Hospital Admission Factors Independently Affecting the Risk of Mortality of COVID-19 Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/statystyka-przyczyn-zgonow/umieralnosc-w-2021-roku-zgony-wedlug-przyczyn-dane-wstepne,10,3.html (accessed on 27 November 2022).
- Long, B.; Carius, B.M.; Chavez, S.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am. J. Emerg. Med. 2022, 54, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, J.; Ryan, P.; Rodríguez-Baño, J.; Jarrín, I.; Carratalà, J.; Pachón, J.; Yllescas, M.; Arriba, J.R. Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain. Clin. Microbiol. Infect. 2020, 26, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Brook, R.; Lim, H.Y.; Ho, P.; Choy, K.W. Risk factors and early prediction of clinical deterioration and mortality in adult COVID-19 inpatients: An Australian tertiary hospital experience. Intern. Med. J. 2022, 52, 550–558. [Google Scholar] [CrossRef]
- Yates, T.; Zaccardi, F.; Islam, N.; Razieh, C.; Gillies, C.L.; Lawson, C.A.; Chudasama, Y.; Rowlands, A.; Davies, M.J.; Docherty, A.B.; et al. Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort. Obesity 2021, 29, 1223–1230. [Google Scholar] [CrossRef]
- Alhilani, M.; Cohn, M.; Nakhoul, M.; Than, J.; Sing, Y.S.; Choi, B.; Karagiannis, G. Predictors of mortality and ITU admission for COVID-19 patients admitted to a London district general hospital: A retrospective cohort study. Health Sci. Rep. 2021, 4, e404. [Google Scholar] [CrossRef]
- Ruscica, M.; Macchi, C.; Iodice, S.; Tersalvi, G.; Rota, I.; Ghidini, S.; Terranova, L.; Valenti, L.; Amati, F.; Aliberti, S.; et al. Prognostic parameters of in-hospital mortality in COVID-19 patients—An Italian experience. Eur. J. Clin. Investig. 2021, 51, e13629. [Google Scholar] [CrossRef]
- Thakur, B.; Dubey, P.; Benitez, J.; Torres, J.P.; Reddy, S.; Shokar, N.; Aung, K.; Munkherjee, D.; Dwivedi, A.K. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci. Rep. 2021, 11, 8562. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/workplacehealthpromotion/health-strategies/substance-misuse/index.html (accessed on 6 December 2022).
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- Kim, L.; Garg, S.; O’Halloran, A.; Whitaker, M.; Pham, H.; Anderson, E.J.; Armistead, I.; Bennett, N.M.; Billing, L.; Como-Sabetti, K.; et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin. Infect Dis. 2021, 72, e206–e214. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Ribeiro Dos Santos, G.; Wang, L.; Cummings, D.A.T.; Azman, A.S.; Paireau, J.; Fontanet, A.; Cauchemez, S.; Salje, H. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021, 590, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Weyand, C.M. Successful and Maladaptive T Cell Aging. Immunity 2017, 46, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol. 2017, 8, 1960. [Google Scholar] [CrossRef]
- Pangrazzi, L.; Weinberger, B. T cells, aging and senescence. Exp. Gerontol. 2020, 134, 110887. [Google Scholar] [CrossRef]
- Olivieri, F. Cellular senescence and inflammaging in age-related diseases. Mediat. Inflamm. 2018, 2018, 9076485. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Wang, X.; Chi, J.; Chen, H.; Bai, L.; Hu, Q.; Han, X.; Hu, W.; Zhu, L.; Wang, X.; et al. Correlation between the variables collected at admission and progression to severe cases during hospitalization among patients with COVID-19 in Chongqing. J. Med. Virol. 2020, 92, 2616–2622. [Google Scholar] [CrossRef]
- Xie, J.; Covassin, N.; Fan, Z.; Singh, P.; Gao, W.; Li, G.; Kara, T.; Somers, V.K. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin. Proc. 2020, 95, 1138–1147. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 3 July 2022).
