M. Prevention of fascial dehiscence with onlay prophylactic mesh in emergency laparotomy: A randomized clinical trial. J. Am. Coll. Surg. 2020, 230, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Ramirez, N.; Woytschak, J.; Boyman, O. Interleukin-2: Biology, Design and Application. Trends Immunol. 2015, 36, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lin, J.X.; Leonard, W.J. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 2011, 23, 598–604. [Google Scholar] [CrossRef]
- Liao, W.; Lin, J.X.; Leonard, W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013, 38, 13–25. [Google Scholar] [CrossRef]
- Spolski, R.; Li, P.; Leonard, W.J. Biology, and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar] [CrossRef]
- Byrd, V.M.; Ballard, D.W.; Miller, G.G.; Thomas, J.W. Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-kB in FGF receptor-bearing Jurkat T-cells. J. Immunol. 1999, 162, 5853–5859. [Google Scholar] [CrossRef]
- Kang, R.; Tang, D.; Lotze, M.T.; Lii, H.J.Z. Autophagy is required for IL-2-mediated fibroblast growth. Exp. Cell. Res. 2013, 319, 556–565. [Google Scholar] [CrossRef]
- Zhu, J.; Paul, W.E. CD4 T-cells: Fates, functions, and faults. Blood 2008, 112, 1557–1569. [Google Scholar] [CrossRef]
- Kowal-Vern, A.; Walenga, J.M.; Hoppensteadt, D.; Sharp-Pucci, M.; Gamelli, R.L. Interleukin-2 and interleukin-6 in relation to burn wound size in the acute phase of thermal injury. J. Am. Coll. Surg. 1994, 178, 357–362. [Google Scholar]
- Mikhal’chik, E.V.; Piterskaya, J.A.; Budkevich, L.Y.; Penkov, L.Y.; Facchiano, A.; De Luca, C. Comparative study of cytokine content in the plasma and wound exudate from children with severe burns. Bull. Exp. Biol. Med. 2009, 148, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Currie, H.N.; Loos, M.S.; Vrana, J.A.; Dragan, K.; Boyd, J.W. Spatial cytokine distribution following traumatic injury. Cytokine 2014, 66, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Han, A.A.; Currie, H.N.; Loos, M.S.; Vrana, J.A.; Fabyanic, E.B.; Prediger, M.S.; Boyd, J.W. Spatiotemporal phosphoprotein distribution and associated cytokine response of a traumatic injury. Cytokine 2016, 79, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, S.; Inouye, K.; Shudo, K.; Kishida, Y.; Kobayashi, Y.; Prockop, D.J. Synthesis of (Pro-Hyp-Gly) n of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxyproline. Biochem. Biophys. Acta. 1973, 303, 198–202. [Google Scholar]
- Barbul, A.; Knud-Hansen, J.; Wasserkrug, H.L.; Efron, G. Lnterleukin 2 Enhances Wound Healing in Rats. J. Surg. Res. 1986, 40, 315–319. [Google Scholar] [CrossRef]
- Boyman, O.; Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 2012, 12, 180–190. [Google Scholar] [CrossRef]
- Boyman, O.; Kolios, A.G.A.; Raeber, M.E. Modulation of T cell responses by IL-2 and IL-2 complexes. Clin. Exp. Rheumatol. 2015, 33, S54–S57. [Google Scholar]
- Doersch, K.M.; DelloStritto, D.J.; Newell-Rogers, M.K. The contribution of interleukin-2 to effective wound healing. Exp. Biol. Med. 2017, 242, 384–396. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Pedersen, B.K. Contraction-induced myokine production and release: Is skeletal muscle an endocrine organ? Exerc. Sport Sci. Rev. 2005, 33, 114–119. [Google Scholar] [CrossRef]
- Ferguson-Smith, A.C.; Chen, Y.F.; Newman, M.S.; May, L.T.; Sehgal, P.B.; Ruddle, F.H. Regional localization of the interferon-beta 2/B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21. Genomics 1988, 2, 203–208. [Google Scholar] [CrossRef]
- Van Snick, J.; Cayphas, S.; Szikora, J.-P.; Renauld, J.C.; Van Roost, E.; Boon, T.; Simpson, R.J. cDNA cloning of murine interleukin-HP1: Homology human interleukin 6. Eur. J. Immunol. 1988, 18, 193–200. [Google Scholar] [CrossRef]
- May, L.T.; Santhanam, U.; Tatter, S.B.; Ghrayeb, J.; Sehgal, P.B. Multiple forms of human IL. Ann. N. Y. Acad. Sci. 1989, 557, 114–119. [Google Scholar] [CrossRef] [PubMed]
- May, L.T.; Ghrayeb, J.; Santhanam, U.; Sthoeger, Z.; Helfgott, D.C.; Chiorazzi, N.; Grieninger, G.; Sehgal, P.B. Synthesis and secretion of multiple forms of β2 -interferon/B-cell differentiation factor 2/hepatocyte stimulating factor by human fibroblasts and monocytes. J. Biol. Chem. 1988, 263, 7760–7766. [Google Scholar] [CrossRef] [PubMed]
- Biffl, W.L.; Moore, E.E.; Moore, F.A.; Peterson, V.M. Interleukin-6 in the Injured Patient Marker of Injury or Mediator of Inflammation? Ann. Surg. 1996, 224, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.E. Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes. Expert. Opin. Ther. Targets. 2005, 9, 737–752. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Yin, Y.; Li, K.; Zhang, C.; Zheng, Y. The Role of IL-6 in Fibrotic Diseases: Molecular and Cellular Mechanisms. Int. J. Biol. Sci. 2022, 18, 5405–5414. [Google Scholar] [CrossRef]
- Johnson, B.Z.; Stevenson, A.W.; Prêle, C.M.; Fear, M.W.; Wood, F.M. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines 2020, 8, 101. [Google Scholar] [CrossRef]
