Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy
Abstract
:1. Introduction
2. HIE Pathology, Pathophysiology, and Neural Cell Damage
2.1. Pathology
2.2. Pathophysiology and Neural Cell Death
3. Current Interventions or Therapies for Neonatal HIE
Therapeutic Hypothermia
4. Therapies under Development for Neonatal HIE
4.1. Therapies under Development with Clinical Study Results
4.1.1. Xenon
4.1.2. Erythropoietin and Darbepoetin
- EPO Phase I Trials
NCT00719407: Neonatal Erythropoietin in Asphyxiated Term Newborns
ISRCTN33604417: Erythropoietin, Magnesium Sulfate, and Hypothermia for Hypoxic-Ischemic Encephalopathy
- EPO Phase I/II or Phase II Trials
NCT00808704: Neurological Outcome after Erythropoietin Treatment for Neonatal Encephalopathy
NCT00945789: Erythropoietin in Infants with Hypoxic-Ischemic Encephalopathy (HIE)
NCT01913340: Neonatal Erythropoietin and Therapeutic Hypothermia Outcomes in Newborn Brain Injury (NEATO)
PMID: 18676557: A Phase I/II Trial of High-Dose Erythropoietin in Extremely Low Birth Weight Infants: Pharmacokinetics and Safety
- Darbepoetin Phase I/II and Phase II Trials
NCT01471015: Darbe Administration in Newborns Undergoing Cooling for Encephalopathy (DANCE)
NCT03071861: Mild Encephalopathy in the Newborn Treated with Darbepoetin (MEND)
NCT04432662: Darbepoetin in Neonatal Encephalopathy Trial (EDEN)
- EPO Phase III Trials
NCT03079167: Erythropoietin for Hypoxic-Ischaemic Encephalopathy in Newborns (PAEAN)
NCT02811263: High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL)
NCT01732146: Efficacy of Erythropoietin to Improve Survival and Neurological Outcome in Hypoxic-Ischemic Encephalopathy (NEUREPO)
4.1.3. Topiramate
NCT01765218: Topiramate in Neonates Receiving Whole Body Cooling for Hypoxic-Ischemic Encephalopathy
NCT01241019: Safety and Efficacy of Topiramate in Neonates with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia (NeoNATI)
4.1.4. Glucocorticoids
4.2. Future Therapies (Therapies under Development with Results Awaited)
4.2.1. Melatonin
4.2.2. Caffeine
4.2.3. Citicoline
4.2.4. Metformin
4.2.5. Allopurinol
4.2.6. RLS 0071
4.2.7. Stem Cells
NCT02854579: Neural Progenitor Cell and Paracrine Factors to Treat Hypoxic-Ischemic Encephalopathy
NCT01962233: Umbilical Cord-Derived Mesenchymal Stem Cell Therapy in Hypoxic-Ischemic Encephalopathy
NCT02881970: Neonatal Hypoxic-Ischemic Encephalopathy: Safety and Feasibility Study of a Curative Treatment with Autologous Cord Blood Stem Cells (NEOSTEM)
NCT04261335: The Clinical Trial of CL2020 Cells for Neonatal Hypoxic-Ischemic Encephalopathy (SHIELD)
NCT01019733: Intrathecal Stem Cells in Brain Injury (ISC)
PMID: 37285522: A Pilot Phase I Trial of Allogeneic Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells in Neonates with Hypoxic-Ischemic Encephalopathy
4.2.8. Sovateltide
Development of Sovateltide as a “First in Class” Therapeutic for Neonatal HIE
NCT05514340: Assess Safety and Efficacy of Sovateltide in Hypoxic-Ischemic Encephalopathy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIE | Hypoxic-Ischemic Encephalopathy |
TH | Therapeutic Hypothermia |
ATP | Adenosine Triphosphate |
BI | Barthel Index |
EQ-5D | European Quality of Life Five Dimension |
GP | Glial Progenitors |
IV | Intravenous |
mRS | Modified Rankin Scale |
NICU | Neonatal Intensive Care Unit |
NIHSS | National Institutes of Health Stroke Scale |
SSQoL | Stroke Specific Quality of Life Scale |
VEGF | Vascular Endothelial Growth Factor |
NGF | Nerve Growth Factor |
Body wt. | Body weight |
MRI | Magnetic Resonance Imaging |
GABA | Gamma Aminobutyric Acid |
ACD | Accidental Cell Death |
PCD | Programmed Cell Death |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
NOS | Nitric Oxide Synthase |
