Lower Serum Uric Acid Levels May Lower the Incidence of Diabetic Chronic Complications in U.S. Adults Aged 40 and Over
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Sample
2.2. Definitions and Measurement
2.2.1. Diabetic Kidney Disease
2.2.2. Cardiovascular Disease
2.2.3. Peripheral Neuropathy
2.2.4. Diabetic Retinopathy
2.3. Inclusion and Exclusion Criteria
2.4. Variables
2.5. Statistical Analysis
3. Results
3.1. Clinical Features of Included DM Patients
3.2. Serum Uric Acid and Diabetic Kidney Disease
3.3. Serum Uric Acid and Cardiovascular Disease
3.4. Serum Uric Acid and Peripheral Neuropathy
3.5. Serum Uric Acid and Diabetic Retinopathy
3.6. ORs of Diabetic Complications with per SD Increase of Uric Acid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACR | ratio of urine albumin to creatinine |
CVD | cardiovascular disease |
DKD | diabetic kidney disease |
DM | diabetes mellitus |
DR | diabetic retinopathy |
eGFR | estimation of the glomerular filtration rate |
NHANES | National Health and Nutrition Examination Surveys |
PIR | poverty income ratio |
PN | peripheral neuropathy |
ROS | reactive oxygen species |
SUA | serum uric acid |
ULT | urate lowering therapy |
References
- Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016, 113 Pt A, 600–609. [Google Scholar] [CrossRef]
- World Health Organization. Global Report on Diabetes. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 15 August 2022).
- American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2022. Diabetes Care 2021, 45 (Suppl. S1), S1–S2. [Google Scholar] [CrossRef]
- Forbes, J.M.; Cooper, M.E. Mechanisms of Diabetic Complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Prattichizzo, F. Variability of risk factors and diabetes complications. Cardiovasc. Diabetol. 2021, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Ji, Q.; Bhatt, D.L.; Mazer, C.D.; Al-Omran, M.; Inzucchi, S.E.; Wanner, C.; Ofstad, A.P.; Zwiener, I.; George, J.T.; et al. Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: A subanalysis of EMPA-REG OUTCOME. Diabetes Obes. Metab. 2020, 22, 1207–1214. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Y.; Chen, Y.; Fang, S.; Zhang, W.; Xia, F.; Wang, N.; Lu, Y. Different associations between serum urate and diabetic complications in men and postmenopausal women. Diabetes Res. Clin. Pract. 2020, 160, 108005. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Y.; Hou, X.; Xu, N.; Che, K.; Li, C.; Yan, S.; Wang, Y.; Wang, B. Serum Uric Acid Levels and Diabetic Peripheral Neuropathy in Type 2 Diabetes: A Systematic Review and Meta-analysis. Mol. Neurobiol. 2016, 53, 1045–1051. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Y.; Li, X.; Li, D.; Xu, C.; Yuan, J.; Wei, S.; Li, X.; Yang, K.; Zheng, D.; et al. Serum uric acid levels and decreased estimated glomerular filtration rate in patients with type 2 diabetes: A cohort study and meta-analysis. Diabetes Metab. Res. Rev. 2018, 34, e3046. [Google Scholar] [CrossRef]
- Gherghina, M.-E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress—Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef]
- Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T.; et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012, 3, 764. [Google Scholar] [CrossRef]
- Hyndman, D.; Liu, S.; Miner, J.N. Urate Handling in the Human Body. Curr. Rheumatol. Rep. 2016, 18, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zhu, X.; Wu, J.; Huang, Z.; Zhao, Z.; Zhang, X.; Xue, Y.; Wan, W.; Li, C.; Zhang, W.; et al. Prevalence of Hyperuricemia Among Chinese Adults: Findings from Two Nationally Representative Cross-Sectional Surveys in 2015–16 and 2018–19. Front. Immunol. 2022, 12, 791983. [Google Scholar] [CrossRef]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Podestà, M.A.; Moroni, G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020, 98, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Andres-Hernando, A.; Cicerchi, C.; Kuwabara, M.; Orlicky, D.J.; Sanchez-Lozada, L.G.; Nakagawa, T.; Johnson, R.J.; Lanaspa, M.A. Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation. Nat. Metab. 2021, 3, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Zhang, X.; Kang, S.; Wu, Y. Serum uric acid levels and incidence of impaired fasting glucose and type 2 diabetes mellitus: A meta-analysis of cohort studies. Diabetes Res. Clin. Pract. 2013, 101, 88–96. [Google Scholar] [CrossRef]
- Mortada, I. Hyperuricemia, Type 2 Diabetes Mellitus, and Hypertension: An Emerging Association. Curr. Hypertens. Rep. 2017, 19, 69. [Google Scholar] [CrossRef]
- Han, Y.; Han, X.; Yin, Y.; Cao, Y.; Di, H.; Wu, J.; Zhang, Y.; Zeng, X. Dose-Response Relationship of Uric Acid with Fasting Glucose, Insulin, and Insulin Resistance in a United States Cohort of 5148 Non-diabetic People. Front. Med. 2022, 9, 905085. [Google Scholar] [CrossRef]
- Centers for Disease, Control, and Prevention. National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/ (accessed on 15 August 2022).