- Lin, Z.-Q.; Kondo, T.; Ishida, Y.; Takayasu, T.; Mukaida, N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol. 2003, 73, 713–721. [Google Scholar] [CrossRef]
- Kishimoto, T. The biology of interleukin 6. Blood 1989, 74, 1–10. [Google Scholar] [CrossRef]
- Hirano, T. The biology of interleukin 6. Chem. Immunol. 1992, 51, 153–180. [Google Scholar]
- Weissenbach, M.; Clahsen, T.; Weber, C.; Spitzer, D.; Wirth, D.; Vestweber, D.; Heinrich, P.C.; Schaper, F. Interleukin-6 is a direct mediator of T cell migration. Eur. J. Immunol. 2004, 34, 2895–2906. [Google Scholar] [CrossRef]
- Wright, H.L.; Cross, A.L.; Edwards, S.W.; Moots, R.J. Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology 2014, 53, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Sunderkotter, C.; Goebeler, M.; Schulze-Osthoff, K.; Bhardwaj, R.; Sorg, C. Macrophage-derived angiogenesis factors. Pharmacol.Ther. 1991, 51, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Al-Jebouri, M.M.; Al-Mahmood, B.Y.R. Estimation of Cytokines Involved in Acute-Phase Wound Infection with Reference to Residence Time of Patients in Hospitals. Mod. Res. Inflam. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Abraham, P.; Monard, C.; Schneider, A.; Rimmelé, T. Extracorporeal Blood Purification in Burns: For Whom, Why, and How? Blood Purif. 2023, 52, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Mateo, R.B.; Reichner, J.S.; Albina, J.E. Interleukin-6 activity in wounds. Am. J. Physiol. 1994, 266, Rl840–R1844. [Google Scholar] [CrossRef] [PubMed]
- Di Vita, G.; Patti, R.; D’Agostino, P.; Caruso, G.; Arcara, M.; Buscemi, S.; Bonventre, S.; Ferlazzo, V.; Arcoleo, F.; Cillari, E. Cytokines and growth factors in wound drainage fluid from patients undergoing incisional hernia repair. Wound Rep. Reg. 2006, 14, 259–264. [Google Scholar] [CrossRef]
- Xiao, T.; Yan, Z.; Xiao, S.; Xia, Y. Pro-inflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 2020, 11, 232. [Google Scholar] [CrossRef]
- Chae, M.S.; Moon, K.U.; Chung, H.S.; Park, C.S.; Lee, J.; Choi, J.H.; Hong, S.H. Serum interleukin-6 and tumor necrosis factor-α are associated with early graft regeneration after living donor liver transplantation. PLoS ONE 2018, 13, e0195262. [Google Scholar] [CrossRef]
- Patel, A.; Aslam, R.; Jamil, M.; Ansari, A.; Khan, S. The Effects of Growth Factors and Cytokines on Hepatic Regeneration: A Systematic Review. Cureus 2022, 14, e24539. [Google Scholar] [CrossRef]
- Grellner, W.; Georg, T.; Wilske, J. Quantitative analysis of pro-inflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic. Sci. Int. 2000, 113, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Ligia, D.; Mostib, G.; Crocea, L.; Raffettoc, J.D.; Mannello, F. Chronic venous disease—Part I—Inflammatory biomarkers in wound healing. BBA Mol. Basis Dis. 2016, 1862, 1964–1974. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Jun, J.H.; Kim, J.H.; Sung, H.J.; Lee, J.H. Synergistic Effect of Interleukin-6 and Hyaluronic Acid on Cell Migration and ERK Activation in Human Keratinocytes. J. Korean Med. Sci. 2014, 29, S210–S216. [Google Scholar] [CrossRef] [PubMed]
- Liechty, K.W.; Adzick, N.S.; Crombleholme, T.M. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 2000, 12, 671–676. [Google Scholar] [CrossRef]
- Newman, P.J.; Berndt, M.C.; Gorski, J.; White, G.C.; Lyman, S.; Paddock, C.; Muller, W.A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 1990, 247, 1219–1222. [Google Scholar] [CrossRef] [PubMed]
- Gumina, R.J.; Kirschbaum, N.E.; Rao, P.N.; vanTuinen, P.; Newman, P.J. The human PECAM1 gene maps to 17q23. Genomics 1996, 34, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Albelda, S.M.; Muller, W.A.; Buck, C.A.; Newman, P.J. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule. J. Cell Biol. 1991, 114, 1059–1068. [Google Scholar] [CrossRef]
- DeLisser, H.M.; Newman, P.J.; Albelda, S.M. Molecular and functional aspects of PECAM-1/CD31. Immunol. Today 1994, 15, 490–495. [Google Scholar] [CrossRef]
- Novinska, M.S.; Rathore, V.; Newman, D.K.; Newman, P.J. Pecam-Platelets, 2nd ed.; Chapter 11,; Academin Press: Cambridge, MA, USA, 2007; pp. 221–230. [Google Scholar]
- Elias, C.G.; Spellberg, J.P.; Karan-Tamir, B.; Lin, C.H.; Wang, Y.J.; McKenna, P.J.; Muller, W.A.; Zukowski, M.M.; Andrew, D.P. Ligation of CD31/PECAM-1 modulates the function of lymphocytes, monocytes and neutrophils. Eur. J. Immunol. 1998, 28, 1948–1958. [Google Scholar] [CrossRef]
- Berman, M.E.; Xie, Y.; Muller, W.A. Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J. Immunol. 1996, 156, 1515–1524. [Google Scholar] [CrossRef]
- Poggi, A.; Zocchi, M.R.; Carosio, R.; Ferrero, E.; Angelini, D.F.; Galgani, S.; Caramia, M.D.; Bernardi, G.; Borsellino, G.; Battistini, L. Transendothelial migratory pathways of V delta 1+TCR gamma delta+ and V delta 2+TCR gamma delta+ T lymphocytes from healthy donors and multiple sclerosis patients: Involvement of phosphatidylinositol 3 kinase and calcium calmodulin-dependent kinase II. J. Immunol. 2002, 168, 6071–6077. [Google Scholar] [CrossRef] [PubMed]
