The Effects of Multi-Mode Monophasic Stimulation with Capacitive Discharge on the Facial Nerve Stimulation Reduction in Young Children with Cochlear Implants: Intraoperative Recordings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Stimulation Parameters and EMG Responses
2.4. Radiological Examination
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunn, C.C.; Walker, E.A.; Oleson, J.; Kenworthy, M.; Van Voorst, T.; Tomblin, J.B.; Ji, H.; Kirk, K.I.; McMurray, B.; Hanson, M.; et al. Longitudinal speech perception and language performance in pediatric cochlear implant users: The effect of age at implantation. Ear Hear. 2014, 35, 148–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binnetoglu, A.; Demir, B.; Batman, C. Surgical complications of cochlear implantation: A 25-year retrospective analysis of cases in a tertiary academic center. Eur. Arch. Otorhinolaryngol. 2020, 277, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, A.; Hayden, C.; Mahairas, A.D.; Leader, P.; Bush, M.L. Factors influencing aberrant facial nerve stimulation following cochlear implantation: A systematic review and metanalysis. Otol. Neurotol. 2020, 41, 1050–1059. [Google Scholar] [CrossRef]
- Hatch, J.L.; Rizk, H.G.; Moore, M.W.; Camposeo, E.E.; Nguyen, S.A.; Lambert, P.R.; Meyer, T.A.; McRackan, T.R. Can Preoperative CT Scans Be Used to Predict Facial Nerve Stimulation Following CI? Otol. Neurotol. 2017, 38, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Cushing, S.L.; Papsin, B.C.; Gordon, K.A. Incidence and characteristics of facial nerve stimulation in children with cochlear implants. Laryngoscope 2006, 116, 1787–1791. [Google Scholar] [CrossRef] [Green Version]
- Kelsall, D.C.; Shallop, J.K.; Brammeier, T.G.; Prenger, E.C. Facial nerve stimulation after Nucleus 22-channel cochlear implantation. Acta Otorhinolaryngol. Ital. 1997, 18, 336–341. [Google Scholar]
- Eitutis, S.T.; Carlyon, R.P.; Tam, Y.C.; Salorio-Corbetto, M.; Vanat, Z.; Tebbutt, K.; Bardsley, R.; Powell, H.R.F.; Chowdhury, S.; Tysome, J.R.; et al. Management of Severe Facial Nerve Cross Stimulation by Cochlear Implant Replacement to Change Pulse Shape and Grounding Configuration: A Case-series. Otol. Neurotol. 2022, 43, 452–459. [Google Scholar] [CrossRef]
- Polak, M.; Ulubil, S.A.; Hodges, A.V.; Balkany, T.J. Revision cochlear implantation for facial nerve stimulation in otosclerosis. Arch. Otolaryngol. Head Neck Surg. 2006, 132, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Bahmer, A.; Adel, Y.; Baumann, U. Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users: Intraoperative Recordings. Otol. Neurotol. 2017, 38, 438–444. [Google Scholar] [CrossRef]
- Broomfield, S.; Mawman, D.; Woolford, T.; O’driscoll, M.; Luff, D.; Ramsden, R. Non-auditory stimulation in adult cochlear implant users. Cochlear Implant. Int. 2000, 1, 55–66. [Google Scholar] [CrossRef]
- Alharbi, F.A.; Spreng, M.; Issing, P.R. Facial nerve stimulation can improve after cochlear reimplantation and postoperative advanced programming techniques: Case report. Int. J. Clin. Med. 2012, 3, 62–64. [Google Scholar] [CrossRef]