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef]
- Isaia, G.; Marinello, R.; Tibaldi, V.; Tamone, C.; Bo, M. Atypical Presentation of COVID-19 in an Older Adult with Severe Alzheimer Disease. Am. J. Geriatr. Psychiatry 2020, 28, 790–791. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.F.; Figiel, G.S.; Mcdonald, W.M. Altered mental status as a novel initial clinical presentation for COVID-19 infection in the elderly. Am. J. Geriatr. Psychiatry 2020, 28, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Pilling, L.C.; Kuo, C.L.; Kuchel, G.A.; Melzer, D. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
- Izcovich, A.; Ragusa, M.A.; Tortosa, F.; Lavena Marzio, M.A.; Agnoletti, C.; Bengolea, A.; Ceirano, A.; Espinosa, F.; Saavedra, E.; Sanguine, V.; et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE 2020, 15, e0241955. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Ferreira, F.L.; Bota, D.P.; Bross, A.; Melot, C.; Vincent, J.L. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001, 286, 1754–1758. [Google Scholar] [CrossRef]
- Zeng, H.L.; Lu, Q.B.; Yang, Q.; Wang, X.; Yue, D.Y.; Zhang, L.K.; Li, H.; Liu, W.; Li, H.J. Longitudinal Profile of Laboratory Parameters and Their Application in the Prediction for Fatal Outcome among Patients Infected with SARS-CoV-2: A Retrospective Cohort Study. Clin. Infect Dis. 2021, 72, 626–633. [Google Scholar] [CrossRef]
- Gao, L.; Jiang, D.; Wen, X.S.; Cheng, X.C.; Sun, M.; He, B.; You, L.N.; Lei, P.; Tan, X.W.; Qin, S.; et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020, 21, 83. [Google Scholar] [CrossRef]
- Selçuk, M.; Keskin, M.; Çınar, T.; Günay, N.; Doğan, S.; Çiçek, V.; Kılıç, Ş.; Asal, S.; Yavuz, S.; Keser, N.; et al. Prognostic significance of N-Terminal Pro-BNP in patients with COVID-19 pneumonia without previous history of heart failure. J. Cardiovasc. Thorac. Res. 2021, 13, 141–145. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.Y.; Li, G.X.; Chen, L.; Shu, C.; Song, J.; Wang, W.; Wang, Y.W.; Chen, Q.; Jin, G.N.; Liu, T.T.; et al. Association of liver abnormalities with in-hospital mortality in patients with COVID-19. J Hepatol. 2021, 74, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, I.H.; Sato, T.; Kong, S.W.; Iimura, T. Genetic variation analyses indicate conserved SARS-CoV-2-host interaction and varied genetic adaptation in immune response factors in modern human evolution. Dev. Growth Differ. 2021, 63, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Pati, A.; Mahto, H.; Padhi, S.; Panda, A.K. ACE deletion allele is associated with susceptibility to SARS-CoV-2 infection and mortality rate: An epidemiological study in the Asian population. Clin. Chim. Acta 2020, 510, 455–458. [Google Scholar] [CrossRef]
Variable | Total | Non-Survivors | Survivors | OR (95%CI) | p-Value |
---|---|---|---|---|---|
Gender, n (%) | |||||
Female | 903 (42.2) | 115 (42.0) | 788 (42.3) | ||
Male | 1235 (57.8) | 159 (58.0) | 1076 (57.7) | 1.01 (0.78–1.31) | p = 0.924 |
Age (decade) * | 6.4 (5.0 to 7.4) | 7.5 (6.7 to 8.4) | 6.2 (4.8 to 7.2) | 1.98 (1.78–2.20) | p < 0.001 |
