Clinical Outcomes according to Timing to Non Invasive Ventilation Initiation in COPD Patients with Acute Respiratory Failure: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Unit Organization
2.2. Daytime and Working Day
2.3. Study Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Navalesi, P.; Members of The Steering Committee; Antonelli, M.; Brozek, J.; et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar] [CrossRef] [PubMed]
- Brochard, L.; Isabey, D.; Piquet, J.; Amaro, P.; Mancebo, J.; Messadi, A.A.; Brun-Buisson, C.; Rauss, A.; Lemaire, F.; Harf, A. Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N. Engl. J. Med. 1990, 323, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Brochard, L.; Mancebo, J.; Wysocki, M.; Lofaso, F.; Conti, G.; Rauss, A.; Simonneau, G.; Benito, S.; Gasparetto, A.; Lemaire, F.; et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N. Engl. J. Med. 1995, 333, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Ozyilmaz, E.; Ugurlu, A.O.; Nava, S. Timing of noninvasive ventilation failure: Causes, risk factors, and potential remedies. BMC Pulm. Med. 2014, 14, 19. [Google Scholar] [CrossRef]
- Nava, S.; Hill, N. Non-invasive ventilation in acute respiratory failure. Lancet 2009, 374, 250–259. [Google Scholar] [CrossRef]
- Bell, C.M.; Redelmeier, D.A. Mortality among Patients Admitted to Hospitals on Weekends as Compared with Weekdays. N. Engl. J. Med. 2001, 345, 663–668. [Google Scholar] [CrossRef]
- Halm, E.A.; Chassin, M.R. Why Do Hospital Death Rates Vary? N. Engl. J. Med. 2001, 345, 692–694. [Google Scholar] [CrossRef]
- Roberts, C.M.; Barnes, S.; Lowe, D.; Pearson, M.G.; Clinical Effectiveness Evaluation Unit; Royal College of Physicians; Audit Subcommittee of the British Thoracic Society. Evidence for a link between mortality in acute COPD and hospital type and resources. Thorax 2003, 58, 947–949. [Google Scholar] [CrossRef]
- Pauls, L.A.; Johnson-Paben, R.; McGready, J.; Murphy, J.D.; Pronovost, P.J.; Wu, C.L. The Weekend Effect in Hospitalized Patients: A Meta-Analysis. J. Hosp. Med. 2017, 12, 760–766. [Google Scholar] [CrossRef]
- Ruiz, M.; Bottle, A.; Aylin, P.P. The Global Comparators Project: International comparison of 30-day in-hospital mortality by day of the week. BMJ Qual. Saf. 2015, 24, 492–504. [Google Scholar] [CrossRef]
- Hogan, H.; Zipfel, R.; Neuburger, J.; Hutchings, A.; Darzi, A.; Black, N. Avoidability of hospital deaths and association with hospital-wide mortality ratios: Retrospective case record review and regression analysis. BMJ 2015, 351, h3239. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, W.; Herath, C.; Xia, J.; Hu, B.; Song, F.; Cao, S.; Lu, Z. Off-hour admission and mortality risk for 28 specific diseases: A systematic review and meta-analysis of 251 cohorts. J. Am. Heart Assoc. 2016, 5, e003102. [Google Scholar] [CrossRef] [PubMed]
- Needleman, J.; Buerhaus, P.; Pankratz, V.S.; Leibson, C.L.; Stevens, S.R.; Harris, M. Nurse staffing and inpatient hospital mortality. N. Engl. J. Med. 2011, 364, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Aiken, L.H.; Clarke, S.P.; Sloane, D.M.; Sochalski, J.; Silber, J.H. Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction. JAMA 2002, 288, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.; Bulger, D. Trends and weekly and seasonal cycles in the rate of errors in the clinical management of hospitalized patients. Chronobiol. Int. 2012, 29, 947–954. [Google Scholar] [CrossRef]