- Gärtner, L.; Lenarz, T.; Ivanauskaite, J.; Büchner, A. Facial nerve stimulation in cochlear implant users—A matter of stimulus parameters? Cochlear Implants Int. 2022, 23, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Hyppolito, M.A.; Barbosa, A.C.M.; Danieli, F.; Hussain, R.; Le Goff, N. Cochlear re-implantation with the use of multi-mode grounding associated with anodic monophasic pulses to manage abnormal facial nerve stimulation. Cochlear Implants Int. 2022, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Margeta, J.; Hussain, R.; López Diez, P.; Morgenstern, A.; Demarcy, T.; Wang, Z.; Gnansia, D.; Martinez Manzanera, O.; Vandersteen, C.; Delingette, H.; et al. A Web-Based Automated Image Processing Research Platform for Cochlear Implantation-Related Studies. J. Clin. Med. 2022, 11, 6640. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.; Bance, M.; O’Driscoll, M.; Mawman, D.; Ramsden, R.T. Explantation of a nucleus multichannel cochlear implant and re-implantation into the contralateral ear. A case report of a new strategy. J. Laryngol. Otol. 1996, 110, 881–883. [Google Scholar] [CrossRef]
- Burck, I.; Helal, R.A.; Naguib, N.N.N.; Nour-Eldin, N.A.; Scholtz, J.E.; Martin, S.; Leinung, M.; Helbig, S.; Stöver, T.; Lehn, A.; et al. Postoperative radiological assessment of the mastoid facial canal in cochlear implant patients in correlation with facial nerve stimulation. Eur. Radiol. 2022, 32, 234–242. [Google Scholar] [CrossRef]
- Redleaf, M.I.; Blough, R.R. Distance from the labyrinthine portion of the facial nerve to the basal turn of the cochlea. Temporal bone histopathologic study. Ann. Otol. Rhinol. Laryngol. 1996, 105, 323–326. [Google Scholar] [CrossRef]
- Kruschinski, C.; Weber, B.P.; Pabst, R. Clinical relevance of the distance between the cochlea and the facial nerve in cochlear implantation. Otol. Neurotol. 2003, 24, 823–827. [Google Scholar] [CrossRef]
- Seyyedi, M.; Herrmann, B.S.; Eddington, D.K.; Nadol, J.B. The pathologic basis of facial nerve stimulation in otosclerosis and multi-channel cochlear implantation. Otol. Neurotol. 2013, 34, 1603–1609. [Google Scholar] [CrossRef] [Green Version]
- De Seta, D.; Nguyen, Y.; Bonnard, D.; Ferrary, E.; Godey, B.; Bakhos, D.; Mondain, M.; Deguine, O.; Sterkers, O.; Bernardeschi, D.; et al. The role of electrode placement in bilateral simultaneously cochlear-implanted adult patients. Otolaryngol. Head Neck Surg. 2016, 155, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Danieli, F.; Dermacy, T.; do Amaral, M.S.A.; Reis, A.C.M.B.; Gnansia, D.; Hyppolito, M.A. Auditory performance of post-lingually deafened adult cochlear implant recipients using electrode deactivation based on postoperative cone beam CT images. Eur. Arch. Otorhinolaryngol. 2021, 278, 977–986. [Google Scholar] [CrossRef] [PubMed]
Subject | Ear | Side | Sex | Age at CI Surgery (m) | Etiology |
---|---|---|---|---|---|
S1 | EA1 | L | M | 18 | Congenital |
EA2 | R | Congenital | |||
S2 | EA3 | R | F | 18 | Genetics |
EA4 | L | Genetics | |||
S3 | EA5 | R | F | 14 | Idiopathic |
EA6 | L | Idiopathic | |||
S4 | EA7 | R | F | 66 | Ototoxicity |
S5 | EA8 | L | F | 47 | Idiopathic |