- DeLisser, H.M.; Christofidou-Solomidou, M.; Strieter, R.M.; Burdick, M.D.; Robinson, C.S.; Wexler, R.S.; Kerr, J.S.; Garlanda, C.; Merwin, J.R.; Madri, J.A.; et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am. J. Pathol. 1997, 151, 671–677. [Google Scholar] [PubMed]
- Eshaq, R.S.; Harris, N.R. Loss of Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) in the Diabetic Retina: Role of Matrix Metalloproteinases. Invest. Ophthalmol. Vis. Sci. 2019, 60, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Lertkiatmongkol, P.; Liaoa, D.; Meib, H.; Hub, Y.; Newman, P.J. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol. 2016, 23, 253–259. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kim, J.-S.; Papadopoulos, J.; Kim, S.W.; Maya, M.; Zhang, F.; He, J.; Fan, D.; Langley, R.; Fidler, I.J. Circulating Monocytes Expressing CD31-Implications for Acute and Chronic Angiogenesis. Am. J. Pathol. 2009, 174, 1972–1980. [Google Scholar] [CrossRef]
- Satterthwaite, A.B.; Burn, T.C.; Le Beau, M.M.; Tenen, D.G. Structure of the gene encoding CD34, a human hematopoietic stem cell antigen. Genomics 1992, 12, 788–794. [Google Scholar] [CrossRef]
- Civin, C.I.; Strauss, L.C.; Brovall, C.; Fackler, M.J.; Schwartz, J.F.; Shaper, J.H. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 1984, 133, 157–165. [Google Scholar] [CrossRef]
- Tindle, R.W.; Katz, F.; Martin, H.; Watt, D.; Catovsky, D.; Janossy, G.; Greaves, M. BI-3C5 (CD34) defines multipotential and lineage restricted progenitor cells and their leukemic counterparts. In Leucocyte Typing 111: White Cell Differentiation Antigens; Oxford University Press: Oxford, UK, 1987; pp. 654–655. [Google Scholar]
- Sidney, L.E.; Branch, M.J.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014, 32, 1380–1389. [Google Scholar] [CrossRef]
- Nielsen, J.S.; McNagny, K.M. Novel functions of the CD34 family. J. Cell Sci. 2008, 121, 3683–3692. [Google Scholar] [CrossRef]
- Ramsfjell, V.; Bryder, D.; Björgvinsdóttir, H.; Kornfält, S.; Nilsson, L.; Borge, O.J.; Jacobsen, S.E. Distinct requirements for optimal growth and In vitro expansion of human CD34(+) CD38(−) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells. Blood 1999, 94, 4093–4102. [Google Scholar] [CrossRef]
- Hogan, C.J.; Shpall, E.J.; Keller, G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc. Natl. Acad. Sci. USA 2002, 99, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Shenoy, S.P.; Bose, B. CD34 cells in somatic, regenerative and cancer stem cells: Developmental biology, cell therapy, and omics big data perspective. J. Cell. Biochem. 2020, 121, 3058–3069. [Google Scholar] [CrossRef]
- Smane-Filipova, L.; Pilmane, M.; Akota, I. Immunohistochemical analysis of nestin, CD34 and TGFβ3 in facial tissue of children with complete unilateral and bilateral cleft lip and palate. Stomatol. Balt. Dent. Maxillofac. J. 2016, 18, 98–104. [Google Scholar]
- Madonna, R.; Renna, F.V.; Cellini, C.; Cotellese, R.; Picardi, N.; Francomano, F.; Innocenti, P.; De Caterina, R. Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur. J. Clin. Invest. 2011, 41, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Stzepourginski, I.; Nigrod, G.; Jacoba, J.-M.; Dulauroy, S.; Sansonettid, P.J.; Eberl, G.; Peduto, L. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc. Natl. Acad. Sci. USA 2017, 114, E506–E513. [Google Scholar] [CrossRef] [PubMed]
- Katori, Y.; Kiyokawa, H.; Kawase, T.; Murakami, G.; Cho, B.H.; Ide, Y. CD34-positive primitive vessels and other structures in human fetuses: An immunohistochemical study. Acta Otolaryngol. 2011, 131, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Bucala, R.; Spiegel, L.A.; Chesney, J.; Hogan, M.; Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1994, 1, 71–81. [Google Scholar] [CrossRef]
- Abe, R.; Donnelly, S.C.; Peng, T.; Bucala, R.; Christine, N. Peripheral Blood Fibrocytes: Differentiation Pathway and Migration to Wound Sites. Met. J. Immunol. 2001, 166, 7556–7562. [Google Scholar] [CrossRef]
- Ishida, Y.; Kimura, A.; Nosaka, M.; Kuninaka, Y.; Shimada, E.; Yamamoto, H.; Nishiyama, K.; Inaka, S.; Takayasu, T.; Eisenmenger, W.; et al. Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int. J. Legal. Med. 2015, 129, 1049–1054. [Google Scholar] [CrossRef]
- Le, A.D.K.; Enweze, L.; DeBaun, M.R.; Dragoo, J.L. Current Clinical Recommendations for Use of Platelet-Rich Plasma. Curr. Rev. Musculoskelet. Med. 2018, 11, 624–634. [Google Scholar] [CrossRef]
- Alves, R.; Grimalt, R. A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Ski. Appendage Disord. 2018, 4, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.A. Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds. In Wound Healing-Current Perspectives; IntechOpen: London, UK, 2018; pp. 149–179. [Google Scholar]