- World Medical Association Declaration of Helsinki. Ethical Principles for Medical Research. Involving Human Subjects. Available online: https://www.wma.net/wp-content/uploads/2016/11/DoH-Oct2013-JAMA.pdf (accessed on 15 August 2022).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- de Boer, I.H.; Rue, T.C.; Hall, Y.N.; Heagerty, P.J.; Weiss, N.S.; Himmelfarb, J. Temporal Trends in the Prevalence of Diabetic Kidney Disease in the United States. JAMA 2011, 305, 2532–2539. [Google Scholar] [CrossRef]
- Xu, C.; Liang, J.; Xu, S.; Liu, Q.; Xu, J.; Gu, A. Increased serum levels of aldehydes are associated with cardiovascular disease and cardiovascular risk factors in adults. J. Hazard. Mater. 2020, 400, 123134. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey. 1999–2000 Data Documentation, Codebook, and Frequencies Lower Extremity Disease—Peripheral Neuropathy (LEXPN). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/LEXPN.htm#Protocol_and_Procedure (accessed on 15 August 2022).
- National Health and Nutrition Examination Survey. 2005–2006 Data Documentation, Codebook, and Frequencies Ophthalmology—Retinal Imaging (OPXRET_D). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/OPXRET_D.htm#Data_Processing_and_Editing (accessed on 15 August 2022).
- Eid, S.; Sas, K.M.; Abcouwer, S.F.; Feldman, E.L.; Gardner, T.W.; Pennathur, S.; Fort, P.E. New insights into the mechanisms of diabetic complications: Role of lipids and lipid metabolism. Diabetologia 2019, 62, 1539–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.-A.; Sánchez-Lozada, L.G.; Johnson, R.J.; Kang, D.-H. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens. 2010, 28, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Liu, J.; Xu, Y. Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. Int. J. Endocrinol. 2019, 2019, 9691345. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-J.; Yang, I.-H.; Kuo, H.-K.; Chung, M.-S.; Chen, Y.-J.; Chen, C.-H.; Liu, R.-T. Serum uric acid concentration is associated with worsening in severity of diabetic retinopathy among type 2 diabetic patients in Taiwan—A 3-year prospective study. Diabetes Res. Clin. Pract. 2014, 106, 366–372. [Google Scholar] [CrossRef]
- Hayashino, Y.; Okamura, S.; Tsujii, S.; Ishii, H. Association of serum uric acid levels with the risk of development or progression of albuminuria among Japanese patients with type 2 diabetes: A prospective cohort study [Diabetes Distress and Care Registry at Tenri (DDCRT 10)]. Acta Diabetol. 2016, 53, 599–607. [Google Scholar] [CrossRef]
