The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Novelty of the Study
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
ACEI | Angiotensin-converting enzyme inhibitors |
AF | Atrial fibrillation |
ARB | Angiotensin receptor blocker |
BMI | Body mass index |
BP | Blood pressure |
CAD | Coronary artery disease |
CCB | Calcium channel blocker |
DM | Diabetes mellitus |
EF | Ejection fraction |
e-NO | Endothelial nitric oxide |
GFR | Glomerular filtration rate |
HF | Heart failure |
HL | Hyperlipidemia |
HMGB1 | High-mobility group box 1 |
HT | Hypertension |
IQR | Interquartile range |
MRA | Mineralocorticoid receptor blocker |
NF-kB | Nuclear factor-kB |
RAGE | Receptor of AGE |
SGLT-2 | Sodium-glucose co-transporter 2 |
References
- Muñoz-Durango, N.; Fuentes, C.A.; Castillo, A.E.; González-Gómez, L.M.; Vecchiola, A.; Fardella, C.E.; Kalergis, A.M. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int. J. Mol. Sci. 2016, 17, 797. [Google Scholar] [CrossRef] [PubMed]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed]
- Balafa, O.; Kalaitzidis, R.G. Salt sensitivity and hypertension. J. Hum. Hypertens. 2021, 35, 184–192. [Google Scholar] [CrossRef]
- Lu, D.Y.; Fang, Q.; Bibby, D.; Arora, B.; Schiller, N.B. Association of Systemic Vascular Resistance Analog and Cardiovascular Outcomes: The Heart and Soul Study. J. Am. Heart Assoc. 2022, 11, e026016. [Google Scholar] [CrossRef] [PubMed]
- Chrysant, S.G. Pathophysiology and treatment of obesity-related hypertension. J. Clin. Hypertens. 2019, 21, 555–559. [Google Scholar] [CrossRef]
- Kostov, K. The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation. Life 2021, 11, 986. [Google Scholar] [CrossRef]
- Di Palo, K.E.; Barone, N.J. Hypertension and Heart Failure: Prevention, Targets, and Treatment. Heart Fail. Clin. 2020, 16, 99–106. [Google Scholar] [CrossRef]
- van Oort, S.; Beulens, J.W.J.; van Ballegooijen, A.J.; Grobbee, D.E.; Larsson, S.C. Association of Cardiovascular Risk Factors and Lifestyle Behaviors with Hypertension: A Mendelian Randomization Study. Hypertension 2020, 76, 1971–1979. [Google Scholar] [CrossRef]
- Wang, M.C.; Lloyd-Jones, D.M. Cardiovascular Risk Assessment in Hypertensive Patients. Am. J. Hypertens. 2021, 34, 569–577. [Google Scholar] [CrossRef]
- Cuspidi, C.; Tadic, M.; Grassi, G.; Mancia, G. Treatment of hypertension: The ESH/ESC guidelines recommendations. Pharmacol. Res. 2018, 128, 315–321. [Google Scholar] [CrossRef]
- Bakris, G.; Ali, W.; Parati, G. ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. J. Am. Coll. Cardiol. 2019, 73, 3018–3026. [Google Scholar] [CrossRef]
- Liu, L.; Liu, L.; Lu, B.; Chen, M.; Zhang, Y. Evaluation of bamboo shoot peptide preparation with angiotensin converting enzyme inhibitory and antioxidant abilities from byproducts of canned bamboo shoots. J. Agric. Food Chem. 2013, 61, 5526–5533. [Google Scholar] [CrossRef] [PubMed]
- Acelajado, M.C.; Hughes, Z.H.; Oparil, S.; Calhoun, D.A. Treatment of resistant and refractory hypertension. Circ. Res. 2019, 124, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Nyaga, U.F.; Sime, P.S.; Francis, I.; Bigna, J.J. Global prevalence of resistant hypertension: A meta-analysis of data from 3.2 million patients. Heart 2019, 105, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.T.; Edwards, D.G.; Farquhar, W.B. The Influence of Dietary Salt Beyond Blood Pressure. Curr. Hypertens. Rep. 2019, 21, 42. [Google Scholar] [CrossRef]
