Prevalence of Impaired Physical Mobility in Dialysis Patients: A Single-Centre Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Impaired Physical Mobility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults: A Systematic Review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef]
- Bučar Pajek, M.; Pajek, J. Characterization of Deficits across the Spectrum of Motor Abilities in Dialysis Patients and the Impact of Sarcopenic Overweight and Obesity. Clin. Nutr. 2018, 37, 870–877. [Google Scholar] [CrossRef]
- Stack, A.G.; Molony, D.A.; Rives, T.; Tyson, J.; Murthy, B.V.R. Association of Physical Activity with Mortality in the US Dialysis Population. Am. J. Kidney Dis. 2005, 45, 690–701. [Google Scholar] [CrossRef]
- Gaetano, A. Relationship between Physical Inactivity and Effects on Individual Health Status. J. Phys. Educ. Sport 2016, 16, 1069–1074. [Google Scholar] [CrossRef]
- Painter, P.; Marcus, R.L. Assessing Physical Function and Physical Activity in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 861–872. [Google Scholar] [CrossRef]
- Anding, K.; Bär, T.; Trojniak-Hennig, J.; Kuchinke, S.; Krause, R.; Rost, J.M.; Halle, M. A Structured Exercise Programme during Haemodialysis for Patients with Chronic Kidney Disease: Clinical Benefit and Long-Term Adherence. BMJ Open 2015, 5, e008709. [Google Scholar] [CrossRef]
- Hirano, Y.; Fujikura, T.; Kono, K.; Ohashi, N.; Yamaguchi, T.; Hanajima, W.; Yasuda, H.; Yamauchi, K. Decline in Walking Independence and Related Factors in Hospitalization for Dialysis Initiation: A Retrospective Cohort Study. J. Clin. Med. 2022, 11, 6589. [Google Scholar] [CrossRef]
- Zelle, D.M.; Klaassen, G.; van Adrichem, E.; Bakker, S.J.L.; Corpeleijn, E.; Navis, G. Physical Inactivity: A Risk Factor and Target for Intervention in Renal Care. Nat. Rev. Nephrol. 2017, 13, 152–168. [Google Scholar] [CrossRef]
- Ahmad, E.; Sargeant, J.A.; Yates, T.; Webb, D.R.; Davies, M.J.; Ahmad, E.; Sargeant, J.A.; Yates, T.; Webb, D.R.; Davies, M.J. Type 2 Diabetes and Impaired Physical Function: A Growing Problem. Diabetology 2022, 3, 30–45. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Aihie Sayer, A. Clustering of Lifestyle Risk Factors and Poor Physical Function in Older Adults: The Hertfordshire Cohort Study. J. Am. Geriatr. Soc. 2013, 61, 1684–1691. [Google Scholar] [CrossRef]
- Minetto, M.A.; Giannini, A.; McConnell, R.; Busso, C.; Torre, G.; Massazza, G. Common Musculoskeletal Disorders in the Elderly: The Star Triad. J. Clin. Med. 2020, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Penedo, F.; Dahn, J. Exercise and Well-Being: A Review of Mental and Physical Health Benefits Associated with Physical Activity. Behav. Med. 2005, 18, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Asp, M.; Simonsson, B.; Larm, P.; Molarius, A. Physical Mobility, Physical Activity, and Obesity among Elderly: Findings from a Large Population-Based Swedish Survey. Public Health 2017, 147, 84–91. [Google Scholar] [CrossRef]
- Katzman, W.B.; Vittinghoff, E.; Kado, D.M. Age-Related Hyperkyphosis, Independent of Spinal Osteoporosis, Is Associated with Impaired Mobility in Older Community-Dwelling Women. Osteoporos. Int. 2011, 22, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Pajek, M.; Jerman, A.; Osredkar, J.; Ponikvar, J.B.; Pajek, J. Association of Uremic Toxins and Inflammatory Markers with Physical Performance in Dialysis Patients. Toxins 2018, 10, 403. [Google Scholar] [CrossRef]