- Andia, I. Platelet-rich plasma biology. In Clinical Indications and Treatment Protocols with Platelet-Rich Plasma in Dermatology; Alves, R., Grimalt, R., Eds.; Ediciones Mayo: Barcelona, Spain, 2016; pp. 3–15. [Google Scholar]
- Conde Montero, E.; Fernández Santos, M.E.; Suárez Fernández, R. Platelet-rich plasma: Applications in dermatology. Actas Dermo Sifiliogr. 2015, 106, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.D.; Bashir, S. Applications of platelet-rich plasma in dermatology: A critical appraisal of the literature. J. Dermatolog. Treat. 2016, 27, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, V.; Ciric, M.; Jovanovic, J.; Stojanovic, P. Platelet Rich Plasma: A short overview of certain bioactive components. Open Med. 2016, 11, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Hara, G.R.; Basu, T. Platelet-rich plasma in regenerative medicine. Biomed. Res. Ther. 2014, 1, 25–31. [Google Scholar] [CrossRef]
- Moroz, A.; Deffune, E. Platelet-rich plasma and chronic wounds: Remaining fibronectin may influence matrix remodeling and regeneration success. Cytotherapy 2013, 15, 1436–1439. [Google Scholar] [CrossRef]
- Parrish, W.R.; Roides, B. Physiology of Blood Components in Wound Healing: An Appreciation of Cellular Co-Operativity in Platelet Rich Plasma Action. J. Exerc. Sports. Orthop. 2017, 4, 1–14. [Google Scholar] [CrossRef]
- Lai, H.; Chen, G.; Zhang, W.; Wu, G.; Xia, Z. Research trends on platelet-rich plasma in the treatment of wounds during2002—A 20-year bibliometric analysis. Int. Wound. J. 2021, 20, 1882–1892. [Google Scholar] [CrossRef]
- Lang, S.; Loibl, M.; Herrmann, M. Platelet-Rich Plasma in Tissue Engineering: Hype and Hope. Eur. Surg. Res. 2018, 59, 265–275. [Google Scholar] [CrossRef]
- Lacci, K.M.; Dardik, A. Platelet-Rich Plasma: Support for Its Use in Wound Healing. Yale J. Biol. Med. 2010, 83, 1–9. [Google Scholar]
- Chicharro-Alcántara, D.; Rubio-Zaragoza, M.; Damiá-Giménez, E.; Carrillo-Poveda, J.M.; Cuervo-Serrato, B.; Peláez-Gorrea, P.; Sopena-Juncosa, J.J. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J. Funct. Biomater. 2018, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Davis, V.L.; Abukabda, A.B.; Radio, N.M.; Witt-Enderby, P.A.; Clafshenkel, W.P.; Cairone, J.V.; Rutkowski, J.L. Platelet-Rich Preparations to Improve Healing. Part I: Workable Options for Every Size Practice. J. Oral. Implantol. 2014, 40, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Fujioka-Kobayashi, M.; Bishara, M.; Zhang, Y.; Hernandez, M.; Choukroun, J. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. Tissue Eng. Part B Rev. 2017, 23, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, Y.; Kuss, M.; Shi, W.; Aldrich, A.L.; Untrauer, J.; Kielian, T.; Duan, B. Platelet-Rich Plasma for the Treatment of Tissue Infection: Preparation and Clinical Evaluation. Tissue Eng. Part B Rev. 2019, 25, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Sethi, D.; Martin, K.E.; Shrotriya, S.; Brown, B.L. Systematic literature review evaluating evidence and mechanisms of action for platelet-rich plasma as an antibacterial agent. J. Cardiothorac. Surg. 2021, 16, 277. [Google Scholar] [CrossRef]
- Cieslik-Bieleckaa, A.; Skowronskib, R.; Jedrusik-Pawłowskac, M.; Pierchała, M. The application of L-PRP in AIDS patients with crural chronic ulcers: A pilot study. Adv. Med. Sci. 2018, 63, 140–146. [Google Scholar] [CrossRef]
- Lovisolo, F.; Carton, F.; Gino, S.; Migliario, M.; Renò, F. Platelet rich plasma-derived microvesicles increased in vitro wound healing. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9658–9664. [Google Scholar]
- Jain, N.K.; Gulati, M. Platelet-rich plasma: A healing virtuoso. Blood Res. 2016, 51, 3–5. [Google Scholar] [CrossRef]
- Cho, J.-W.; Kim, A.-E.; Lee, K.-S. Platelet-rich plasma induces increased expression of G1 cell cycle regulators, type I collagen, and matrix metalloproteinase-1 in human skin fibroblasts. Int. J. Mol. Med. 2012, 29, 32–36. [Google Scholar]
- Andia, E.; Rubio-Azpeitia, J.; Martin, I.; Abate, M. Current concepts and translational uses of platelet-rich plasma biotechnology. In Biotechnology; Ekinci, D., Ed.; InTech: London, UK, 2015. [Google Scholar]
- Motolese, A.; Vignati, F.; Antelmi, A.; Saturni, V. Effectiveness of platelet-rich plasma in healing necrobiosis lipoidica diabeticorum ulcers. Clin. Exp. Dermatol. 2015, 40, 39–41. [Google Scholar] [CrossRef]
- Bharathi, M.S.; Tarun. Role of Platelet Rich Plasma [PRP] in the Treatment of Chronic Wounds. Int. J. Contemp. Med. Res. 2018, 5, E13–E16. [Google Scholar] [CrossRef]
- Kacker, N. Surgical Management of Diabetic Foot Ulcers with Platelet Rich Plasma. Ann. Int. Med. Dent. Res. 2020, 6, 1–4. [Google Scholar]