COX | Cyclooxygenases |
XO | Xanthine Oxidase |
PTP | Protein Tyrosine Phosphatase |
TK | Tyrosine Kinase |
FOXO | Forkhead Box O |
HIF | Hypoxia Inducible Factor |
EEG | Electroencephalography |
aEEG | amplitude integrated EEG |
NMDA | N-methyl-D-aspartate |
KATP | ATP-sensitive Potassium Channels |
K(2P) | Two-pore Domain Potassium Channels |
EPO | Erythropoietin |
SAEs | Serious Adverse Events |
SOC | Standard of Care |
USFDA | United States Food and Drug Administration |
CNS | Central Nervous System |
NCT | National Clinical Trial |
BBB | Blood–Brain Barrier |
MSCs | Mesenchymal Stem Cells |
ET-1 | Endothelin 1 |
GSH | Glutathione |
SOD | Superoxide Dismutase |
MDA | Malondialdehyde |
References
- Lawn, J.E.; Cousens, S.; Zupan, J.; Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: When? Where? Why? Lancet 2005, 365, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.A.; Brandon, D.H. Hypoxic Ischemic Encephalopathy: Pathophysiology and Experimental Treatments. Newborn Infant Nurs. Rev. 2011, 11, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Bruschettini, M.; Romantsik, O.; Moreira, A.; Ley, D.; Thébaud, B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst. Rev. 2020, 8, Cd013202. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.; Andelius, T.C.K.; Pedersen, M.V.; Kyng, K.J.; Henriksen, T.B. Severity of hypoxic ischemic encephalopathy and heart rate variability in neonates: A systematic review. BMC Pediatr. 2019, 19, 242. [Google Scholar] [CrossRef]
- Yokomaku, D.; Numakawa, T.; Numakawa, Y.; Suzuki, S.; Matsumoto, T.; Adachi, N.; Nishio, C.; Taguchi, T.; Hatanaka, H. Estrogen enhances depolarization-induced glutamate release through activation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase in cultured hippocampal neurons. Mol. Endocrinol. 2003, 17, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, A.; Wilson, M.A.; Johnston, M.V. Hypoxic-ischemic encephalopathy in the term infant. Clin. Perinatol. 2009, 36, 835–858, vii. [Google Scholar] [CrossRef]
- Nair, J.; Kumar, V.H.S. Current and Emerging Therapies in the Management of Hypoxic Ischemic Encephalopathy in Neonates. Children 2018, 5, 99. [Google Scholar] [CrossRef]
- Riljak, V.; Kraf, J.; Daryanani, A.; Jiruska, P.; Otahal, J. Pathophysiology of perinatal hypoxic-ischemic encephalopathy—Biomarkers, animal models and treatment perspectives. Physiol. Res. 2016, 65, S533–S545. [Google Scholar] [CrossRef]
- Gagne-Loranger, M.; Sheppard, M.; Ali, N.; Saint-Martin, C.; Wintermark, P. Newborns Referred for Therapeutic Hypothermia: Association between Initial Degree of Encephalopathy and Severity of Brain Injury (What about the Newborns with Mild Encephalopathy on Admission?). Am. J. Perinatol. 2016, 33, 195–202. [Google Scholar] [CrossRef]
- Walsh, B.H.; Neil, J.; Morey, J.; Yang, E.; Silvera, M.V.; Inder, T.E.; Ortinau, C. The Frequency and Severity of Magnetic Resonance Imaging Abnormalities in Infants with Mild Neonatal Encephalopathy. J. Pediatr. 2017, 187, 26–33.e21. [Google Scholar] [CrossRef]
- Rao, R.; Trivedi, S.; Distler, A.; Liao, S.; Vesoulis, Z.; Smyser, C.; Mathur, A.M. Neurodevelopmental Outcomes in Neonates with Mild Hypoxic Ischemic Encephalopathy Treated with Therapeutic Hypothermia. Am. J. Perinatol. 2019, 36, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Massaro, A.N.; Murthy, K.; Zaniletti, I.; Cook, N.; DiGeronimo, R.; Dizon, M.; Hamrick, S.E.; McKay, V.J.; Natarajan, G.; Rao, R.; et al. Short-term outcomes after perinatal hypoxic ischemic encephalopathy: A report from the Children’s Hospitals Neonatal Consortium HIE focus group. J. Perinatol. 2015, 35, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Walsh, B.H.; Boylan, G.B.; Murray, D.M. Mild hypoxic ischaemic encephalopathy and long term neurodevelopmental outcome—A systematic review. Early Hum. Dev. 2018, 120, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Pandav, K.; Ishak, A.; Chohan, F.; Edaki, O.; Quinonez, J.; Ruxmohan, S. Hypoxic-Ischemic Encephalopathy-Induced Seizure in an 11-Year-Old Female. Cureus 2021, 13, e16606. [Google Scholar] [CrossRef]