Time pt 0 (days) * | 25.4 (18.0 to 31.9) | 28.2 (21.0 to 32.5) | 24.9 (17.8 to 31.9) | 1.02 (1.01–1.03) | p < 0.001 |
Time of onset (days) * | 8.0 (6.0 to 11.0) | 7.0 (5.0 to 10.0) | 8.0 (6.0 to 11.0) | 1.00 (0.99–1.01) | p = 0.467 |
SatO2 (%) * | 93.0 (88.0 to 97.0) | 85.0 (76.0 to 90.0) | 93.0 (89.0 to 97.0) | 0.89 (0.88–0.91) | p < 0.001 |
Dementia | 111 (5.2) | 41 (15.5) | 70 (3.8) | 4.70 (3.10–7.05) | p < 0.001 |
Stomach ulcer | 60 (2.8) | 13 (4.9) | 47 (2.5) | 1.96 (1.01–3.57) | p = 0.035 |
COPD | 111 (5.2) | 25 (9.5) | 86 (4.6) | 2.15 (1.32–3.37) | p = 0.001 |
Liver | 50 (2.3) | 6 (2.2) | 44 (2.4) | 0.95 (0.36–2.09) | p = 0.912 |
Diabetes # | 339 (15.9) | 62 (23.0) | 277 (14.9) | 1.79 (1.30–2.43) | p < 0.001 |
Diabetes * | 62 (2.9) | 15 (5.6) | 47 (2.5) | 2.55 (1.35–4.54) | p = 0.002 |
Paresis | 65 (3.1) | 16 (6.1) | 49 (2.6) | 2.39 (1.30–4.17) | p = 0.003 |
Chronic renal failure | 34 (1.6) | 7 (2.6) | 27 (1.5) | 1.83 (0.73–4.02) | p = 0.159 |
Neoplasm | 152 (7.2) | 39 (14.7) | 113 (6.1) | 2.66 (1.78–3.89) | p < 0.001 |
Asthma | 134 (6.4) | 14 (5.3) | 120 (6.5) | 0.80 (0.43–1.36) | p = 0.434 |
Immunosuppression | 61 (2.9) | 16 (6.0) | 45 (2.5) | 2.55 (1.38–4.48) | p = 0.002 |
Interstitial lung disease | 20 (0.9) | 3 (1.1) | 17 (0.9) | 1.24 (0.29–3.72) | p = 0.733 |
Atrial fibrillation | 191 (9.1) | 59 (22.2) | 132 (7.2) | 3.69 (2.62–5.17) | p < 0.001 |
Hypertension | 1042 (49.1) | 176 (65.9) | 866 (46.7) | 2.21 (1.69–2.90) | p < 0.001 |
Alcohol abuse | 72 (3.9) | 11 (5.0) | 61 (3.7) | 1.35 (0.66–2.50) | p = 0.373 |
Nicotinism | 443 (22.8) | 66 (29.5) | 377 (21.9) | 1.49 (1.09–2.02) | p = 0.012 |
Medical worker | 132 (6.5) | 9 (3.6) | 123 (6.9) | 0.51 (0.24–0.96) | p = 0.055 |
BMI > 30 (kg/m2) | 671 (31.4) | 71 (25.9) | 600 (32.2) | 0.38 (0.14–1.19) | p = 0.066 |
BMI 18–30 (kg/m2) | 1016 (47.5) | 117 (42.7) | 899 (48.2) | 0.42 (0.16–1.29) | p = 0.093 |
BMI < 18.5 (kg/m2) | 21 (1.0) | 5 (1.8) | 16 (0.9) | 1.24 (0.33–8.08) | 0.782 |
SOFA Score * | 1.0 (0.0 to 2.0) | 3.0 (2.0 to 7.0) | 1.0 (0.0 to 2.0) | 1.76 (1.65–1.89) | p < 0.001 |
Variable | Total | Non-Survivors | Survivors | OR (95%CI) | p-Value |
---|---|---|---|---|---|
CRP (mg/L) * | 63.0 (34.0 to 160.0) | 156.0 (63.8 to 215.0) | 58.0 (30.0 to 149.0) | 1.01 (1.00–1.01) | p < 0.001 |
PCT (ng/mL) * | 0.1 (0.0 to 0.2) | 0.2 (0.1 to 0.7) | 0.1 (0.0 to 0.1) | 1.06 (1.02–1.12) | p = 0.021 |
Il-6 * | 43.2 (18.2 to 87.3) | 99.5 (53.3 to 188.9) | 37.6 (16.0 to 75.1) | 1.00 (1.00–1.00) | p = 0.043 |
Neu (1000 cells/μL) * | 4.8 (3.4 to 7.0) | 6.6 (4.5 to 9.4) | 4.7 (3.3 to 6.6) | 1.17 (1.13–1.21) | p < 0.001 |
Lym (1000 cells/μL) * | 0.9 (0.6 to 1.3) | 0.6 (0.5 to 0.9) | 0.9 (0.7 to 1.4) | 0.47 (0.35–0.63) | p < 0.001 |
PLT (1000 cells/μL) * | 214 (163 to 282) | 199 (145 to 260) | 216 (166 to 287) | 1.00 (1.00–1.00) | p < 0.001 |
ALT (U/L) * | 35.0 (23.0 to 56.0) | 35.0 (23.0 to 54.0) | 35.0 (23.0 to 57.0) | 1.00 (1.00–1.00) | p = 0.344 |
eGFR ≥ 60 l/min/1.73 m2 | 1738 (82.3) | 149 (55.6) | 1589 (86.1) | 0.20 (0.15–0.27) | p < 0.001 |
LDH (U/L) * | 16.8 (12.2 to 22.5) | 22.8 (16.8 to 32.3) | 16.0 (11.8 to 21.4) | 1.07 (1.05–1.08) | p < 0.001 |