- Suthar, M.; Gupta, S.; Bukhari, S.; Ponemone, V. Treatment of chronic non-healing ulcers using autologous platelet rich plasma: A case series. J. Biomed. Sci. 2017, 24, 16. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.K.; Kapila, R.; Chaudhary, P.; Singhal, A.; Patra, A.; Kapila, S. Proficiency of topical platelet-rich plasma with vacuum-assisted closure over platelet-rich plasma alone in diabetic foot ulcers—A clinical, prospective, comparative study. Arch. Trauma. Res. 2022, 11, 37–43. [Google Scholar] [CrossRef]
- Shan, G.-Q.; Zhang, Y.-N.; Ma, J.; Li, Y.-H.; Zuo, D.-M.; Qiu, J.-L.; Cheng, B.; Chen, Z.-L. Evaluation of the Effects of Homologous Platelet Gel on Healing Lower Extremity Wounds in Patients with Diabetes. Int. J. Low. Extrem. Wounds 2013, 12, 22–29. [Google Scholar] [CrossRef]
- Sakata, J.; Sasaki, S.; Handa, K.; Uchino, T.; Sasaki, T.; Higashita, R.; Tsuno, N.; Hiyoshi, T.; Imakado, S.; Morimoto, S.; et al. A Retrospective, Longitudinal Study to Evaluate Healing Lower Extremity Wounds in Patients with Diabetes Mellitus and Ischemia Using Standard Protocols of Care and Platelet-Rich Plasma Gel in a Japanese Wound Care Program. Ostomy Wound Manag. 2012, 58, 36–49. [Google Scholar]
- Salazar-Álvarez, A.E.; Riera-del-Moral, L.F.; García-Arranz, M.; Álvarez-García, J.; Concepción-Rodriguez, N.A.; Riera-de-Cubas, L. Use of Platelet-Rich Plasma in the Healing of Chronic Ulcers of the Lower Extremity. Actas Dermo-Sifiliográficas 2014, 105, 597–604. [Google Scholar] [CrossRef]
- Cervelli, V.; Gentile, P.; De Angelis, B.; Calabrese, C.; Di Stefani, A.; Scioli, M.G.; Curcio, B.; Marco Felici, B.C.; Orland, A. Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in post-traumatic lower extremity ulcers. Stem Cell Res. 2011, 6, 103–111. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Lehman, C.W.; Chen, C.-M. Use of platelet-rich plasma and platelet derived patches to treat chronic wounds. J. Wound Care 2019, 28, 15–21. [Google Scholar] [CrossRef]
- O’Connell, S.M.; Impeduglia, T.; Karen Hessler, R.N.; Wang, X.-J.; Carroll, R.J.; Dardik, H. Autologous platelet-rich fibrin matrix as cell therapy in the healing of chronic lower-extremity ulcers. Wound Rep. Reg. 2008, 16, 749–756. [Google Scholar] [CrossRef]
- Putrantyo, I.I.; Mosahebi, A.; Smith, O.; De Vega, B. Investigating Effectiveness of Topical Autologous Platelet-rich Plasma as Prophylaxis to Prevent Wound Infection: A Systematic Review and Meta-analysis. Malays. J. Med. Health Sci. 2021, 17, 72–82. [Google Scholar]
- Conde-Montero, E.; de la Cueva Dobao, P.; González, J.M.M. Platelet-rich plasma for the treatment of chronic wounds: Evidence to date. Chronic Wound Care Manag. Res. 2017, 4, 107–120. [Google Scholar] [CrossRef]
- Carter, M.J.; Fylling, C.P.; Parnell, L.K.S. Use of platelet rich plasma gel on wound healing: A systematic review and meta-analysis. Eplasty 2011, 11, e38. [Google Scholar]
- Sokolov, T.; Valentinov, B.; Andonov, J.; Angelov, S.; Kosev, P. Platelet-Rich plasma (PRP) and its application in the treatment of chronic and hard-to-heal skin wounds—A Review. J. IMAB Annu. Proc. Sci. Pap. 2015, 21, 982–986. [Google Scholar] [CrossRef]
- Smith, R.G.; Gassmann, C.J.; Campbell, M.S. Platelet-rich Plasma: Properties and Clinical Applications. J. Lanc. Gen. Hosp. 2007, 2, 73–77. [Google Scholar]
- Kim, S.-A.; Ryu, H.-W.; Lee, K.-S.; Cho, J.-W. Application of platelet-rich plasma accelerates the wound healing process in acute and chronic ulcers through rapid migration and upregulation of cyclin A and CDK4 in HaCaT-cells. Mol. Med. Rep. 2013, 7, 476–480. [Google Scholar] [CrossRef]
- Hall, M.P.; Band, P.A.; Meislin, R.J.; Jazrawi, L.M.; Cardone, D.A. Platelet-Rich Plasma: Current Concepts and Application in Sports Medicine. J. Am. Acad. Orthop. Surg. 2009, 17, 602–608. [Google Scholar] [CrossRef]
- Everts, P.A.M.; Hoogbergen, M.M.; Weber, T.A.; Devilee, R.J.J.; van Monftort, G.; de Hingh, I.H.J.T. Is the Use of Autologous Platelet-Rich Plasma Gels in Gynecologic, Cardiac, and General, Reconstructive Surgery Beneficial? Curr. Pharm. Biotechnol. 2012, 13, 1163–1172. [Google Scholar] [CrossRef]
- de Leon, J.M.; Driver, V.R.; Fylling, C.P.; Carter, M.J.; Anderson, C.; Wilson, J.; Dougherty, R.M.; Fuston, D.; Trigilia, D.; Valenski, V.; et al. The Clinical Relevance of Treating Chronic Wounds with an Enhanced Near-Physiological Concentration of Platelet-Rich Plasma Gel. Adv. Ski. Wound Care 2011, 24, 357–368. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Driver, V.R.; Carman, D.; Lucero, B.; Borris-Hale, C.; Fylling, C.P.; Rappl, L.M.; Clausen, P.A. Chronic Wounds Treated with a Physiologically Relevant Concentration of Platelet-rich Plasma Gel: A Prospective Case Series. Ostomy Wound Manag. 2010, 56, 36–44. [Google Scholar]
- Palumbo, V.D.; Rizzuto, S.; Damiano, G.; Fazzotta, S.; Gottardo, A.; Mazzola, G.; Lo Monte, A.I. Use of platelet concentrate gel in second-intention wound healing: A case report. J. Med. Case. Rep. 2021, 15, 85. [Google Scholar] [CrossRef]