- Altit, G.; Levy, P.T. Cardiopulmonary Impact of Hypoxic Ischemic Encephalopathy in Newborn Infants. The Emerging Role of Early Hemodynamic Assessment in Determining Adverse Neurological Outcomes. Am. J. Respir. Crit. Care Med. 2019, 200, 1206–1207. [Google Scholar] [CrossRef]
- Modisett, A.K.; Patel, R.M.; Jernigan, S.M.; Figueroa, J.; Sewell, E.K.; Hamrick, S.E.G. Patterns of acute kidney and hepatic injury and association with adverse outcomes in infants undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy. J. Perinatol. 2022, 42, 1361–1367. [Google Scholar] [CrossRef]
- Ni, B.; Qin, M.; Zhao, J.; Guo, Q. A glance at transient hyperammonemia of the newborn: Pathophysiology, diagnosis, and treatment: A review. Medicine 2022, 101, e31796. [Google Scholar] [CrossRef]
- Goel, M.; Dwivedi, R.; Gohiya, P.; Hegde, D. Nucleated red blood cell in cord blood as a marker of perinatal asphyxia. J. Clin. Neonatol. 2013, 2, 179–182. [Google Scholar] [CrossRef]
- Salas, J.; Tekes, A.; Hwang, M.; Northington, F.J.; Huisman, T. Head Ultrasound in Neonatal Hypoxic-Ischemic Injury and Its Mimickers for Clinicians: A Review of the Patterns of Injury and the Evolution of Findings over Time. Neonatology 2018, 114, 185–197. [Google Scholar] [CrossRef]
- Northington, F.J.; Chavez-Valdez, R.; Martin, L.J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol. 2011, 69, 743–758. [Google Scholar] [CrossRef]
- Dickey, E.J.; Long, S.N.; Hunt, R.W. Hypoxic ischemic encephalopathy—What can we learn from humans? J. Vet. Intern. Med. 2011, 25, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhu, P.; Fujino, M.; Zhuang, J.; Guo, H.; Sheikh, I.; Zhao, L.; Li, X.K. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2016, 17, 2078. [Google Scholar] [CrossRef] [PubMed]
- Ozsurekci, Y.; Aykac, K. Oxidative Stress Related Diseases in Newborns. Oxid. Med. Cell. Longev. 2016, 2016, 2768365. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S. Neonatal encephalopathy: Treatment with hypothermia. J. Neurotrauma 2009, 26, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Weilinger, N.L.; Maslieieva, V.; Bialecki, J.; Sridharan, S.S.; Tang, P.L.; Thompson, R.J. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol. Sin. 2013, 34, 39–48. [Google Scholar] [CrossRef]
- Stys, P.K. Anoxic and ischemic injury of myelinated axons in CNS white matter: From mechanistic concepts to therapeutics. J. Cereb. Blood Flow Metab. 1998, 18, 2–25. [Google Scholar] [CrossRef]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y. Regulation of Inflammatory Cell Death by Phosphorylation. Front. Immunol. 2022, 13, 851169. [Google Scholar] [CrossRef]
- Dhillon, S.K.; Gunn, E.R.; Lear, B.A.; King, V.J.; Lear, C.A.; Wassink, G.; Davidson, J.O.; Bennet, L.; Gunn, A.J. Cerebral Oxygenation and Metabolism after Hypoxia-Ischemia. Front. Pediatr. 2022, 10, 925951. [Google Scholar] [CrossRef]
- Arteaga, O.; Alvarez, A.; Revuelta, M.; Santaolalla, F.; Urtasun, A.; Hilario, E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int. J. Mol. Sci. 2017, 18, 265. [Google Scholar] [CrossRef]
