Predictors of Improvement in Concomitant Tricuspid Regurgitation Following Transcatheter Edge-to-Edge Mitral Valve Repair
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Procedural Outcome of M-TEER
3.2. Characteristics of Patients with and without TR Improvement
3.3. Cardiac Remodeling in Patients with and without TR Improvement
3.4. Twelve-Month Outcome in Patients with and without TR Improvement
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline on the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.Y.; Min, X.P.; Zhang, H.B.; Meng, X. Preoperative risk factors for residual tricuspid regurgitation after isolated left-sided valve surgery: A systematic review and meta-analysis. Cardiology 2014, 129, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Italia, L.; Adamo, M.; Lupi, L.; Scodro, M.; Curello, S.; Metra, M. Percutaneous Edge-to-Edge Mitral Valve Repair: Beyond the Left Heart. J. Am. Soc. Echocardiogr. 2021, 34, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Adamo, M.; Fiorelli, F.; Melica, B.; D’Ortona, R.; Lupi, L.; Giannini, C.; Silva, G.; Fiorina, C.; Branca, L.; Chiari, E.; et al. COAPT-Like Profile Predicts Long-Term Outcomes in Patients with Secondary Mitral Regurgitation Undergoing MitraClip Implantation. JACC Cardiovasc. Interv. 2021, 14, 15–25. [Google Scholar] [CrossRef]
- Geyer, M.; Keller, K.; Bachmann, K.; Born, S.; Tamm, A.R.; Ruf, T.F.; Kreidel, F.; Hahad, O.; Petrescu, A.; Hell, M.; et al. Concomitant tricuspid regurgitation severity and its secondary reduction determine long-term prognosis after transcatheter mitral valve edge-to-edge repair. Clin. Res. Cardiol. 2021, 110, 676–688. [Google Scholar] [CrossRef]
- Hahn, R.T.; Asch, F.; Weissman, N.J.; Grayburn, N.; Kar, S.; Lim, S.; Ben-Yehuda, O.; Shahim, B.; Chen, S.; Liu, M.; et al. Impact of Tricuspid Regurgitation on Clinical Outcomes: The COAPT Trial. JACC 2020, 76, 1305–1314. [Google Scholar] [CrossRef]
- Yzeiraj, E.; Bijuklic, K.; Tiburtius, C.; Witt, J.; Krause, K.; Steude, J.; Hansen, L.; Rieß, F.C.; Schofer, J. Tricuspid regurgitation is a predictor of mortality after percutaneous mitral valve edge-to-edge repair. EuroIntervention 2017, 12, e1817–e1824. [Google Scholar] [CrossRef]
- Frangieh, A.H.; Gruner, C.; Mikulicic, F.; Attinger-Toller, A.; Tanner, F.C.; Taramasso, M.; Corti, R.; Grünenfelder, J.; Lüsche, T.F.; Ruschitzka, F.; et al. Impact of percutaneous mitral valve repair using the MitraClip system on tricuspid regurgitation. EuroIntervention 2016, 11, e1680–e1686. [Google Scholar] [CrossRef]
- Gaemperli, O.; Biaggi, P.; Gugelmann, R.; Osranek, M.; Schreuder, J.J.; Bühler, I.; Sürder, D.; Lüscher, T.F.; Felix, C.; Bettex, D.; et al. Real-time left ventricular pressure-volume loops during percutaneous mitral valve repair with the MitraClip system. Circulation 2013, 127, 1018–1027. [Google Scholar] [CrossRef]
- Gaemperli, O.; Moccetti, M.; Surder, D.; Biaggi, P.; Hurlimann, D.; Kretschmar, O.; Bühler, I.; Bettex, D.; Felix, C.; Luscher, T.F.; et al. Acute haemodynamic changes after percutaneous mitral valve repair: Relation to mid-term outcomes. Heart 2012, 98, 126–132. [Google Scholar] [CrossRef]