S6 | EA9 | R | F | 45 | Auditory neuropathy |
S70 | EA10 | L | F | 30 | Genetics |
Stimulation Patten | Stimulation Mode | Waveform | Polarity | Pulse Train | Coding | Pulse Amplitude Min:Step:Max (µA) | Pulse Duration (µs) | Stimulation Rate (Hz) |
---|---|---|---|---|---|---|---|---|
1 Monopolar biphasic | MP | Biphasic active symmetrical | Anodic leading | Masker probe | Amplitude | 444:110:1554 | 30 | 83 |
2 Multi-mode Monophasic with CD | MM | Monophasic capacitive discharge | Anodic leading | Continuous | Amplitude | 444:110:1554 | 30 | 250 |
Electrode | ST1 N (%) | ST2 N (%) | p-Value |
---|---|---|---|
E1 (basal) | 9 (90.0) | 1 (10.0) | 0.0143 * |
E8 (medial) | 8 (80.0) | 0 (0.0) | 0.0047 * |
E15 (medial) | 8 (80.0) | 0 (0.0) | 0.0047 * |
E20 (apical) | 8 (80.0) | 0 (0.0) | 0.0047 * |
Subject | Ear | Side | Extra-Cochlear Electrodes | Cochlear-Nerve Distance (mm) | Insertion Depth Angle (°) | Electrode Closest to the FN |
---|---|---|---|---|---|---|
S1 | EA1 | L | 0 | 0.24 | 279 | 15 |
EA2 | R | 2 | 0.20 | 281 | 18 | |
S2 | EA3 | R | 1 | 0.20 | 285 | 15 |
EA4 | L | 1 | 0.40 | 290 | 15 | |
S3 | EA5 | R | 1 | 0.44 | 267 | 16 |
EA6 | L | 2 | 1.00 | 270 | 16 | |
S4 | EA7 | R | 1 | 0.20 | 273 | 16 |
S5 | EA8 | L | 0 | 0.32 | 279 | 14 |
S6 | EA9 | R | 0 | 0.56 | 276 | 11 |
S70 | EA10 | L | 0 | 0.64 | 250 | 10 |
Spearman (rho) | p-Value | |||
---|---|---|---|---|
Electrode | T-FNS (nC/Phase) | EMG Amplitude (µV) | T-FNS (nC/Phase) | EMG Amplitude (µV) |
E20 | −0.1975 | 0.1605 | 0.6391 | 0.7042 |
E15 | −0.1975 | 0.0881 | 0.6391 | 0.8358 |
E8 | −0.1605 | −0.2332 | 0.7042 | 0.5784 |
E1 | −0.1384 | −0.2981 | 0.7439 | 0.4732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danieli, F.; Hyppolito, M.A.; Hussain, R.; Hoen, M.; Karoui, C.; Reis, A.C.M.B. The Effects of Multi-Mode Monophasic Stimulation with Capacitive Discharge on the Facial Nerve Stimulation Reduction in Young Children with Cochlear Implants: Intraoperative Recordings. J. Clin. Med. 2023, 12, 534. https://doi.org/10.3390/jcm12020534
Danieli F, Hyppolito MA, Hussain R, Hoen M, Karoui C, Reis ACMB. The Effects of Multi-Mode Monophasic Stimulation with Capacitive Discharge on the Facial Nerve Stimulation Reduction in Young Children with Cochlear Implants: Intraoperative Recordings. Journal of Clinical Medicine. 2023; 12(2):534. https://doi.org/10.3390/jcm12020534
Chicago/Turabian StyleDanieli, Fabiana, Miguel Angelo Hyppolito, Raabid Hussain, Michel Hoen, Chadlia Karoui, and Ana Cláudia Mirândola Barbosa Reis. 2023. "The Effects of Multi-Mode Monophasic Stimulation with Capacitive Discharge on the Facial Nerve Stimulation Reduction in Young Children with Cochlear Implants: Intraoperative Recordings" Journal of Clinical Medicine 12, no. 2: 534. https://doi.org/10.3390/jcm12020534
APA StyleDanieli, F., Hyppolito, M. A., Hussain, R., Hoen, M., Karoui, C., & Reis, A. C. M. B. (2023). The Effects of Multi-Mode Monophasic Stimulation with Capacitive Discharge on the Facial Nerve Stimulation Reduction in Young Children with Cochlear Implants: Intraoperative Recordings. Journal of Clinical Medicine, 12(2), 534. https://doi.org/10.3390/jcm12020534