- Braumann, K.M.; Nonnast-Daniel, B.; Boning, D.; Bocker, A.; Frei, U. Improved Physical Performance after Treatment of Renal Anemia with Recombinant Human Erythropoietin. Nephron 1991, 58, 129–134. [Google Scholar] [CrossRef]
- Hopkins, W. How to Interpret Changes in an Athletic Performance Test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Moorthi, R.N.; Fadel, W.F.; Cranor, A.; Hindi, J.; Avin, K.G.; Lane, K.A.; Thadhani, R.I.; Moe, S.M. Mobility Impairment in Patients New to Dialysis. Am. J. Nephrol. 2020, 51, 705–714. [Google Scholar] [CrossRef]
- Garcia-Canton, C.; Rodenas, A.; Lopez-Aperador, C.; Rivero, Y.; Anton, G.; Monzon, T.; Diaz, N.; Vega, N.; Loro, J.F.; Santana, A.; et al. Frailty in Hemodialysis and Prediction of Poor Short-Term Outcome: Mortality, Hospitalization and Visits to Hospital Emergency Services. Ren. Fail. 2019, 41, 567–575. [Google Scholar] [CrossRef]
- Kutner, N.G.; Zhang, R.; Huang, Y.; Painter, P. Gait Speed and Mortality, Hospitalization, and Functional Status Change among Hemodialysis Patients: A US Renal Data System Special Study. Am. J. Kidney Dis. 2015, 66, 297–304. [Google Scholar] [CrossRef]
- Van Loon, I.N.; Goto, N.A.; Boereboom, F.T.J.; Bots, M.L.; Hoogeveen, E.K.; Gamadia, L.; Van Bommel, E.F.H.; Van De Ven, P.J.G.; Douma, C.E.; Vincent, H.H.; et al. Geriatric Assessment and the Relation with Mortality and Hospitalizations in Older Patients Starting Dialysis. Nephron 2019, 143, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, T.; Matsuzawa, R.; Yoneki, K.; Harada, M.; Watanabe, T.; Yoshida, A.; Takeuchi, Y.; Matsunaga, A. Combined Contribution of Reduced Functional Mobility, Muscle Weakness, and Low Serum Albumin in Prediction of All-Cause Mortality in Hemodialysis Patients: A Retrospective Cohort Study. J. Ren. Nutr. 2018, 28, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Cook, W.L.; Jassal, S.V. Functional Dependencies among the Elderly on Hemodialysis. Kidney Int. 2008, 73, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Volpato, S. Muscle Dysfunction in Type 2 Diabetes: A Major Threat to Patient’s Mobility and Independence. Acta Diabetol. 2016, 53, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, I.; Quach, L.; Yang, F.; Chaves, P.H.M.; Newman, A.B.; Mukamal, K.; Longstreth, W.; Inzitari, M.; Lipsitz, L.A. Hypertension, White Matter Hyperintensities and Concurrent Impairments in Mobility, Cognition and Mood: The Cardiovascular Health Study. Circulation 2011, 123, 858. [Google Scholar] [CrossRef]
- Arnold, R.; Issar, T.; Krishnan, A.V.; Pussell, B.A. Neurological Complications in Chronic Kidney Disease. JRSM Cardiovasc. Dis. 2016, 5, 204800401667768. [Google Scholar] [CrossRef]
- Brinkley, T.E.; Leng, X.; Miller, M.E.; Kitzman, D.W.; Pahor, M.; Berry, M.J.; Marsh, A.P.; Kritchevsky, S.B.; Nicklas, B.J. Chronic Inflammation Is Associated with Low Physical Function in Older Adults across Multiple Comorbidities. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 455. [Google Scholar] [CrossRef]