- Adamo, M.; Pagnesi, M.; Ghizzoni, G.; Estévez-Loureiro, R.; Raposeiras-Roubin, A.; Tomasoni, D.; Stolfo, D.; Sinagra, G.; Popolo Rubbio, A.; Bedogni, F.; et al. Evolution of tricuspid regurgitation after transcatheter edge-to-edge mitral valve repair for secondary mitral regurgitation and its impact on mortality. Eur. J. Heart Fail. 2022, 24, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Kavsur, R.; Iliadis, C.; Spieker, M.; Brachtendorf, B.M.; Tiyerili, V.; Metze, C.; Horn, P.; Baldus, S.; Kelm, M.; Nickenig, G.; et al. Predictors and prognostic relevance of tricuspid alterations in patients undergoing transcatheter edge-to-edge mitral valve repair. EuroIntervention 2021, 17, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Besler, C.; Blazek, S.; Rommel, K.P.; Noack, T.; von Roeder, M.; Luecke, C.; Seeburger, J.; Ender, J.; Borger, M.A.; Linke, A.; et al. Combined Mitral and Tricuspid Versus Isolated Mitral Valve Transcatheter Edge-to-Edge Repair in Patients with Symptomatic Valve Regurgitation at High Surgical Risk. JACC Cardiovasc. Interv. 2018, 11, 1142–1151. [Google Scholar] [CrossRef]
- Keßler, M.; Seeger, J.; Muche, R.; Wöhrle, J.; Rottbauer, W.; Markovic, S. Predictors of rehospitalization after percutaneous edge-to-edge mitral valve repair by MitraClip implantation. Eur. J. Heart Fail. 2018, 21, 182–192. [Google Scholar] [CrossRef]
- Hahn, R.T.; Zamorano, J.L. The need for a new tricuspid regurgitation grading scheme. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1342–1343. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Pibarot, P.; Chambers, J.; La Canna, G.; Pepi, M.; Dulgheru, R.; Dweck, M.; Delgado, V.; Garbi, M.; Vannan, M.A.; et al. Multi-modality imaging assessment of native valvular regurgitation: An EACVI and ESC council of valvular heart disease position paper. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e171–e232. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Adams, D.H.; Abraham, W.T.; Kappetein, A.T.; Genereux, P.; Vranckx, P.; Mehran, R.; Kuck, K.H.; Leon, M.B.; Piazza, N.; et al. Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: Part 2: Endpoint definitions: A consensus document from the Mitral Valve Academic Research Consortium. Eur. Heart J. 2015, 36, 1878–1891. [Google Scholar] [CrossRef]
- Ohno, Y.; Attizzani, G.F.; Capodanno, D.; Cannata, S.; Dipasqua, F.; Immé, S.; Barbanti, M.; Ministeri, M.; Caggegi, A.; Pistritto, A.M.; et al. Association of tricuspid regurgitation with clinical and echocardiographic outcomes after percutaneous mitral valve repair with the MitraClip System: 30-day and 12-month follow-up from the GRASP Registry. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1246–1255. [Google Scholar] [CrossRef]
- Meijerink, F.; Koch, K.T.; de Winter, R.J.; Robbers-Visser, D.; Matthijs Boekholdt, S.; Holierook, M.; Baan, J.; Bouma, B.J. Tricuspid regurgitation after transcatheter mitral valve repair: Clinical course and impact on outcome. Catheter. Cardiovasc. Interv. 2021, 98, E427–E435. [Google Scholar] [CrossRef]