- Ng, S.C.W.; Furman, R.; Axelsen, P.H.; Shchepinov, M.S. Free Radical Chain Reactions and Polyunsaturated Fatty Acids in Brain Lipids. ACS Omega 2022, 7, 25337–25345. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.L.; Guo, Z.N.; Yang, Y. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid. Med. Cell. Longev. 2018, 2018, 3804979. [Google Scholar] [CrossRef] [PubMed]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell. Longev. 2019, 2019, 6175804. [Google Scholar] [CrossRef] [PubMed]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Di Meo, S.; Venditti, P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid. Med. Cell. Longev. 2020, 2020, 9829176. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Ranneh, Y.; Ali, F.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: A review. Appl. Biol. Chem. 2017, 60, 327–338. [Google Scholar] [CrossRef]
- Ostman, A.; Frijhoff, J.; Sandin, A.; Bohmer, F.D. Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 2011, 150, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Knebel, A.; Tenev, T.; Neininger, A.; Gaestel, M.; Herrlich, P.; Bohmer, F.D. Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J. Biol. Chem. 1999, 274, 26378–26386. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, I.S. Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp. Mol. Med. 2017, 49, e331. [Google Scholar] [CrossRef] [PubMed]
- Storz, P. Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid. Redox Signal. 2011, 14, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Kasai, S.; Shimizu, S.; Tatara, Y.; Mimura, J.; Itoh, K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules 2020, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Mallard, C.; Tremblay, M.E.; Vexler, Z.S. Microglia and Neonatal Brain Injury. Neuroscience 2019, 405, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; McCullough, L.D. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol. Sin. 2013, 34, 1121–1130. [Google Scholar] [CrossRef]
- Min, Y.J.; Ling, E.A.; Li, F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front. Pharmacol. 2020, 11, 580428. [Google Scholar] [CrossRef]
- Rayasam, A.; Fukuzaki, Y.; Vexler, Z.S. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol. 2021, 233, e13674. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Jeon, S.; Suk, K. Glia as a Link between Neuroinflammation and Neuropathic Pain. Immune Netw. 2012, 12, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Leavy, A.; Jimenez Mateos, E.M. Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020, 9, 2640. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Concepcion, K.; Meng, X.; Zhang, L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog. Neurobiol. 2017, 159, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Haroon, E.; Miller, A.H.; Sanacora, G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017, 42, 193–215. [Google Scholar] [CrossRef]
- Peliowski-Davidovich, A.; Canadian Paediatric Society, F.; Newborn, C. Hypothermia for newborns with hypoxic ischemic encephalopathy. Paediatr. Child Health 2012, 17, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Wassink, G.; Gunn, E.R.; Drury, P.P.; Bennet, L.; Gunn, A.J. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 2014, 8, 40. [Google Scholar] [CrossRef]
- Cornette, L. Therapeutic hypothermia in neonatal asphyxia. Facts Views Vis. ObGyn 2012, 4, 133–139. [Google Scholar]
- Whitelaw, A.; Thoresen, M. Therapeutic Hypothermia for Hypoxic-Ischemic Brain Injury Is More Effective in Newborn Infants than in Older Patients: Review and Hypotheses. Ther. Hypothermia Temp. Manag. 2023; ahead of print. [Google Scholar] [CrossRef]
- Kurisu, K.; Kim, J.Y.; You, J.; Yenari, M.A. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr. Med. Chem. 2019, 26, 5430–5455. [Google Scholar] [CrossRef]
- Lemyre, B.; Chau, V. Hypothermia for newborns with hypoxic-ischemic encephalopathy. Paediatr. Child Health 2018, 23, 285–291. [Google Scholar] [CrossRef]