- Crovetti, G.; Martinelli, G.; Issi, M.; Barone, M.; Guizzardi, M.; Campanati, B.; Moroni, M.; Carabelli, A. Platelet gel for healing cutaneous chronic wounds. Transfus. Apher. Sci. 2004, 30, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Shrivastava, S. Study of PRP assisted wound repair and regeneration in chronic non-healing wounds. Orthop. JMPC 2018, 24, 14–20. [Google Scholar]
- Sokolov, T.; Manukova, A.; Kovachev, V.; Kovachev, K. Treatment of problematic skin wounds based on the Platelet-rich plasma method. J. IMAB Annu. Proc. Sci. Pap. 2020, 26, 3436–3442. [Google Scholar]
- Upadhyay, S.; Varma, H.S.; Yadav, S. Potential therapeutic effects of autologous platelet rich plasma on impaired wound healing: A prospective clinical study. Int. J. Res. Orthop. 2018, 4, 820–825. [Google Scholar] [CrossRef]
- Pallua, N.; Wolter, T.; Markowicz, M. Platelet-rich plasma in burns. Burns 2010, 36, 4–8. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, D.-L.; Zhao, Y.-Q.; Li, Z.-Y. Effectiveness of platelet rich plasma in burn wound healing: A systematic review and meta-analysis. J. Dermatolog. Treat. 2022, 33, 131–137. [Google Scholar] [CrossRef]
- Foster, T.E.; Puskas, B.L.; Mandelbaum, B.R.; Gerhardt, M.B.; Rodeo, S.A. Platelet-Rich Plasma: From Basic Science to Clinical Applications. Am. J. Sports Med. 2009, 37, 2259–2272. [Google Scholar] [CrossRef]
- Chen, X.; Jones, I.A.; Park, C.; Vangsness, C.T., Jr. The Efficacy of Platelet-Rich Plasma on Tendon and Ligament Healing: A Systematic Review and Meta-Analysis with Bias Assessment. Am. J. Sports Med. 2018, 46, 2020–2032. [Google Scholar] [CrossRef]
- Yang, F. -A.; Liao, C.-D.; Wu, C.-W.; Shih, Y.-C.; Wu, L.-C.; Chen, H-C. Effects of applying platelet-rich plasma during arthroscopic rotator cuff repair: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2020, 10, 17171. [Google Scholar] [CrossRef]
- Mahmoudian-Sani, M.-R.; Rafeei, F.; Amini, R.; Saidijam, M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J. Cosmet. Dermatol. 2018, 17, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, A.N.; Babaheydari, F.M.; Chehelgerdi, M.; Dehkordi, S.R. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res. Ther. 2019, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Azari, Z.; Nazarnezhad, S.; Webster, T.J.; Hoseini, S.J.; Milan, P.B.; Baino, F.; Kargozar, S. Stem cell-mediated angiogenesis in skin tissue engineering and wound healing. Wound Rep. Reg. 2022, 30, 421–435. [Google Scholar] [CrossRef]
- Goodson, H.V.; Jonasson, E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a022608. [Google Scholar] [CrossRef] [PubMed]
- Charvet, H.J.; Orbay, H.; Harrison, L.; Devi, K.; Sahar, D.E. In vitro effects of adipose-derived stem cells on breast cancer cells harvested from the same patient. Ann. Plast. Surg. 2016, 76, S241–S245. [Google Scholar] [CrossRef]
- Moore, K.E.; Mills, J.F.; Thornton, M.M. Alternative sources of adult stem cells: A possible solution to the embryonic stem cell debate. Gend. Med. 2006, 3, 161–168. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef]
- Lazar, M.A. Developmental biology. How now, brown fat? Science 2008, 321, 1048–1049. [Google Scholar] [CrossRef]
- Psaltis, P.J.; Zannettino, A.C.; Worthley, S.G.; Gronthos, S. Concise review: Mesenchymal stromal cells: Potential for cardiovascular repair. Stem Cells 2008, 26, 2201–2210. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 2011, 5391, 1145–1147. [Google Scholar] [CrossRef]
- Bunnell, B.A. Adipose Tissue-Derived Mesenchymal Stem Cells. Cells 2021, 10, 3433. [Google Scholar] [CrossRef] [PubMed]
- Gimble, J.; Katz, A.; Bunnell, B. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2009, 100, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kim, W.K.; Oh, K.J.; Han, B.S.; Lee, S.C.; Bae, K.H. Recent advances in proteomic studies of adipose tissues and adipocytes. Int. J. Mol. Sci. 2015, 16, 4581–4599. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.; Oliveira, T.; Fernandez, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef]
- Zimmerlin, L.; Donnenberg, V.S.; Rubin, J.P.; Donnenberg, A.D. Mesenchymal markers on human adipose stem/progenitor cells. Cytom. A 2013, 83, 134–140. [Google Scholar] [CrossRef]
- Lindroos, B.; Suuronen, R.; Miettinen, S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. 2011, 7, 269–291. [Google Scholar] [CrossRef]
- Kunze, K.N.; Burnett, R.A.; Wright-Chisem, J.; Frank, R.M.; Chahla, J. Adipose-derived mesenchymal stem cell treatments and available formulations. Curr. Rev. Musculoskelet. Med. 2020, 13, 264–280. [Google Scholar] [CrossRef]
- Caplan, A.I.; Dennis, J.E. Mesenchymal Stem Cells as Trophic Mediators. J. Cell Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef]
- Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or Not the Same? Comparison of Adipose Tissue-Derived versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells Dev. 2012, 21, 2724–2752. [Google Scholar] [CrossRef]