- Chan, P.S.; Krumholz, H.M.; Nichol, G.; Nallamothu, B.K.; American Heart Association National Registry of Cardiopulmonary Resuscitation Investigators. Delayed time to defibrillation after in-hospital cardiac arrest. N. Engl. J. Med. 2008, 358, 9–17. [Google Scholar] [CrossRef]
- McGuire, K.J.; Bernstein, J.; Polsky, D.; Silber, J.H. The 2004 Marshall Urist Award: Delays until surgery after hip fracture increases mortality. Clin. Orthop. Relat. Res. 2004, 428, 294–301. [Google Scholar] [CrossRef]
- Krüth, P.; Zeymer, U.; Gitt, A.; Jünger, C.; Wienbergen, H.; Niedermeier, F.; Glunz, H.-G.; Senges, J.; Zahn, R. Influence of presentation at the weekend on treatment and outcome in ST-elevation myocardial infarction in hospitals with catheterization laboratories. Clin. Res. Cardiol. 2008, 97, 742–747. [Google Scholar] [CrossRef]
- Schilling, P.L.; Campbell, D.A., Jr.; Englesbe, M.J.; Davis, M.M. A comparison of in-hospital mortality risk conferred by high hospital occupancy, differences in nurse staffing levels, weekend admission, and seasonal influenza. Med. Care 2010, 48, 224–232. [Google Scholar] [CrossRef]
- Wong, H.J.; Morra, D. Excellent hospital care for all: Open and operating 24/7. J. Gen. Intern. Med. 2011, 26, 1050–1052. [Google Scholar] [CrossRef]
- Becker, D.J. Weekend hospitalization and mortality: A critical review. Expert Rev. Pharmacoecon. Outcomes Res. 2008, 8, 23–26. [Google Scholar] [CrossRef]
- Kostis, W.J.; Demissie, K.; Marcella, S.W.; Shao, Y.H.; Wilson, A.C.; Moreyra, A.E.; Myocardial Infarction Data Acquisition System (MIDAS 10) Study Group. Weekend versus weekday admission and mortality from myocardial infarction. N. Engl. J. Med. 2007, 356, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Cubeddu, R.J.; Cruz-Gonzalez, I.; Kiernan, T.J.; Truong, Q.A.; Rosenfield, K.; Leinbach, R.C.; Cadigan, M.E.; Pomerantsev, E.V.; Palacios, I.F. ST-elevation myocar- dial infarction mortality in a major academic center ‘on’-‘versus ‘off-’ hours. J. Invasive Cardiol. 2009, 21, 518–523. [Google Scholar] [PubMed]
- Hasegawa, Y.; Yoneda, Y.; Okuda, S.; Hamada, R.; Toyota, A.; Gotoh, J.; Watanabe, M.; Okada, Y.; Ikeda, K.; Ibayashi, S.; et al. The effect of weekends and holidays on stroke outcome in acute stroke units. Cerebrovasc. Dis. 2005, 20, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; McGinley, E.L.; Saeian, K. Outcomes of weekend admissions for upper gastrointestinal hemorrhage: A nationwide analysis. Clin. Gastroenterol. Hepatol. 2009, 7, 296–302.e1. [Google Scholar] [CrossRef] [PubMed]
- Foss, N.B.; Kehlet, H. Short-term mortality in hip fracture patients admitted during weekends and holidays. Br. J. Anaesth. 2006, 96, 450–454. [Google Scholar] [CrossRef]
- Uematsu, H.; Kunisawa, S.; Yamashita, K.; Fushimi, K.; Imanaka, Y. Impact of weekend admission on in-hospital mortality in severe community-acquired pneumonia patients in Japan. Respirology 2016, 21, 905–910. [Google Scholar] [CrossRef]