- Toyama, K.; Ayabe, K.; Kar, S.; Kubo, S.; Minamishima, T.; Rader, F.; Shiota, T.; Nishioka, T.; Siegel, R.J. Postprocedural Changes of Tricuspid Regurgitation After MitraClip Therapy for Mitral Regurgitation. Am. J. Cardiol. 2017, 120, 857–861. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Sordelli, C.; Lancellotti, P.; Carlomagno, G.; Di Giannuario, G.; Alati, E.; De Bonis, M.; Alfieri, O.; La Canna, G. Tricuspid Annular Size and Regurgitation Progression After Surgical Repair for Degenerative Mitral Regurgitation. Am. J. Cardiol. 2016, 118, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Piro, M.; Della Bona, R.; Abbate, A.; Biasucci, L.M.; Crea, F. Sex-Related Differences in Myocardial Remodeling. JACC 2010, 55, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Adamo, M.; Godino, C.; Giannini, C.; Scotti, A.; Liga, R.; Curello, S.; Fiorina, C.; Chiari, E.; Chizzola, G.; Abbenante, A.; et al. Left ventricular reverse remodelling predicts long-term outcomes in patients with functional mitral regurgitation undergoing MitraClip therapy: Results from a multicentre registry. Eur. J. Heart Fail. 2019, 21, 196–204. [Google Scholar] [CrossRef]
- Nita, N.; Scharnbeck, D.; Schneider, L.M.; Seeger, J.; Wöhrle, J.; Rottbauer, W.; Keßler, M.; Markovic, S. Predictors of left ventricular reverse remodeling after percutaneous therapy for mitral regurgitation with the MitraClip system. Catheter. Cardiovasc. Interv. 2020, 96, 687–697. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Grapsa, J. Valvular heart diseases in women: Facts vs. incantations. Eur. Heart J. 2023, 44, 833–835. [Google Scholar] [CrossRef]
Overall Cohort N = 198 | No TR Improvement N = 138 | TR Improvement N = 60 | p | |
---|---|---|---|---|
Age | 77.7 ± 7.3 | 77.6 ± 7.2 | 78.7 ± 8.0 | 0.37 |
Female Sex | 97 (49.0%) | 57 (41.3%) | 38 (63.3%) | 0.04 |
Body Mass Index (kg/m2) | 26.1 ± 4.7 | 26.3 ± 4.4 | 24.7 ± 4.1 | 0.01 |
Creatinine (µmol/L) | 125.7 ± 67.2 | 127.4 ± 73.8 | 128.5 ± 55.3 | 0.9 |
eGFR (mL/min) | 49.0 ± 18.4 | 50.2 ± 18.9 | 44.3 ± 15.7 | 0.03 |
Hemoglobine (g/dL) | 12.6 ± 1.7 | 12.7 ± 1.7 | 12.5 ± 1.7 | 0.62 |
Troponin T (ng/L) | 32.4 ± 26.1 | 32.2 ± 26.9 | 34.7 ± 26.1 | 0.55 |
NT-proBNP (pg/mL) | 4273.4 ± 5274.8 | 4732.5 ± 6219.9 | 7174.9 ± 9705.4 | 0.08 |
Diabetes mellitus | 52 (26.3%) | 36 (26.1%) | 17 (28.3%) | 0.74 |
Coronary artery disease | 118 (59.6%) | 87 (63.0%) | 32 (53.3%) | 0.20 |
Obstructive lung disease | 17 (8.6%) | 13 (9.4%) | 5 (8.3%) | 0.81 |
Atrial fibrillation | 118 (59.6%) | 85 (61.6%) | 34 (56.7%) | 0.52 |
Baseline NYHA class | 0.47 | |||
NYHA I | 0 | 0 | 0 | |
NYHA II | 39 (19.7%) | 26 (18.9%) | 13 (21.7%) | |
NYHA III | 127 (64.1%) | 87 (63.5%) | 37 (61.7%) | |
NYHA IV | 32 (16.2%) | 24 (17.5%) | 10 (16.7%) | |
EuroSCORE II (%) | 6.5 ± 6.0 | 6.6 ± 6.6 | 6.7 ± 4.9 | 0.89 |
STS-Score (%) | 4.8 ± 4.7 | 5.0 ± 5.7 | 5.0 ± 3.2 | 0.87 |
LV-EF (%) | 45.8 ± 15.7 | 47.0 ± 15.0 | 42.3 ± 16.7 | 0.08 |
V. cava inferior diameter (mm) | 19.8 ± 5.9 | 20.4 ± 6.1 | 19.0 ± 6.1 | 0.22 |
TAPSE (mm) | 19.7 ± 5.3 | 19.1 ± 5.3 | 19.3 ± 5.0 | 0.87 |