- Boenink, R.; Astley, M.E.; Huijben, J.A.; Stel, V.S.; Kerschbaum, J.; Ots-Rosenberg, M.; Åsberg, A.A.; Lopot, F.; Golan, E.; Castro De La Nuez, P.; et al. The ERA Registry Annual Report 2019: Summary and Age Comparisons. Clin. Kidney J. 2021, 15, 452–472. [Google Scholar] [CrossRef]
- Beavers, D.P.; Kritchevsky, S.B.; Gill, T.M.; Ambrosius, W.T.; Anton, S.D.; Fielding, R.A.; King, A.C.; Rejeski, W.J.; Lovato, L.; McDermott, M.M.; et al. Elevated IL-6 and CRP Levels Are Associated with Incident Self-Reported Major Mobility Disability: A Pooled Analysis of Older Adults with Slow Gait Speed. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 2293–2299. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ficociello, L.H.; Bazzanella, J.; Mullon, C.; Anger, M.S. Slipping Through the Pores: Hypoalbuminemia and Albumin Loss during Hemodialysis. Int. J. Nephrol. Renov. Dis. 2021, 14, 11–21. [Google Scholar] [CrossRef]
- Li, X.; Cao, X.; Ying, Z.; Zhang, J.; Sun, X.; Hoogendijk, E.O.; Liu, Z. Associations of Serum Albumin With Disability in Activities of Daily Living, Mobility and Objective Physical Functioning Regardless of Vitamin D: Cross-Sectional Findings from the Chinese Longitudinal Healthy Longevity Survey. Front. Nutr. 2022, 9, 809499. [Google Scholar] [CrossRef] [PubMed]
- Akirov, A.; Masri-Iraqi, H.; Atamna, A.; Shimon, I. Low Albumin Levels Are Associated with Mortality Risk in Hospitalized Patients. Am. J. Med. 2017, 130, 1465.e11–1465.e19. [Google Scholar] [CrossRef] [PubMed]
- Eddington, H.; Heaf, J.G. Clinical Management of Disturbances of Calcium and Phosphate Metabolism in Dialysis Patients. NDT Plus 2009, 2, 267–272. [Google Scholar] [CrossRef]
- Shah, A.; Aeddula, N.R. Renal Osteodystrophy. StatPearls 2022, 45, 180–186. [Google Scholar] [CrossRef]
- Nitta, K.; Ogawa, T. Vascular Calcification in End-Stage Renal Disease Patients. Contrib. Nephrol. 2015, 185, 156–167. [Google Scholar] [CrossRef]
- Carbonara, C.E.M.; Reis, L.M.D.; Quadros, K.R.d.S.; Roza, N.A.V.; Sano, R.; Carvalho, A.B.; Jorgetti, V.; Oliveira, R.B.d. Renal Osteodystrophy and Clinical Outcomes: Data from the Brazilian Registry of Bone Biopsies—REBRABO. Braz. J. Nephrol. 2020, 42, 138–146. [Google Scholar] [CrossRef]
- Cheng, H.T.; Ho, M.C.; Hung, K.Y. Affective and Cognitive Rather than Somatic Symptoms of Depression Predict 3-Year Mortality in Patients on Chronic Hemodialysis. Sci. Rep. 2018, 8, 5868. [Google Scholar] [CrossRef]
- Bogataj, Š.; Pajek, M.; Pajek, J.; Buturović Ponikvar, J.; Paravlic, A. Exercise-Based Interventions in Hemodialysis Patients: A Systematic Review with a Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 43. [Google Scholar] [CrossRef]
- Bogataj, Š.; Pajek, J.; Buturović Ponikvar, J.; Pajek, M. Functional Training Added to Intradialytic Cycling Lowers Low-Density Lipoprotein Cholesterol and Improves Dialysis Adequacy: A Randomized Controlled Trial. BMC Nephrol. 2020, 21, 352. [Google Scholar] [CrossRef]
- Bogataj, Š.; Pajek, M.; Mesarič, K.K.; Kren, A.; Pajek, J. Twelve Weeks of Combined Physical and Cognitive Intradialytic Training Preserves Alertness and Improves Gait Speed: A Randomized Controlled Trial. Aging Clin. Exp. Res. 2023, 35, 2119–2126. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
N | 205 |
Age [years], range | 63.9 ± 15.4 (24–92) |