- Leo, F.; Suvorava, T.; Heuser, S.K.; Li, J.; LoBue, A.; Barbarino, F.; Cortese-Krott, M.M. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation 2021, 144, 870–889. [Google Scholar] [CrossRef]
- Roux, E.; Bougaran, P.; Dufourcq, P.; Couffinhal, T. Fluid shear stress sensing by the endothelial layer. Front. Physiol. 2020, 11, 861. [Google Scholar] [CrossRef]
- Nabi, R.; Alvi, S.S.; Khan, R.H.; Ahmad, S.; Ahmad, S.; Khan, M.S. Antiglycation study of HMG-R inhibitors and tocotrienol against glycated BSA and LDL: A comparative study. Int. J. Biol. Macromol. 2018, 116, 983–992. [Google Scholar] [CrossRef]
- Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10–37. [Google Scholar] [CrossRef]
- Zeng, C.; Li, Y.; Ma, J.; Niu, L.; Tay, F.R. Clinical/translational aspects of advanced glycation end-products. Trends Endocrinol. Metab. 2019, 30, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, Y.; Dong, L.; Shi, R.; Wu, Z.; Liu, L.; Pan, D. Quantitative determination of Nε-(carboxymethyl) lysine in sterilized milk by isotope dilution UPLC-MS/MS method without derivatization and ion pair reagents. Food Chem. 2022, 385, 132697. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, Y.; Shen, Y.; Zhang, Y.; Liu, L.; Yang, X. Dietary polyphenols: Regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2022, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Steenbeke, M.; Speeckaert, R.; Desmedt, S.; Glorieux, G.; Delanghe, J.R.; Speeckaert, M.M. The role of advanced glycation end products and its soluble receptor in kidney diseases. Int. J. Mol. Sci. 2022, 23, 3439. [Google Scholar] [CrossRef]
- Stinghen, A.E.; Massy, Z.A.; Vlassara, H.; Striker, G.E.; Boullier, A. Uremic toxicity of advanced glycation end products in CKD. J. Am. Soc. Nephrol. JASN 2016, 27, 354. [Google Scholar] [CrossRef]
- Stirban, A.; Gawlowski, T.; Roden, M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol. Metab. 2014, 3, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Gryszczyńska, B.; Budzyń, M.; Begier-Krasińska, B.; Osińska, A.; Boruczkowski, M.; Kaczmarek, M.; Bukowska, A.; Iskra, M.; Kasprzak, M.P. Association between Advanced Glycation End Products, Soluble RAGE Receptor, and Endothelium Dysfunction, Evaluated by Circulating Endothelial Cells and Endothelial Progenitor Cells in Patients with Mild and Resistant Hypertension. Int. J. Mol. Sci. 2019, 20, 3942. [Google Scholar] [CrossRef]
- Meerwaldt, R.; Graaff, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Smit, A.J. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 2004, 47, 1324–1330. [Google Scholar] [CrossRef]
- Cavero-Redondo, I.; Soriano-Cano, A.; Álvarez-Bueno, C.; Cunha, P.G.; Martínez-Hortelano, J.A.; Garrido-Miguel, M.; Berlanga-Macías, C.; Martínez-Vizcaíno, V. Skin Autofluorescence-Indicated Advanced Glycation End Products as Predictors of Cardiovascular and All-Cause Mortality in High-Risk Subjects: A Systematic Review and Meta-analysis. J. Am. Heart Assoc. 2018, 7, e009833. [Google Scholar] [CrossRef]
- Meerwaldt, R.; Lutgers, H.L.; Links, T.P.; Graaff, R.; Baynes, J.W.; Gans, R.O.; Smit, A.J. Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care 2007, 30, 107–112. [Google Scholar] [CrossRef]
- Januszewski, A.S.; Sachithanandan, N.; Karschimkus, C.; O’Neal, D.N.; Yeung, C.K.; Alkatib, N.; Jenkins, A.J. Non-invasive measures of tissue autofluorescence are increased in Type 1 diabetes complications and correlate with a non-invasive measure of vascular dysfunction. Diabet. Med. 2012, 29, 726–733. [Google Scholar] [CrossRef]