- Kendall, G.S.; Mathieson, S.; Meek, J.; Rennie, J.M. Recooling for rebound seizures after rewarming in neonatal encephalopathy. Pediatrics 2012, 130, e451–e455. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu, O.; Topacoglu, H.; Dikme, O.; Dikme, O. A systematic review of safety and adverse effects in the practice of therapeutic hypothermia. Am. J. Emerg. Med. 2018, 36, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Wyatt, J.S.; Azzopardi, D.; Ballard, R.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; Whitelaw, A.; et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 2005, 365, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S.; Pappas, A.; McDonald, S.A.; Vohr, B.R.; Hintz, S.R.; Yolton, K.; Gustafson, K.E.; Leach, T.M.; Green, C.; Bara, R.; et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N. Engl. J. Med. 2012, 366, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, D.V.; Strohm, B.; Edwards, A.D.; Dyet, L.; Halliday, H.L.; Juszczak, E.; Kapellou, O.; Levene, M.; Marlow, N.; Porter, E.; et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 2009, 361, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Ohlsson, A.; Perlman, M. Hypothermia to treat neonatal hypoxic ischemic encephalopathy: Systematic review. Arch. Pediatr. Adolesc. Med. 2007, 161, 951–958. [Google Scholar] [CrossRef]
- Thayyil, S.; Pant, S.; Montaldo, P.; Shukla, D.; Oliveira, V.; Ivain, P.; Bassett, P.; Swamy, R.; Mendoza, J.; Moreno-Morales, M.; et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): A randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob. Health 2021, 9, e1273–e1285. [Google Scholar] [CrossRef]
- Nisha, S.; Amita, D.; Uma, S.; Tripathi, A.K.; Pushplata, S. Prevalence and characterization of thrombocytopenia in pregnancy in Indian women. Indian J. Hematol. Blood Transfus. 2012, 28, 77–81. [Google Scholar] [CrossRef]
- Edwards, A.D.; Brocklehurst, P.; Gunn, A.J.; Halliday, H.; Juszczak, E.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ 2010, 340, c363. [Google Scholar] [CrossRef]
- Higgins, R.D.; Raju, T.; Edwards, A.D.; Azzopardi, D.V.; Bose, C.L.; Clark, R.H.; Ferriero, D.M.; Guillet, R.; Gunn, A.J.; Hagberg, H.; et al. Hypothermia and other treatment options for neonatal encephalopathy: An executive summary of the Eunice Kennedy Shriver NICHD workshop. J. Pediatr. 2011, 159, 851–858.e1. [Google Scholar] [CrossRef]
- Simons, S.H.; van Dijk, M.; van Lingen, R.A.; Roofthooft, D.; Boomsma, F.; van den Anker, J.N.; Tibboel, D. Randomised controlled trial evaluating effects of morphine on plasma adrenaline/noradrenaline concentrations in newborns. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F36–F40. [Google Scholar] [CrossRef] [PubMed]
- Frymoyer, A.; Bonifacio, S.L.; Drover, D.R.; Su, F.; Wustoff, C.J.; Van Meurs, K.P. Decreased Morphine Clearance in Neonates with Hypoxic Ischemic Encephalopathy Receiving Hypothermia. J. Clin. Pharmacol. 2017, 57, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Sabir, H.; Maes, E.; Zweyer, M.; Schleehuber, Y.; Imam, F.B.; Silverman, J.; White, Y.; Pang, R.; Pasca, A.M.; Robertson, N.J.; et al. Comparing the efficacy in reducing brain injury of different neuroprotective agents following neonatal hypoxia-ischemia in newborn rats: A multi-drug randomized controlled screening trial. Sci. Rep. 2023, 13, 9467. [Google Scholar] [CrossRef] [PubMed]
- Ruegger, C.M.; Davis, P.G.; Cheong, J.L. Xenon as an adjuvant to therapeutic hypothermia in near-term and term newborns with hypoxic-ischaemic encephalopathy. Cochrane Database Syst. Rev. 2018, 8, CD012753. [Google Scholar] [CrossRef] [PubMed]
- Anna, R.; Rolf, R.; Mark, C. Update of the organoprotective properties of xenon and argon: From bench to beside. Intensive Care Med. Exp. 2020, 8, 11. [Google Scholar] [CrossRef]