- Zuttion, M.S.S.R.; Wenceslau, C.V.; Lemos, P.A.; Takimura, C.; Kerkis, I. Adipose Tissue-Derived Stem Cells and the Importance of Animal Model Standardization for Pre-Clinical Trials. Rev. Bras. Cardiol. Invasiva 2013, 21, 281–287. [Google Scholar] [CrossRef]
- Alt, E.U.; Senst, C.; Murthy, S.N.; Slakey, D.P.; Dupin, C.L.; Chaffin, A.E.; Kadowitz, P.J.; Izadpanah, R. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 2012, 8, 215–225. [Google Scholar] [CrossRef]
- Frese, L.; Dijkman, P.E.; Simon, P. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus. Med. Hemother. 2016, 43, 268–274. [Google Scholar] [CrossRef]
- Madonna, R.; De Caterina, R. Adipose tissue: A new source for cardiovascular repair. J. Cardiovasc. Med. 2010, 11, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Miana, V.V.; González, E.A.P. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Traktueva, D.O.; March, K.L. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr. Opin. Organ Transplant. 2010, 15, 86–91. [Google Scholar] [CrossRef]
- Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int. J. Mol. Sci. 2020, 21, 1306. [Google Scholar] [CrossRef] [PubMed]
- Yiou, R.; Mahrouf-Yorgov, M.; Trebeau, C.; Zanaty, M.; Lecointe, C.; Souktani, R.; Zadigue, P.; Figeac, F.; Rodriguez, A.M. Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms. Stem Cells 2016, 34, 392–404. [Google Scholar] [CrossRef]
- Lin, C.S.; Xin, Z.C.; Deng, C.H.; Ning, H.; Lin, G.; Lue, T.F. Defining adipose tissue-derived stem cells in tissue and in culture. Histol. Histopathol. 2010, 25, 807–815. [Google Scholar]
- Rohringer, S.; Hofbauer, P.; Schneider, K.H.; Husa, A.-M.; Feichtinger, G.; Peterbauer-Scherb, A.; Redl, H.; Holnthoner, W. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 2014, 17, 921–933. [Google Scholar] [CrossRef]
- Merfeld-Clauss, S.; Lupov, I.P.; Lu, H.; March, K.L.; Traktuev, D.O. Adipose Stromal Cell Contact with Endothelial Cells Results in Loss of Complementary Vasculogenic Activity Mediated by Induction of Activin A. Stem Cells 2015, 33, 3039–3051. [Google Scholar] [CrossRef]
- Wang, L.; Hu, L.; Zhou, X.; Zhang, C.; Shehada, H.M.A.; Hu, B.; Song, J.; Chen, L. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep. 2017, 7, 13321. [Google Scholar] [CrossRef] [PubMed]
- Stessuk, T.; Puzzi, M.B.; Chaim, E.A.; Alves, P.C.M.; de Paula, E.V.; Forte, A.; Izumizawa, J.M.; Oliveira, C.C.; Frei, F.; Ribeiro-Paes, J.T. Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: Stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro. Arch. Dermatol. Res. 2016, 308, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.I.; Tang, Y.L. Genetic modification of stem cells for transplantation. Adv. Drug Deliv. Rev. 2008, 60, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, E.K.; Makarevich, P.I.; Tsokolaeva, Z.I.; Boldyreva, M.A.; Sysoeva, V.Y.; Tkachuk, V.A.; Parfyonova, Y.V. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J. Transl. Med. 2013, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yang, Y.; Yang, T.; Dai, T.; Shao, X.; Xu, H.; An, R.; Liu, Y.; Liu, B. The use of allogenic adipose-derived stem cells in combination with platelet-rich fibrin for the treatment of cartilage defects in rabbit ear. Am. J. Transl. Res. 2018, 10, 1900–1907. [Google Scholar]
- Rad, F.; Ghorbani, M.; Roushandeh, A.M.; Roudkenar, M.H. Mesenchymal stem cell-based therapy for autoimmune diseases: Emerging roles of extracellular vesicles. Mol. Biol. Rep. 2019, 46, 1533–1549. [Google Scholar] [CrossRef]
- Li, P.; Guo, X. A review: Therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res. Ther. 2018, 9, 302. [Google Scholar] [CrossRef]
- Su, W.G.; Wang, P.L.; Dong, Q.Q.; Li, S.; Hu, S.W. S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation. Regen. Ther. 2022, 21, 166–174. [Google Scholar] [CrossRef]
- Ouyang, L.; Qiu, D.; Fu, X.; Wu, A.; Yang, P.; Yang, Z.; Wang, Q.; Yan, L.; Xiao, R. Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice. Stem Cell Res. Ther. 2022, 13, 395. [Google Scholar] [CrossRef]
- Lyras, D.; Kazakos, K.; Verettas, D.; Polychronidis, A.; Simopoulos, C.; Botaitis, S.; Agrogiannis, G.; Kokka, A.; Patsouris, E. Immunohistochemical study of angiogenesis after local administration of platelet-rich plasma in a patellar tendon defect. Int. Orthop. 2010, 34, 143–148. [Google Scholar] [CrossRef]
- Suzuki, E.; Fujita, D.; Takahashi, M.; Oba, S.; Nishimatsu, H. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J. Cardiol. 2015, 7, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Barba, M.; Cicione, C.; Bernardini, C.; Michetti, F.; Lattanzi, W. Adipose-derived mesenchymal cells for bone regereneration: State of the art. Biol. Med. Res. Int. 2013, 2013, 416391. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, N.; Dessouky, A.A.; Mostafa, O.; Hassouna, A.; Yousef, M.M.; Seleem, Y.; El Gebaly, E.A.E.A.M.; Allam, M.M.; Farid, A.S.; Saffaf, B.A.; et al. Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway. Stem Cell Res. Ther. 2021, 12, 392. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Y.; Gao, Z.; Yang, J. Human adipose-derived stem cells inhibit bioactivity of keloid fibroblasts. Stem Cell Res. Ther. 2018, 9, 40. [Google Scholar] [CrossRef]