Urea (mmol/L) * | 5.7 (4.3 to 8.1) | 9.4 (7.2 to 14.3) | 5.5 (4.2 to 7.4) | 1.18 (1.15–1.22) | p < 0.001 |
D-dimers mg/L * | 2.1 (1.4 to 3.6) | 3.6 (2.2 to 6.6) | 2.0 (1.3 to 3.2) | 1.04 (1.03–1.05) | p < 0.001 |
Bilirubin (μmol/L) * | 12.1 (9.3 to 16.0) | 13.7 (10.4 to 18.9) | 11.9 (9.3 to 15.6) | 1.01 (1.00–1.02) | p = 0.007 |
NT-pro-BNP (pg/mL) * | 0.4 (0.1 to 1.5) | 2.0 (0.9 to 6.0) | 0.3 (0.1 to 1.2) | 1.10 (1.07–1.12) | p < 0.001 |
Variable | p-Value | OR | 95% CI |
---|---|---|---|
Age | 0.001 | 1.53 | (1.20–1.97) |
Time pt 0 | 0.069 | 1.04 | (1.00–1.10) |
SatO2 (%) | 0.013 | 0.95 | (0.92–0.99) |
Dementia | 0.008 | 3.40 | (1.36–8.26) |
Stomach ulcer | 0.043 | 3.55 | (0.94–11.31) |
COPD | 0.432 | 1.50 | (0.52–3.99) |
Diabetes # | 0.837 | 1.07 | 1.07 (0.54–2.07) |
Diabetes * | 0.147 | 0.34 | (0.07–1.35) |
Paresis | 0.546 | 0.67 | (0.17–2.28) |
Neoplasm | <0.001 | 4.45 | (2.01–9.62) |
Immunosuppression | 0.280 | 2.56 | 0.37–12.16 |
Atrial fibrillation | 0.542 | 1.29 | (0.56–2.84) |
Hypertension | 0.689 | 0.89 | 0.50–1.58 |
Nicotinism | 0.340 | 1.35 | 0.72–2.51 |
SOFA Score | <0.001 | 1.73 | 1.52–1.99 |
CRP | 0.475 | 1.00 | 1.00–1.00 |
PCT | 0.500 | 1.09 | 0.83–1.37 |
Il-6 | 0.119 | 1.00 | 1.00–1.00 |
Neutrophils | 0.956 | 1.00 | 0.91–1.10 |
Lymphocytes | 0.405 | 0.91 | 0.69–1.04 |
PLT | 0.025 | 1.00 | 0.99–1.00 |
eGFR ≥ 60 | 0.590 | 1.23 | 0.58–2.71 |
LDH | <0.001 | 1.08 | 1.05–1.12 |
Urea | 0.112 | 1.07 | 0.99–1.16 |
D-dimers | 0.116 | 1.01 | 1.00–1.03 |
Bilirubin | 0.010 | 0.94 | 0.90–0.99 |
NT pro BNP | 0.033 | 1.06 | 1.01–1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paciorek, M.; Bieńkowski, C.; Kowalska, J.D.; Skrzat-Klapaczyńska, A.; Bednarska, A.; Krogulec, D.; Cholewińska, G.; Kowalski, J.; Podlasin, R.; Ropelewska-Łącka, K.; et al. Hospital Admission Factors Independently Affecting the Risk of Mortality of COVID-19 Patients. J. Clin. Med. 2023, 12, 6264. https://doi.org/10.3390/jcm12196264
Paciorek M, Bieńkowski C, Kowalska JD, Skrzat-Klapaczyńska A, Bednarska A, Krogulec D, Cholewińska G, Kowalski J, Podlasin R, Ropelewska-Łącka K, et al. Hospital Admission Factors Independently Affecting the Risk of Mortality of COVID-19 Patients. Journal of Clinical Medicine. 2023; 12(19):6264. https://doi.org/10.3390/jcm12196264
Chicago/Turabian StylePaciorek, Marcin, Carlo Bieńkowski, Justyna Dominika Kowalska, Agata Skrzat-Klapaczyńska, Agnieszka Bednarska, Dominika Krogulec, Grażyna Cholewińska, Jacek Kowalski, Regina Podlasin, Katarzyna Ropelewska-Łącka, and et al. 2023. "Hospital Admission Factors Independently Affecting the Risk of Mortality of COVID-19 Patients" Journal of Clinical Medicine 12, no. 19: 6264. https://doi.org/10.3390/jcm12196264
APA StylePaciorek, M., Bieńkowski, C., Kowalska, J. D., Skrzat-Klapaczyńska, A., Bednarska, A., Krogulec, D., Cholewińska, G., Kowalski, J., Podlasin, R., Ropelewska-Łącka, K., Wasilewski, P., Boros, P. W., Martusiewicz-Boros, M. M., Pulik, P., Pihowicz, A., & Horban, A. (2023). Hospital Admission Factors Independently Affecting the Risk of Mortality of COVID-19 Patients. Journal of Clinical Medicine, 12(19), 6264. https://doi.org/10.3390/jcm12196264