- Esencan, E.; Yuksel, S.; Tosun, Y.B.; Robinot, A.; Solaroglu, I.; Zhang, J.H. XENON in medical area: Emphasis on neuroprotection in hypoxia and anesthesia. Med. Gas Res. 2013, 3, 4. [Google Scholar] [CrossRef]
- Franks, N.P.; Dickinson, R.; de Sousa, S.L.; Hall, A.C.; Lieb, W.R. How does xenon produce anaesthesia? Nature 1998, 396, 324. [Google Scholar] [CrossRef]
- Armstrong, S.P.; Banks, P.J.; McKitrick, T.J.; Geldart, C.H.; Edge, C.J.; Babla, R.; Simillis, C.; Franks, N.P.; Dickinson, R. Identification of two mutations (F758W and F758Y) in the N-methyl-D-aspartate receptor glycine-binding site that selectively prevent competitive inhibition by xenon without affecting glycine binding. Anesthesiology 2012, 117, 38–47. [Google Scholar] [CrossRef]
- Dickinson, R.; Peterson, B.K.; Banks, P.; Simillis, C.; Martin, J.C.; Valenzuela, C.A.; Maze, M.; Franks, N.P. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: Evidence from molecular modeling and electrophysiology. Anesthesiology 2007, 107, 756–767. [Google Scholar] [CrossRef]
- Petzelt, C.; Blom, P.; Schmehl, W.; Muller, J.; Kox, W.J. Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon. Life Sci. 2003, 72, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Dingley, J.; Hobbs, C.; Ferguson, J.; Stone, J.; Thoresen, M. Xenon/hypothermia neuroprotection regimes in spontaneously breathing neonatal rats after hypoxic-ischemic insult: The respiratory and sedative effects. Anesth. Analg. 2008, 106, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.; Thoresen, M.; Tucker, A.; Aquilina, K.; Chakkarapani, E.; Dingley, J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008, 39, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Hossain, M.; Chow, A.; Arshad, M.; Battson, R.M.; Sanders, R.D.; Mehmet, H.; Edwards, A.D.; Franks, N.P.; Maze, M. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann. Neurol. 2005, 58, 182–193. [Google Scholar] [CrossRef]
- Thoresen, M.; Hobbs, C.E.; Wood, T.; Chakkarapani, E.; Dingley, J. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2009, 29, 707–714. [Google Scholar] [CrossRef]
- Chakkarapani, E.; Dingley, J.; Liu, X.; Hoque, N.; Aquilina, K.; Porter, H.; Thoresen, M. Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann. Neurol. 2010, 68, 330–341. [Google Scholar] [CrossRef]
- Faulkner, S.; Bainbridge, A.; Kato, T.; Chandrasekaran, M.; Kapetanakis, A.B.; Hristova, M.; Liu, M.; Evans, S.; De Vita, E.; Kelen, D.; et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann. Neurol. 2011, 70, 133–150. [Google Scholar] [CrossRef]
- Bantel, C.; Maze, M.; Trapp, S. Noble gas xenon is a novel adenosine triphosphate-sensitive potassium channel opener. Anesthesiology 2010, 112, 623–630. [Google Scholar] [CrossRef]
- Gruss, M.; Bushell, T.J.; Bright, D.P.; Lieb, W.R.; Mathie, A.; Franks, N.P. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol. Pharmacol. 2004, 65, 443–452. [Google Scholar] [CrossRef]
- Petzelt, C.P.; Kodirov, S.; Taschenberger, G.; Kox, W.J. Participation of the Ca2+-calmodulin-activated Kinase II in the control of metaphase-anaphase transition in human cells. Cell Biol. Int. 2001, 25, 403–409. [Google Scholar] [CrossRef]
- Ma, D.; Williamson, P.; Januszewski, A.; Nogaro, M.C.; Hossain, M.; Ong, L.P.; Shu, Y.; Franks, N.P.; Maze, M. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology 2007, 106, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Sabir, H.; Bishop, S.; Cohen, N.; Maes, E.; Liu, X.; Dingley, J.; Thoresen, M. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain. Anesthesiology 2013, 119, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, D.; Robertson, N.J.; Bainbridge, A.; Cady, E.; Charles-Edwards, G.; Deierl, A.; Fagiolo, G.; Franks, N.P.; Griffiths, J.; Hajnal, J.; et al. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): A proof-of-concept, open-label, randomised controlled trial. Lancet Neurol. 2016, 15, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.; Gaete, D.; Rodriguez, D.; Hoogewijs, D.; Rauner, M.; Sormendi, S.; Wielockx, B. Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int. J. Mol. Sci. 2020, 21, 8131. [Google Scholar] [CrossRef]