Male gender | 119 (58%) |
Dialysis vintage [years], range | 7.3 ± 9.0 (1–44) |
Comorbidities | |
Diabetes mellitus | 77 (38%) |
Arterial hypertension | 193 (95%) |
Peripheral vascular disease | 55 (27%) |
Laboratory values | |
Leucocytes (10 * 9/L) | 6.4 ± 2.3 |
Hemoglobin (g/L) | 117 ± 13 |
Thrombocytes (10 * 9/L) | 185.4 ± 60.5 |
Calcium (mmol/L) | 2.2 ± 0.3 |
Phosphate (mmol/L) | 1.4 ± 0.4 |
iPTH (ng/L) | 430.4 ± 488.1 |
Albumin (g/L) | 37 ± 4 |
CRP (mg/L) | 12 ± 18 |
Physical Mobility | Value (n (%)) |
---|---|
No or inconsiderable impairment (%) | 122 (60) |
Minor mobility impairment (%) | 43 (21) |
A crutch | 10 (5) |
Two crutches or a walking frame | 9 (4) |
Intermittent help of a third person | 24 (12) |
Severe mobility impairment (%) | 40 (19) |
Confined to bed | 19 (9) |
Confined to bed but able to perform some movements | 19 (9) |
Dependent on assistance of a third person | 2 (1) |
Variable | Mobility Impairment | |
---|---|---|
r | p | |
Age | 0.36 ** | <0.001 |
Dialysis vintage | 0.01 | 0.922 |
Hemoglobin | −0.04 | 0.569 |
Calcium | 0.02 | 0.836 |
Phosphate | −0.03 | 0.671 |
iPTH | −0.05 | 0.490 |
Albumin | −0.15 * | 0.042 |
C-reactive protein | 0.15 * | 0.044 |
Variable | Mobility Impairment | |
---|---|---|
r | p | |
Dialysis vintage | 0.065 | 0.375 |
Hemoglobin | 0.093 | 0.207 |
Calcium | 0.000 | 0.995 |
Phosphate | −0.039 | 0.593 |
iPTH | 0.003 | 0.965 |
Albumin | −0.103 | 0.161 |
C-reactive protein | 0.022 | 0.767 |
Independent Variable | Regression Coefficient | Standardized Regression Coefficient Beta | t | p | 95% CI | Coefficient of Determination R2 | F | p |
---|---|---|---|---|---|---|---|---|
Age | 0.013 | 0.316 | 4.077 | <0.001 | 0.007–0.019 | 0.137 | 3.018 | 0.002 |
Gender | 0.238 | 0.193 | 2.601 | 0.010 | 0.057–0.418 | |||
Dialysis vintage | 0.007 | 0.099 | 1.338 | 0.183 | −0.003–0.017 | |||
Hemoglobin | 0.003 | 0.075 | 1.017 | 0.311 | −0.003–0.009 | |||
Calcium | 0.091 | 0.032 | 0.416 | 0.678 | −0.340–0.522 | |||
Phosphate | 0.000 | 0.000 | 0.005 | 0.996 | −0.176–0.177 | |||
iPTH | −1.423 × 10−5 | −0.010 | −0.136 | 0.892 | 0.000–0.000 | |||
Albumin | −0.024 | −0.147 | −1.688 | 0.093 | −0.051–0.004 | |||
C-reactive protein | −0.002 | −0.047 | −0.557 | 0.579 | −0.007–0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogataj, Š.; Pajek, J.; Slonjšak, B.; Peršič, V. Prevalence of Impaired Physical Mobility in Dialysis Patients: A Single-Centre Cross-Sectional Study. J. Clin. Med. 2023, 12, 6634. https://doi.org/10.3390/jcm12206634
Bogataj Š, Pajek J, Slonjšak B, Peršič V. Prevalence of Impaired Physical Mobility in Dialysis Patients: A Single-Centre Cross-Sectional Study. Journal of Clinical Medicine. 2023; 12(20):6634. https://doi.org/10.3390/jcm12206634
Chicago/Turabian StyleBogataj, Špela, Jernej Pajek, Blaž Slonjšak, and Vanja Peršič. 2023. "Prevalence of Impaired Physical Mobility in Dialysis Patients: A Single-Centre Cross-Sectional Study" Journal of Clinical Medicine 12, no. 20: 6634. https://doi.org/10.3390/jcm12206634
APA StyleBogataj, Š., Pajek, J., Slonjšak, B., & Peršič, V. (2023). Prevalence of Impaired Physical Mobility in Dialysis Patients: A Single-Centre Cross-Sectional Study. Journal of Clinical Medicine, 12(20), 6634. https://doi.org/10.3390/jcm12206634