- Yamagishi, S.I.; Fukami, K.; Matsui, T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int. J. Cardiol. 2015, 185, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, Y.; Chen, Q.; Liu, Y.; Qiao, Z.; Sang, S.; Liu, L. Research advances of advanced glycation end products in milk and dairy products: Formation, determination, control strategy and immunometabolism via gut microbiota. Food Chem. 2023, 417, 135861. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.F.; Cheng, Y.B.; Guo, Q.H.; Liu, C.Y.; Kang, Y.Y.; Sheng, C.S.; Wang, J.G. Clinic and ambulatory blood pressure in relation to the interaction between plasma advanced glycation end products and sodium dietary intake and renal handling. Hypertens. Res. 2022, 45, 665–674. [Google Scholar] [CrossRef]
- Yao, D.; Wang, S.; Wang, M.; Lu, W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-κB signaling pathway. Mol. Med. Rep. 2018, 18, 3625–3630. [Google Scholar] [CrossRef]
- Birukov, A.; Cuadrat, R.; Polemiti, E.; Eichelmann, F.; Schulze, M.B. Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals: A cross-sectional study. Cardiovasc. Diabetol. 2021, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Gutowska, K.; Czajkowski, K.; Kuryłowicz, A. Receptor for the Advanced Glycation End Products (RAGE) Pathway in Adipose Tissue Metabolism. Int. J. Mol. Sci. 2023, 24, 10982. [Google Scholar] [CrossRef] [PubMed]
- Bettiga, A.; Fiorio, F.; Di Marco, F.; Trevisani, F.; Romani, A.; Porrini, E.; Salonia, A.; Montorsi, F.; Vago, R. The Modern Western Diet Rich in Advanced Glycation End-Products (AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. Nutrients 2019, 11, 1748. [Google Scholar] [CrossRef]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Yamanaka, M.; Fujihara, J.; Matsuoka, Y.; Gohto, Y.; Obana, A.; Tanito, M. Evaluation of Relevance between Advanced Glycation End Products and Diabetic Retinopathy Stages Using Skin Autofluorescence. Antioxidants 2020, 9, 1100. [Google Scholar] [CrossRef]
- Nakamura, T.; Tsujimoto, T.; Yasuda, K.; Ueki, K.; Kajio, H. Continuous low serum levels of advanced glycation end products and low risk of cardiovascular disease in patients with poorly controlled type 2 diabetes. Cardiovasc. Diabetol. 2023, 22, 147. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.L.; Wu, Q.R.; Zeng, P.; Li, S.M.; Cai, Y.J.; Chen, S.Z.; Deng, C.Y. Advanced glycation end products induce senescence of atrial myocytes and increase susceptibility of atrial fibrillation in diabetic mice. Aging Cell 2022, 21, e13734. [Google Scholar] [CrossRef] [PubMed]
- Bohm, A.; Urban, L.; Tothova, L.; Bacharova, L.; Musil, P.; Kyselovic, J.; Hatala, R. Advanced glycation end products predict long-term outcome of catheter ablation in paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol. 2022, 64, 17–25. [Google Scholar] [CrossRef]
- Ono, Y.; Mizuno, K.; Takahashi, M.; Miura, Y.; Watanabe, T. Suppression of advanced glycation and lipoxidation end products by angiotensin II type-1 receptor blocker candesartan in type 2 diabetic patients with essential hypertension. Fukushima J. Med. Sci. 2013, 59, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Yamagishi, S.; Takeuchi, M.; Ueda, S.; Fukami, K.; Okuda, S. Irbesartan inhibits advanced glycation end product (AGE)-induced proximal tubular cell injury in vitro by suppressing receptor for AGEs (RAGE) expression. Pharmacol. Res. 2010, 61, 34–39. [Google Scholar] [CrossRef]