- Zhuang, Y.; Huang, H.; Hu, X.; Zhang, J.; Cai, Q. Serum uric acid and diabetic peripheral neuropathy: A double-edged sword. Acta Neurol. Belg. 2022. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, M.; Lee, Y.-H.; Lee, B.-W.; Cha, B.-S.; Kang, E.S. Uric Acid Variability as a Predictive Marker of Newly Developed Cardiovascular Events in Type 2 Diabetes. Front. Cardiovasc. Med. 2021, 8, 775753. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Q.; Min, R.; Deng, Y.; Xu, Y.; Gao, L. The association between serum uric acid and diabetic complications in patients with type 2 diabetes mellitus by gender: A cross-sectional study. PeerJ 2021, 9, e10691. [Google Scholar] [CrossRef]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol. 2020, 72, 879–895. [Google Scholar] [CrossRef]
- Yamanaka, H. Japanese Guideline for the Management of Hyperuricemia and Gout: Second Edition. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1018–1029. [Google Scholar] [CrossRef] [PubMed]
SUA Levels | SUA ≤ 300 | 300 < SUA ≤ 420 | SUA > 420 | p Value |
---|---|---|---|---|
Age (year) † | 62 (19) | 65 (17) | 67 (16) | <0.01 |
Males (%) ‡ | 492 (43.3) | 726 (53.6) | 387 (62.9) | <0.01 |
Race (%) ‡ | <0.01 | |||
Mexican American | 367 (32.3) | 321 (23.7) | 60 (9.8) | |
Other Hispanic | 83 (7.3) | 75 (5.5) | 25 (4.1) | |
Non-Hispanic White | 417 (36.7) | 580 (42.8) | 285 (46.3) | |
Non-Hispanic Black | 225 (19.8) | 340 (25.1) | 221 (35.9) | |
Other race | 45 (4.0) | 38 (2.8) | 24 (3.9) | |
Education level (%) ‡ | <0.01 | |||
Less than 9th grade | 331 (29.1) | 358 (26.4) | 109 (17.7) | |
9–11th grade | 243 (21.4) | 234 (17.3) | 131 (21.3) | |
High school graduate | 222 (19.5) | 304 (22.5) | 165 (26.8) | |
College or AA degree | 238 (20.9) | 284 (21.0) | 131 (21.3) | |
College graduate or above | 103 (9.1) | 173 (12.7) | 79 (12.8) | |
Waist circumference (cm) † | 101.9 (17.5) | 107.6 (19.3) | 110.3 (19.5) | <0.01 |
Cholesterol (mmol/L) † | 5.04 (1.47) | 4.91 (1.50) | 4.89 (1.53) | 0.178 |
Triglyceride (mmol/L) † | 1.72 (1.37) | 1.82 (1.55) | 1.91 (1.48) | <0.01 |
Creatinine (μmol/L) † | 70.7 (26.52) | 79.6 (26.54) | 99.0 (51.27) | <0.01 |
Poverty income ratio < 1 (%) ‡ | 238 (22.9) | 275 (22.2) | 98 (17.7) | 0.042 |
Serum uric acid (μmol/L) † | 255.8 (53.6) | 350.9 (53.6) | 469.9 (71.3) | <0.01 |
Glycohemoglobin (%) † | 7.2 (2.4) | 6.7 (1.5) | 6.6 (1.3) | <0.01 |
Taking insulin now (%) ‡ | 208 (18.5) | 221 (16.5) | 130 (21.3) | 0.074 |
Fasting glucose (mmol/L) † | 7.88 (4.94) | 7.22 (3.27) | 7.22 (2.77) | <0.01 |
Duration of diabetes (year) † | 9 (13) | 8 (14) | 10 (15) | 0.034 |
Hypertension (%) ‡ | 602 (52.9) | 911 (67.3) | 481 (78.2) | <0.01 |
Smoked at least 100 cigarettes in life (%) ‡ | 568 (50.0) | 733 (54.1) | 366 (59.5) | <0.01 |
SUA Levels | SUA ≤ 300 | 300 < SUA ≤ 420 | SUA > 420 | p Value |
---|---|---|---|---|
Diabetic kidney disease (%) ‡ | 397 (35.6) | 621 (46.0) | 380 (62.4) | <0.01 |
Cardiovascular disease (%) ‡ | 252 (22.2) | 385 (28.4) | 252 (41.0) | <0.01 |
Peripheral neuropathy (%) ‡ | 140 (25.0) | 179 (27.8) | 84 (33.6) | 0.041 |
Diabetic retinopathy (%) ‡ | 148 (35.0) | 186 (34.1) | 93 (35.1) | 0.947 |
Case/Participants | Crude † | Model 1 † | Model 2 † | |
---|---|---|---|---|
Cardiovascular disease | ||||