- Hashem, H.E.; Mobasher, M.O.I.; Mohamed, M.Z.; Alkhodary, A.A.M. Efficiency of Adipose-Derived versus Bone Marrow-Derived Stem Cells in Modulation of Histopathological Changes and CD31 Immunoexpression during Wound Healing in Rats. J. Biochem. Cell Biol. 2018, 1, 106. [Google Scholar]
- Nie, C.; Yang, D.; Xu, J.; Si, Z.; Jin, X.; Zhang, J. Locally Administered Adipose-Derived Stem Cells Accelerate Wound Healing through Differentiation and Vasculogenesis. Cell Transplant. 2011, 20, 205–216. [Google Scholar] [CrossRef]
- Hong, S.J.; Jia, S.X.; Xie, P.; Xu, W.; Leung, K.P.; Mustoe, T.A.; Galiano, R.D. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS ONE 2013, 8, e55640. [Google Scholar] [CrossRef]
- Shafei, S.; Khanmohammadi, M.; Heidari, R.; Ghanbari, H.; Nooshabadi, V.T.; Farzamfar, S.; Akbariqomi, M.; Sanikhani, N.S.; Absalan, M.; Tavoosidana, G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J. Biomed. Mater. Res. 2020, 108A, 545–556. [Google Scholar] [CrossRef]
- Shukla, A.; Choudhury, S.; Chaudhary, G.; Singh, V.; Prabhu, S.N.; Pandey, S.; Garg, S.K. Chitosan and gelatin biopolymer supplemented with Mesenchymal Stem cells (Velgraft®) enhanced wound healing in goats (Capra hircus): Involvement of VEGF, TGF and CDJ. Tissue Viability 2021, 30, 59–66. [Google Scholar] [CrossRef]
- Dai, R.; Wang, Z.; Samanipour, R.; Koo, K.-I.; Kim, K. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int. 2016, 2016, 6737345. [Google Scholar] [CrossRef]
- Li, M.; Ma, J.; Gao, Y.; Dong, M.; Zheng, Z.; Li, Y.; Tan, R.; She, Z.; Yang, L. Epithelial differentiation of human adipose derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy. Stem Cell Res. Ther. 2020, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Colazzo, F.; Chester, A.H.; Taylor, P.M.; Yacoub, M.H. Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J. Heart Valve Dis. 2010, 19, 736–744. [Google Scholar] [PubMed]
- Breitsprecher, D.; Goode, B.L. Formins at a glance. J. Cell Sci. 2013, 126, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, H.; Zhang, X.; Lu, W.; Huang, X.; Xie, H.; Zhou, J.; Wang, W.; Zhang, Y.; Liu, Y.; et al. Synergistic Angiogenesis Promoting Effects of Extracellular Matrix Scaffolds and Adipose-Derived Stem Cells during Wound Repair. Tissue Eng. Part A 2011, 17, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, Y.; Zhao, C.; Guo, S.; Liu, S.; Jia, W.; Tuan, R.S.; Zhang, C. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 2012, 33, 7008–7018. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, B.; Zhu, H.; Yu, Q.; Xie, F.; Cheng, C.; Li, Q. Adipose-derived stem cells embedded in platelet-rich plasma scaffolds improve the texture of skin grafts in a rat full-thickness wound model. Burns 2020, 46, 377–385. [Google Scholar] [CrossRef]
- Lucchina, A.G.; Radica, M.K.; Costa, A.L.; Mortellaro, C.; Soliani, G.; Zavan, B. Mesh-tissue integration of synthetic and biologic meshes in wall surgery: Brief state of art. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 21–25. [Google Scholar]
- Khandaker, M.; Alkadhem, N.; Progri, H.; Nikfarjam, S.; Jeon, J.; Kotturi, H.; Vaughan, M.B. Glutathione immobilized polycaprolactone nanofiber mesh as a dermal drug delivery mechanism for wound healing in a diabetic patient. Processes 2022, 10, 512. [Google Scholar] [CrossRef]
- Xu, D.; Fang, M.; Wang, Q.; Qiao, Y.; Li, Y.; Wang, L. Latest trends on the attenuation of systemic foreign body response and infectious complications of synthetic hernia meshes. ACS Appl. Bio. Mater. 2021, 5, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasalou, V.; Kotidis, E.; Tatsis, D.; Boulogeorgou, K.; Grivas, I.; Koliakos, G.; Cheva, A.; Ioannidis, O.; Tsingotjidou, A.; Angelopoulos, S. The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review. J. Clin. Med. 2023, 12, 5683. https://doi.org/10.3390/jcm12175683
Vasalou V, Kotidis E, Tatsis D, Boulogeorgou K, Grivas I, Koliakos G, Cheva A, Ioannidis O, Tsingotjidou A, Angelopoulos S. The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review. Journal of Clinical Medicine. 2023; 12(17):5683. https://doi.org/10.3390/jcm12175683
Chicago/Turabian StyleVasalou, Varvara, Efstathios Kotidis, Dimitris Tatsis, Kassiani Boulogeorgou, Ioannis Grivas, Georgios Koliakos, Angeliki Cheva, Orestis Ioannidis, Anastasia Tsingotjidou, and Stamatis Angelopoulos. 2023. "The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review" Journal of Clinical Medicine 12, no. 17: 5683. https://doi.org/10.3390/jcm12175683
APA StyleVasalou, V., Kotidis, E., Tatsis, D., Boulogeorgou, K., Grivas, I., Koliakos, G., Cheva, A., Ioannidis, O., Tsingotjidou, A., & Angelopoulos, S. (2023). The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review. Journal of Clinical Medicine, 12(17), 5683. https://doi.org/10.3390/jcm12175683