- Koulnis, M.; Liu, Y.; Hallstrom, K.; Socolovsky, M. Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS ONE 2011, 6, e21192. [Google Scholar] [CrossRef]
- Rankin, E.B.; Biju, M.P.; Liu, Q.; Unger, T.L.; Rha, J.; Johnson, R.S.; Simon, M.C.; Keith, B.; Haase, V.H. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Investig. 2007, 117, 1068–1077. [Google Scholar] [CrossRef]
- Suzuki, N.; Gradin, K.; Poellinger, L.; Yamamoto, M. Regulation of hypoxia-inducible gene expression after HIF activation. Exp. Cell Res. 2017, 356, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, C.T.; Asavaritikrai, P.; Teng, R.; Jia, Y. Role of erythropoietin in the brain. Crit. Rev. Oncol. Hematol. 2007, 64, 159–171. [Google Scholar] [CrossRef]
- Dey, S.; Lee, J.; Noguchi, C.T. Erythropoietin Non-hematopoietic Tissue Response and Regulation of Metabolism during Diet Induced Obesity. Front. Pharmacol. 2021, 12, 725734. [Google Scholar] [CrossRef]
- Egrie, J.C.; Dwyer, E.; Browne, J.K.; Hitz, A.; Lykos, M.A. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 2003, 31, 290–299. [Google Scholar] [CrossRef]
- Wu, Y.W.; Bauer, L.A.; Ballard, R.A.; Ferriero, D.M.; Glidden, D.V.; Mayock, D.E.; Chang, T.; Durand, D.J.; Song, D.; Bonifacio, S.L.; et al. Erythropoietin for neuroprotection in neonatal encephalopathy: Safety and pharmacokinetics. Pediatrics 2012, 130, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, M.; Harada, S.; Asada, Y.; Matsumura, H.; Iwami, H.; Tanaka, Y.; Ichiba, H. Combination therapy with erythropoietin, magnesium sulfate and hypothermia for hypoxic-ischemic encephalopathy: An open-label pilot study to assess the safety and feasibility. BMC Pediatr. 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.J.; Juul, S.E. Erythropoietin for infants with hypoxic-ischemic encephalopathy. Curr. Opin. Pediatr. 2010, 22, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Elmahdy, H.; El-Mashad, A.R.; El-Bahrawy, H.; El-Gohary, T.; El-Barbary, A.; Aly, H. Human recombinant erythropoietin in asphyxia neonatorum: Pilot trial. Pediatrics 2010, 125, e1135–e1142. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Mathur, A.M.; Chang, T.; McKinstry, R.C.; Mulkey, S.B.; Mayock, D.E.; Van Meurs, K.P.; Rogers, E.E.; Gonzalez, F.F.; Comstock, B.A.; et al. High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics 2016, 137, e20160191. [Google Scholar] [CrossRef]
- Juul, S.E.; McPherson, R.J.; Bauer, L.A.; Ledbetter, K.J.; Gleason, C.A.; Mayock, D.E. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: Pharmacokinetics and safety. Pediatrics 2008, 122, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Baserga, M.C.; Beachy, J.C.; Roberts, J.K.; Ward, R.M.; DiGeronimo, R.J.; Walsh, W.F.; Ohls, R.K.; Anderson, J.; Mayock, D.E.; Juul, S.E.; et al. Darbepoetin administration to neonates undergoing cooling for encephalopathy: A safety and pharmacokinetic trial. Pediatr. Res. 2015, 78, 315–322. [Google Scholar] [CrossRef]
- DuPont, T.L.; Baserga, M.; Lowe, J.; Zamora, T.; Beauman, S.; Ohls, R.K. Darbepoetin as a neuroprotective agent in mild neonatal encephalopathy: A randomized, placebo-controlled, feasibility trial. J. Perinatol. 2021, 41, 1339–1346. [Google Scholar] [CrossRef]