Baseline MR grade | 0.12 | |||
Grade < I | 0 | 0 | 0 | |
Grade I | 0 | 0 | 0 | |
Grade II | 2 (1.1%) | 2 (1.5%) | 0 | |
Grade III | 38 (19.2%) | 31 (22.6%) | 7 (11.7%) | |
Grade IV | 157 (79.3%) | 104 (75.9%) | 53 (88.3%) | |
MR grade at discharge | 0.64 | |||
Grade < I | 1 (0.5%) | 1 (0.7%) | 0 | |
Grade I | 133 (67.2%) | 89 (65.0%) | 44 (73.3%) | |
Grade II | 49 (24.5%) | 38 (27.7%) | 11 (18.3%) | |
Grade III | 11 (5.6%) | 7 (5.1%) | 4 (6.7%) | |
Grade IV | 3 (1.5%) | 2 (1.5%) | 1 (1.7%) | |
Absolute MR reduction by | ||||
3 grades | 100 (50.5%) | 63 (45.7%) | 37 (61.7%) | 0.04 |
2 grades | 78 (39.4%) | 60 (43.5%) | 18 (30.0%) | 0.07 |
1 grade | 17 (8.6%) | 13 (9.4%) | 4 (6.7%) | 0.53 |
0 grades | 3 (1.5%) | 2 (1.5%) | 1 (1.7%) | 0.91 |
Functional MR | 125 (63.1%) | 84 (60.9%) | 41 (68.3%) | 0.32 |
LAVI (ml/m2) | 70.5 ± 34.3 | 72.5 ± 33.6 | 65.1 ± 26.3 | 0.10 |
RAVI ml/m2 | 52.1 ± 26.5 | 55.1 ± 27.4 | 49.0 ± 22.7 | 0.11 |
LVEDD (mm) | 58.4 ± 10.5 | 58.5 ± 10.4 | 58.3 ± 10.8 | 0.91 |
LVESD (mm) | 42.5 ± 12.0 | 42.4 ± 11.7 | 44.4 ± 12.7 | 0.34 |
Basal RV diameter (mm) | 48.1 ± 7.9 | 49.0 ± 8.3 | 46.9 ± 6.6 | 0.06 |
Baseline TR VC (mm) | 7.3 ± 4.4 | 7.1 ± 4.4 | 8.2 ± 4.5 | 0.12 |
Baseline TR Grade | 0.006 | |||
Grade < I | 0 | 0 | 0 | |
Grade I | 28 (14.1%) | 28 (20.3%) | 0 | |
Grade II | 76 (38.4%) | 51 (37.0%) | 25 (41.7%) | |
Grade III | 73 (36.9%) | 46 (33.3%) | 27 (45.0%) | |
Grade IV | 18 (9.1%) | 11 (8.0%) | 7 (11.7%) | |
Grade V | 3 (1.5%) | 2 (1.4%) | 1 (1.7%) | |
sPAP (mmHg) | 48.5 ± 16.5 | 47.5 ± 15.0 | 50.5 ± 20.6 | 0.56 |
mPAP (mmHg) | 31.7 ± 10.4 | 31.4 ± 10.6 | 33.4 ± 9.8 | 0.48 |
mPCWP (mmHg) | 23.1 ± 7.7 | 22.9 ± 8.0 | 24.4 ± 7.2 | 0.53 |
mLAP (mmHg) | 18.5 ± 5.9 | 18.6 ± 5.3 | 18.1 ± 7.2 | 0.76 |
LA v-wave (mmHg) | 29.3 ± 12.8 | 29.5 ± 11.6 | 28.6 ± 15.6 | 0.80 |
mRAP (mmHg) | 13.5 ± 6.0 | 13.0 ± 5.7 | 13.9 ± 6.3 | 0.47 |
PVR (dyn × s × cm−5) | 268.4 ± 160.9 | 266.4 ± 164.7 | 290.7 ± 163.2 | 0.66 |
Cardiac Index (L/min/m2) | 2.1 ± 0.8 | 2.0 ± 0.7 | 2.2 ± 1.0 | 0.41 |
Loop diuretics | 165 (83.3%) | 115 (83.3%) | 50 (83.3%) | 1.0 |
Betablocker | 175 (88.4%) | 122 (88.4%) | 53 (88.3%) | 0.99 |
ACE inhibitor/AT1 antagonist | 143 (72.2%) | 101 (73.2%) | 42 (70.0%) | 0.65 |
ARNI | 27 (13.6%) | 18 (13.0%) | 9 (15.0%) | 0.71 |
Aldosterone antagonist | 107 (54.0%) | 73 (52.9%) | 34 (56.7%) | 0.63 |
SGLT2 inhibitor | 3 (1.5%) | 2 (1.4%) | 1 (1.7%) | 0.92 |
Device Success | 193 (97.5%) | 134 (97.1%) | 59 (98.3%) | 0.61 |
Number of Devices implanted | 1.7 ± 0.6 | 1.6 ± 0.6 | 1.7 ± 0.7 | 0.58 |
Mean transmitral gradient (mmHg) after M-TEER | 3.8 ± 1.9 | 3.8 ± 1.9 | 3.8 ± 1.8 | 0.79 |
Hospital Stay (days) | 7.3 ± 3.2 | 7.5 ± 3.4 | 7.2 ± 3.4 | 0.59 |
Need for CPR | 0 | 0 | 0 | 1.0 |
Univariate Logistic Regression Analysis | Multivariate Logistic Regression Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% Confidence Interval | p | Odds Ratio | 95% Confidence Interval | p | |
Female Sex | 2.455 | 1.314–4.585 | 0.005 | 2.997 | 1.227–7.319 | 0.016 |
Body Mass Index | 0.911 | 0.844–0.984 | 0.017 | 0.956 | 0.861–1.061 | 0.397 |