- Hall, A.M.; Stelfox, H.T.; Wang, X.; Chen, G.; Zuege, D.J.; Dodek, P.; Garland, A.; Scales, D.C.; Berthiaume, L.; Zygun, D.A.; et al. Association between afterhours admission to the intensive care unit, strained capacity, and mortality: A retrospective cohort study. Crit. Care 2018, 22, 97. [Google Scholar] [CrossRef]
- Perez Concha, O.; Gallego, B.; Hillman, K.; Delaney, G.P.; Coiera, E. Do variations in hospital mortality patterns after weekend admission reflect reduced quality of care or different patient cohorts? A population-based study. BMJ Qual. Saf. 2014, 23, 215–222. [Google Scholar] [CrossRef]
- Mannino, D.M. COPD: Epidemiology, prevalence, morbidity and mortality and disease heterogenity. Chest 2002, 121 (Suppl. S5), 121S–126S. [Google Scholar] [CrossRef]
- Brims, F.J.; Asiimwe, A.; Andrews, N.P.; Prytherch, D.; Higgins, B.R.; Kilburn, S.; Chauhan, A.J. Weekend admission and mortality from acute exacerbations of chronic obstructive pulmonary disease in winter. Clin. Med. 2011, 11, 334–339. [Google Scholar] [CrossRef]
- Barba, R.; Zapatero, A.; Losa, J.E.; Marco, J.; Plaza, S.; Rosado, C.; Canora, J. The impact of weekends on outcome for acute exacerbations of COPD. Eur. Respir. J. 2012, 39, 46–50. [Google Scholar] [CrossRef]
- Kinnunen, T.; Säynäjäkangas, O.; Keistinen, T. Features of hospitalisations for acute exacerbation of COPD resulting in death. Monaldi Arch. Chest Dis. 2007, 67, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.S.; Wills, R.A.; Bowman, R.V.; Zimmerman, P.V.; Fong, K.M.; Coory, M.D.; Yang, I.A. Exploratory study of the “weekend effect” for acute medical admissions to public hospitals in Queensland, Australia. Intern. Med. J. 2010, 40, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Blecker, S.; Goldfeld, K.; Park, H.; Radford, M.J.; Munson, S.; Francois, F.; Austrian, J.S.; Braithwaite, R.S.; Hochman, K.; Donoghue, R.; et al. Impact of an Intervention to Improve Weekend Hospital Care at an Academic Medical Center: An Observational Study. J. Gen. Intern. Med. 2015, 30, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.P.; Krishnan, J.A.; Lechtzin, N.; Diette, G.B. In-hospital mortality following acute exacerbations of chronic obstructive pulmonary disease. Arch. Intern. Med. 2003, 163, 1180–1186. [Google Scholar] [CrossRef]
- Cao, Y.; Xing, Z.; Long, H.; Huang, Y.; Zeng, P.; Janssens, J.P.; Guo, Y. Predictors of mortality in COPD exacerbation cases presenting to the respiratory intensive care unit. Respir. Res. 2021, 22, 77. [Google Scholar] [CrossRef]
- Khilnani, G.C.; Banga, A.; Sharma, S.K. Predictors of mortality of patients with acute respiratory failure secondary to chronic obstructive pulmonary disease admitted to an intensive care unit: A one year study. BMC Pulm. Med. 2004, 4, 12. [Google Scholar] [CrossRef]
- Breen, D.; Churches, T.; Hawker, F.; Torzillo, P.J. Acute respiratory failure secondary to chronic obstructive pulmonary disease treated in the intensive care unit: A long term follow up study. Thorax 2002, 57, 29–33. [Google Scholar] [CrossRef]
- Jurjević, M.; Matić, I.; Sakić-Zdravcević, K.; Sakić, S.; Danić, D.; Buković, D. Mechanical ventilation in chronic obstructive pulmonary disease patients, noninvasive vs. invasive method (randomized prospective study). Coll. Antropol. 2009, 33, 791–797. [Google Scholar]