End-stage renal failure (glomerular filtration rate < 60) |
Chronic liver failure |
Secondary hypertension |
Poor adherence to prescribed medicines |
Primary hyperaldosteronism |
Atherosclerotic renovascular disease |
Untreated sleep apnea |
Phaeochromocytoma |
Fibromuscular dysplasia |
Aortic coarctation |
Hyperparathyroidism |
Using drugs: oral contraceptives, sympathomimetic agents, cyclosporin erythropoietin, steroids, and cancer therapies |
Pseudo-resistant hypertension |
Variable | Resistant Hypertension | Control Group | p Value |
---|---|---|---|
Number of patients | 88 | 88 | |
Age | 67.5 (60–75) * | 61 (51–68) | <0.001 |
Gender (male) | 35 (39.8%) * | 48 (54.5%) | 0.07 |
BMI (kg/m2) | 31.5 (28.5–36.7) | 29.4 (26.3–33.1) | 0.001 |
DM | 47 (53.4%) | 20 (22.7%) | <0.001 |
HL | 70 (79.5%) | 56 (63.6%) | 0.02 |
CAD | 63 (71.6%) | 54 (61.4%) | 0.2 |
Stroke | 2 (2.3%) | 1 (1.1%) | 0.5 |
HF treatment | 12 (13.6%) | 7 (8%) | 0.3 |
Smoking | 16 (18.2%) | 17 (19.3%) | 0.5 |
Atrial fibrillation | 11 (12.5%) | 4 (4.5%) | 0.1 |
Ejection fraction | 60 (50–60) | 60 (55–65) | 0.01 |
AGE level | 2.8 (2.5–3.2) | 2.1 (1.9–2.2) | <0.001 |
Creatinine (mg/dL) | 0.97 (0.78–1.12) | 0.95 (0.87–1.1) | 0.8 |
LDL-C (mg/dL) | 111 (77.2–124) | 100.5 (78–145.5) | 0.4 |
Triglycerides (mg/dL) | 128 (104.7–174.2) | 140.5 (110.2–185.2) | 0.2 |
HbA1C (%) | 7 (6.7–7.2) | 7.2 (6.8–7.8) | 0.052 |
Variable | Resistant Hypertension | Control Group | p Value |
---|---|---|---|
ACEI + ARB | 85 (96.6%) | 63 (71.6%) | <0.001 |
ACEI | 20 (22.7%) | 28 (31.8%) | 0.2 |
ARB | 65 (73.9%) | 35 (39.8%) | <0.001 |
Thiazide diuretic | 68 (75.9%) | 27 (30.7%) | <0.001 |
CCB | 66 (75%) | 29 (33%) | <0.001 |
MRA | 18 (20.5%) | 1 (1.1%) | <0.001 |
Beta-blocker | 81 (92%) | 60 (68.2%) | <0.001 |
Loop diuretic | 21 (23.9%) | 1 (1.1%) | <0.001 |
Alpha-blocker | 13 (14.8%) | 2 (2.3%) | 0.005 |
Nitrates | 28 (31.8%) | 7 (8%) | <0.001 |
Antidepressant drugs | 20 (22.7%) | 8 (9.1%) | 0.01 |
Variable | Resistant Hypertension | Control Group | p Value |
---|---|---|---|
Number of patients | 41 | 68 | |
Age | 66 ± 10.8 * | 61 ±11.8 | 0.003 |
Gender (male) | 16 (39%) | 37 (54.4%) | 0.1 |
BMI (kg/m2) | 33 (29–36.9) | 29.3 (26–32.7) | 0.001 |
Hyperlipidemia | 27 (65.9%) | 37 (54.4%) | 0.3 |
CAD | 23 (56.1%) | 36 (52.9%) | 0.8 |
Stroke | 1 (2.4%) | 1 (1.5%) | 0.6 |
HF treatment | 1 (2.4%) | 4 (5.9%) | 0.6 |
Smoking | 8 (19.5%) | 9 (13.2%) | 0.4 |
Atrial fibrillation | 6 (14.6%) | 3 (4.4%) | 0.07 |
Ejection fraction | 60 (55–60) | 60 (60–65) | 0.1 |
AGE level | 2.7 (2.4–2.9) | 2.1 (1.8–2.2) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peker, T.; Boyraz, B. The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case–Control Study. J. Clin. Med. 2023, 12, 6606. https://doi.org/10.3390/jcm12206606
Peker T, Boyraz B. The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case–Control Study. Journal of Clinical Medicine. 2023; 12(20):6606. https://doi.org/10.3390/jcm12206606
Chicago/Turabian StylePeker, Tezcan, and Bedrettin Boyraz. 2023. "The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case–Control Study" Journal of Clinical Medicine 12, no. 20: 6606. https://doi.org/10.3390/jcm12206606
APA StylePeker, T., & Boyraz, B. (2023). The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case–Control Study. Journal of Clinical Medicine, 12(20), 6606. https://doi.org/10.3390/jcm12206606