eGFR | 0.982 | 0.965–0.999 | 0.038 | 0.987 | 0.964–1.011 | 0.280 |
NT-proBNP (per 1.000 pg/mL) | 1.041 | 1.001–1.082 | 0.044 | 1.013 | 0.956–1.072 | 0.664 |
LV-EF | 0.980 | 0.960–1.001 | 0.066 | 0.973 | 0.945–1.002 | 0.071 |
Baseline MR-Grade | 2.403 | 1.024–5.641 | 0.035 | 3.181 | 1.044–9.694 | 0.042 |
LAVI | 0.991 | 0.980–1.003 | 0.135 | 0.994 | 0.977–1.011 | 0.460 |
RAVI | 0.990 | 0.978–1.003 | 0.139 | 0.988 | 0.964–1.013 | 0.360 |
Basal RV Diameter | 0.965 | 0.927–1.005 | 0.086 | 0.953 | 0.885–1.025 | 0.197 |
Baseline TR-Grade | 1.664 | 1.168–2.371 | 0.005 | 2.653 | 1.488–4.728 | <0.001 |
No TR Improvement N = 138 | TR Improvement N = 60 | p | |
---|---|---|---|
Delta LAVI (mL/m2) | 1.0 ± 18.6 | −0.6 ± 16.6 | 0.66 |
Delta RAVI (mL/m2) | 3.9 ± 15.2 | −3.2 ± 18.2 | 0.04 |
Delta LVEDD (mm) | −0.4 ± 7.9 | −2.4 ± 7.8 | 0.30 |
Delta LVESD (mm) | 1.9 ± 9.1 | −3.2 ± 7.6 | 0.02 |
Delta Base RV (mm) | 1.6 ± 5.7 | −0.6 ± 5.3 | 0.06 |
Univariate Regression Analysis | Multivariate Regression Analysis | |||||
---|---|---|---|---|---|---|
Hazard Ratio | 95% Confidence Interval | p | Hazard Ratio | 95% Confidence Interval | p | |
Female Sex | 0.985 | 0.435–2.233 | 0.971 | |||
Body Mass Index | 0.998 | 0.912–1.093 | 0.972 | |||
eGFR | 0.959 | 0.935–0.984 | 0.001 | 1.062 | 0.952–1.007 | 0.134 |
NT-proBNP (per 1.000 pg/mL) | 1.076 | 1.040–1.112 | <0.001 | 1.062 | 1.017–1.110 | 0.007 |
LV-EF | 0.988 | 0.961–1.017 | 0.416 | |||
Baseline MR-Grade | 0.875 | 0.368–2.080 | 0.762 | |||
LAVI | 1.000 | 0.987–1.013 | 0.997 | |||
RAVI | 1.000 | 0.985–1.015 | 0.988 | |||
Basal RV Diameter | 1.034 | 0.983–1.087 | 0.200 | |||
Baseline TR-Grade | 0.878 | 0.555–1.388 | 0.567 | |||
TR-Improvement | 0.449 | 0.153–1.319 | 0.145 | 0.333 | 0.112–0.996 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gröger, M.; Hirsch, K.; Felbel, D.; Paukovitsch, M.; Schneider, L.M.; Markovic, S.; Rottbauer, W.; Keßler, M. Predictors of Improvement in Concomitant Tricuspid Regurgitation Following Transcatheter Edge-to-Edge Mitral Valve Repair. J. Clin. Med. 2023, 12, 6191. https://doi.org/10.3390/jcm12196191
Gröger M, Hirsch K, Felbel D, Paukovitsch M, Schneider LM, Markovic S, Rottbauer W, Keßler M. Predictors of Improvement in Concomitant Tricuspid Regurgitation Following Transcatheter Edge-to-Edge Mitral Valve Repair. Journal of Clinical Medicine. 2023; 12(19):6191. https://doi.org/10.3390/jcm12196191
Chicago/Turabian StyleGröger, Matthias, Kai Hirsch, Dominik Felbel, Michael Paukovitsch, Leonhard Moritz Schneider, Sinisa Markovic, Wolfgang Rottbauer, and Mirjam Keßler. 2023. "Predictors of Improvement in Concomitant Tricuspid Regurgitation Following Transcatheter Edge-to-Edge Mitral Valve Repair" Journal of Clinical Medicine 12, no. 19: 6191. https://doi.org/10.3390/jcm12196191
APA StyleGröger, M., Hirsch, K., Felbel, D., Paukovitsch, M., Schneider, L. M., Markovic, S., Rottbauer, W., & Keßler, M. (2023). Predictors of Improvement in Concomitant Tricuspid Regurgitation Following Transcatheter Edge-to-Edge Mitral Valve Repair. Journal of Clinical Medicine, 12(19), 6191. https://doi.org/10.3390/jcm12196191