- Conti, G.; Antonelli, M.; Navalesi, P.; Rocco, M.; Bufi, M.; Spadetta, G.; Meduri, G.U. Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: A randomized trial. Intensive Care Med. 2002, 28, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Nava, S.; Navalesi, P.; Conti, G. Time of non-invasive ventilation. Intensive Care Med. 2006, 32, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Lapointe-Shaw, L.; Abushomar, H.; Chen, X.K.; Gapanenko, K.; Taylor, C.; Krzyzanowska, M.K.; Bell, C.M. Care and Outcomes of Patients With Cancer Admitted to the Hospital on Weekends and Holidays: A Retrospective Cohort Study. J. Natl. Compr. Cancer Netw. 2016, 14, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Sinuff, T.; Cook, D.J.; Randall, J.; Allen, C.J. Evaluation of a practice guideline for noninvasive positive-pressure ventilation for acute respiratory failure. Chest 2003, 123, 2062–2073. [Google Scholar] [CrossRef]
- Leone, M.; Ragonnet, B.; Alonso, S.; Allaouchiche, B.; Constantin, J.M.; Jaber, S.; Martin, C.; Fabbro-Peray, P.; Lefrant, J.Y.; AzuRéa Group. Variable compliance with clinical practice guidelines identified in a 1-day audit at 66 French adult intensive care units. Crit. Care Med. 2012, 40, 3189–3195. [Google Scholar] [CrossRef]
- Browman, G.P. Improving clinical practice guidelines for the 21st century. Attitudinal barriers and not technology are the main challenges. Int. J. Technol. Assess. Health Care 2000, 16, 959–968. [Google Scholar] [CrossRef]
- Bero, L.A.; Grilli, R.; Grimshaw, J.M.; Harvey, E.; Oxman, A.D.; Thomson, M.A. Closing the gap between research and practice: An overview of systematic reviews of interventions to promote the implementation of research findings. The Cochrane Effective Practice and Organization of Care Review Group. BMJ 1998, 317, 465–468. [Google Scholar] [CrossRef]
- Keenan, S.P.; Powers, C.E.; McCormack, D.G. Noninvasive positive-pressure ventilation in patients with milder chronic obstructive pulmonary disease exacerbations: A randomized controlled trial. Respir. Care 2005, 50, 610–616. [Google Scholar]
All Included Patients (n = 266) | |
---|---|
Age, years | 80 (77–81, 95% LCL-UCL) |
Sex | Male 114 (42%) |
Female 152 (58%) | |
pH | 7.33 (7.31–7.34, 95% LCL-UCL) 35% absence of respiratory acidosis |
Subject’s previous location |
|
LTOT | Yes 130 (48%) No 136 (52%) |
NIV at location before RICU admission | No 250 (93%) Yes 16 (7%) |
Nighttime (n = 99) | Daytime (n = 167) | p | |
---|---|---|---|
Age, years | 77 (75–81 95% C.I) | 81 (78–83 95% C.I) | 0.04 |
sex | M 16.5%/F 20.5% | M 26%/F 37% | 0.68 |
SAPSII score | 33 (30–36) | 34 (33–36) | 0.45 |
Charlson Index | 6 (5–6) | 6 (5–6) | 0.35 |
pH | 7.33 (7.31–7.35) | 7.33 (7.31–7.34) | 0.70 |
PaCO2 (mmHg) | 65 (63–71) | 72 (69–75) | 0.02 |
LTOT | Y 16.5%/N 20.5% | Y 32%/N 31% | 0.26 |
Non-Working Days (n = 71) | Working Days (n = 195) | p | |
Age, years | 81 (77–83 95% C.I) | 79 (77–81 95% C.I) | 0.77 |
sex | M 14%/F 13% | M 29%/F 44% | 0.06 |
SAPS II score | 34 (31–38) | 34 (32–36) | 0.28 |
Charlson Index | 6 (5–6) | 6 (5–6) | 0.48 |
pH | 7.32 (7.29–7.35) | 7.33 (7.31–7.34) | 0.97 |
PaCO2 (mmHg) | 71 (66–76) | 70 (65–73) | 0.70 |
LTOT | Y 15%/N 12% | Y 33%/N 40% | 0.20 |
Nighttime OR Non-Working Days (n = 137) | Working Days at Daytime (n = 129) | p | |
Age, years | 80 (76–81 95% C.I) | 80 (77–84 95% C.I) | 0.17 |