SUA > 420 | 615/3106 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
300 < SUA ≤ 420 | 1354/3106 | 0.54 (0.41–0.70) ** | 0.58 (0.44–0.77) ** | 0.61 (0.41–0.90) * |
SUA ≤ 300 | 1137/3106 | 0.42 (0.32–0.56) ** | 0.54 (0.39–0.73) ** | 0.56 (0.36–0.87) * |
p for trend | <0.01 | <0.01 | <0.05 | |
Diabetic kidney disease | ||||
SUA > 420 | 609/3075 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
300 < SUA ≤ 420 | 1350/3075 | 0.48 (0.38–0.60) ** | 0.49 (0.39–0.63) ** | 0.53 (0.38–0.74) ** |
SUA ≤ 300 | 1116/3075 | 0.30 (0.23–0.40) ** | 0.34 (0.25–0.45) ** | 0.33 (0.21–0.52) ** |
p for trend | <0.01 | <0.01 | <0.01 | |
Diabetic peripheral neuropathy | ||||
SUA > 420 | 250/1453 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
300 < SUA ≤ 420 | 643/1453 | 0.59 (0.42–0.84) ** | 0.65 (0.45–0.94) * | 0.59 (0.36–0.95) * |
SUA ≤ 300 | 560/1453 | 0.49 (0.33–0.73) ** | 0.62 (0.40–0.97) * | 0.49 (0.27–0.89) * |
p for trend | <0.01 | 0.07 | <0.05 | |
Diabetic retinopathy | ||||
SUA > 420 | 265/1233 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref) |
300 < SUA ≤ 420 | 545/1233 | 0.89 (0.56–1.44) | 1.00 (0.61–1.64) | 1.01 (0.54–1.91) |
SUA ≤ 300 | 423/1233 | 0.97 (0.66–1.43) | 1.20 (0.77–1.86) | 0.89 (0.53–1.50) |
p for trend | 0.99 | 0.35 | 0.62 |
Crude † | Model 1 † | Model 2 † | |
---|---|---|---|
Diabetic kidney disease | 1.64 (1.49–1.82) ** | 1.59 (1.44–1.75) ** | 1.61 (1.35–1.92) ** |
Cardiovascular disease | 1.41 (1.27–1.56) ** | 1.29 (1.16–1.44) ** | 1.21 (1.04–1.42) * |
Peripheral neuropathy | 1.23 (1.06–1.43) ** | 1.19 (0.95–1.32) | 1.23 (0.97–1.55) |
Diabetic retinopathy | 0.99 (0.85–1.15) | 0.92 (0.77–1.10) | 0.99 (0.81–1.22) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Wang, S.; Zhao, H.; Cao, Y.; Han, X.; Di, H.; Yin, Y.; Wu, J.; Zhang, Y.; Zeng, X. Lower Serum Uric Acid Levels May Lower the Incidence of Diabetic Chronic Complications in U.S. Adults Aged 40 and Over. J. Clin. Med. 2023, 12, 725. https://doi.org/10.3390/jcm12020725
Han Y, Wang S, Zhao H, Cao Y, Han X, Di H, Yin Y, Wu J, Zhang Y, Zeng X. Lower Serum Uric Acid Levels May Lower the Incidence of Diabetic Chronic Complications in U.S. Adults Aged 40 and Over. Journal of Clinical Medicine. 2023; 12(2):725. https://doi.org/10.3390/jcm12020725
Chicago/Turabian StyleHan, Yingdong, Shuolin Wang, He Zhao, Yu Cao, Xinxin Han, Hong Di, Yue Yin, Juan Wu, Yun Zhang, and Xuejun Zeng. 2023. "Lower Serum Uric Acid Levels May Lower the Incidence of Diabetic Chronic Complications in U.S. Adults Aged 40 and Over" Journal of Clinical Medicine 12, no. 2: 725. https://doi.org/10.3390/jcm12020725
APA StyleHan, Y., Wang, S., Zhao, H., Cao, Y., Han, X., Di, H., Yin, Y., Wu, J., Zhang, Y., & Zeng, X. (2023). Lower Serum Uric Acid Levels May Lower the Incidence of Diabetic Chronic Complications in U.S. Adults Aged 40 and Over. Journal of Clinical Medicine, 12(2), 725. https://doi.org/10.3390/jcm12020725