sex | M 24%/F 28% | M 19%/F 29% | 0.28 |
SAPS II score | 33 (31–36) | 34 (32–36) | 0.49 |
Charlson Index | 6 (5–6) | 6 (5–6) | 0.18 |
pH | 7.33 (7.31–7.34) | 7.33 (7.31–7.34) | 0.42 |
PaCO2 (mmHg) | 69 (64–72) | 71 (67–75) | 0.17 |
LTOT | Y 25%/N 26% | Y 24%/N 25% | 0.99 |
Nighttime (n = 99) | Daytime (n = 167) | p 0.27 Pearson value 1.21 | |
Success | 81/99 (81%) | 127/167 (76%) | |
Failure: | 18/99 (18%) | 40/167(24%) | |
Death | 8/18 (42%) | 15/40(39%) | |
Endotracheal intubation | 10/18 (58%) | 25/40(61%) | |
nighttime OR non-working days (n = 137) | working days in daytime (n = 129) | p 0.08 Pearson value 3.04 | |
Success | 113/137 (82%) | 95/129 (74%) | |
Failure: | 24/137 (18%) | 34/129 (26%) | |
Death | 10/24 (40%) | 15/34 (42%) | |
Endotracheal intubation | 14/24 (60%) | 19/34 (58%) | |
non-working days (n = 71) | working days (n = 195) | p 0.19 Pearson value 2.24 | |
Success | 59/71 (83%) | 149/195 (76%) | |
Failure: | 12/71 (17%) | 46/195 (24%) | |
Death | 5/12 (42%) | 18/46 (39%) | |
Endotracheal intubation | 7/12 (58%) | 28/46 (61%) |
Nighttime (n = 99) | Daytime (n = 167) | p | |
---|---|---|---|
Gap to NIV initiation (hours) | 3.39 ± 8.07 | 1.55 ± 5.31 | 0.01 |
Overall length of NIV treatment (hours) | 35 (25–68 95% C.I) | 66 (46–86 95% C.I) | 0.32 |
Overall length of stay in hospital (days) | 15 (14–17) | 16 (15–19) | 0.38 |
non-working days | working days | p | |
Gap to NIV initiation (hours) | 1.86 ± 5.52 | 2.37 ± 6.8 | 0.98 |
Overall length of NIV treatment (hours) | 53 (30–87) | 48 (37–77) | 0.90 |
Overall length of stay in hospital (days) | 16 (14–19) | 16 (15–17) | 0.76 |
nighttime OR non-working days | working days in daytime | p | |
Gap to NIV initiation (hours) | 2.65 ± 6.7 | 2.27 ± 6 | 0.31 |
Overall length of NIV treatment (hours) | 48 (30–85) | 50 (38–77) | 0.86 |
Overall length of stay in hospital (days) | 16 (14–17) | 16 (15–20) | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisani, L.; Corsi, G.; Carpano, M.; Giancotti, G.; Vega, M.L.; Catalanotti, V.; Nava, S. Clinical Outcomes according to Timing to Non Invasive Ventilation Initiation in COPD Patients with Acute Respiratory Failure: A Retrospective Cohort Study. J. Clin. Med. 2023, 12, 5973. https://doi.org/10.3390/jcm12185973
Pisani L, Corsi G, Carpano M, Giancotti G, Vega ML, Catalanotti V, Nava S. Clinical Outcomes according to Timing to Non Invasive Ventilation Initiation in COPD Patients with Acute Respiratory Failure: A Retrospective Cohort Study. Journal of Clinical Medicine. 2023; 12(18):5973. https://doi.org/10.3390/jcm12185973
Chicago/Turabian StylePisani, Lara, Gabriele Corsi, Marco Carpano, Gilda Giancotti, Maria Laura Vega, Vito Catalanotti, and Stefano Nava. 2023. "Clinical Outcomes according to Timing to Non Invasive Ventilation Initiation in COPD Patients with Acute Respiratory Failure: A Retrospective Cohort Study" Journal of Clinical Medicine 12, no. 18: 5973. https://doi.org/10.3390/jcm12185973
APA StylePisani, L., Corsi, G., Carpano, M., Giancotti, G., Vega, M. L., Catalanotti, V., & Nava, S. (2023). Clinical Outcomes according to Timing to Non Invasive Ventilation Initiation in COPD Patients with Acute Respiratory Failure: A Retrospective Cohort Study. Journal of Clinical Medicine, 12(18), 5973. https://doi.org/10.3390/jcm12185973