- Wu, Y.W.; Comstock, B.A.; Gonzalez, F.F.; Mayock, D.E.; Goodman, A.M.; Maitre, N.L.; Chang, T.; Van Meurs, K.P.; Lampland, A.L.; Bendel-Stenzel, E.; et al. Trial of Erythropoietin for Hypoxic-Ischemic Encephalopathy in Newborns. N. Engl. J. Med. 2022, 387, 148–159. [Google Scholar] [CrossRef]
- Juul, S.E.; Voldal, E.; Comstock, B.A.; Massaro, A.N.; Bammler, T.K.; Mayock, D.E.; Heagerty, P.J.; Wu, Y.W.; Numis, A.L.; HEAL Consortium. Association of High-Dose Erythropoietin with Circulating Biomarkers and Neurodevelopmental Outcomes among Neonates with Hypoxic Ischemic Encephalopathy: A Secondary Analysis of the HEAL Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2322131. [Google Scholar] [CrossRef]
- Pan, J.J.; Wu, Y.; Liu, Y.; Cheng, R.; Chen, X.Q.; Yang, Y. The effect of erythropoietin on neonatal hypoxic-ischemic encephalopathy: An updated meta-analysis of randomized control trials. Front. Pediatr. 2022, 10, 1074287. [Google Scholar] [CrossRef] [PubMed]
- McLean, M.J.; Bukhari, A.A.; Wamil, A.W. Effects of topiramate on sodium-dependent action-potential firing by mouse spinal cord neurons in cell culture. Epilepsia 2000, 41, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Fiorini, P.; Daniotti, M.; Catarzi, S.; Savelli, S.; Fonda, C.; Bartalena, L.; Boldrini, A.; Giampietri, M.; Scaramuzzo, R.; et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr. 2012, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Harding, B.; Conception, K.; Li, Y.; Zhang, L. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE). Int. J. Mol. Sci. 2016, 18, 17. [Google Scholar] [CrossRef]
- Kovacs, K.; Szakmar, E.; Meder, U.; Szakacs, L.; Cseko, A.; Vatai, B.; Szabo, A.J.; McNamara, P.J.; Szabo, M.; Jermendy, A. A Randomized Controlled Study of Low-Dose Hydrocortisone Versus Placebo in Dopamine-Treated Hypotensive Neonates Undergoing Hypothermia Treatment for Hypoxic-Ischemic Encephalopathy. J. Pediatr. 2019, 211, 13–19.e3. [Google Scholar] [CrossRef]
- Cipolla-Neto, J.; Amaral, F.G.D. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr. Rev. 2018, 39, 990–1028. [Google Scholar] [CrossRef]
- Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.M. Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020, 10, 1211. [Google Scholar] [CrossRef]
- Janitschke, D.; Lauer, A.A.; Bachmann, C.M.; Seyfried, M.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells. Int. J. Mol. Sci. 2020, 21, 9015. [Google Scholar] [CrossRef]
- Abdel-Hady, H.; Nasef, N.; Shabaan, A.E.; Nour, I. Caffeine therapy in preterm infants. World J. Clin. Pediatr. 2015, 4, 81–93. [Google Scholar] [CrossRef]
- Daly, J.W.; Shi, D.; Nikodijevic, O.; Jacobson, K.A. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 1994, 7, 201–213. [Google Scholar]
- Echeverri, D.; Montes, F.R.; Cabrera, M.; Galan, A.; Prieto, A. Caffeine’s Vascular Mechanisms of Action. Int. J. Vasc. Med. 2010, 2010, 834060. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Oliver, M.; Diaz-Rios, M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review. Life Sci. 2014, 101, 1–9. [Google Scholar] [CrossRef]
- Yang, L.; Yu, X.; Zhang, Y.; Liu, N.; Xue, X.; Fu, J. Caffeine treatment started before injury reduces hypoxic-ischemic white-matter damage in neonatal rats by regulating phenotypic microglia polarization. Pediatr. Res. 2022, 92, 1543–1554. [Google Scholar] [CrossRef]
- Harer, M.W.; Askenazi, D.J.; Boohaker, L.J.; Carmody, J.B.; Griffin, R.L.; Guillet, R.; Selewski, D.T.; Swanson, J.R.; Charlton, J.R.; Neonatal Kidney, C. Association Between Early Caffeine Citrate Administration and Risk of Acute Kidney Injury in Preterm Neonates: Results from the AWAKEN Study. JAMA Pediatr. 2018, 172, e180322. [Google Scholar] [CrossRef] [PubMed]
- Iulia, C.; Ruxandra, T.; Costin, L.B.; Liliana-Mary, V. Citicoline—A neuroprotector with proven effects on glaucomatous disease. Rom. J. Ophthalmol. 2017, 61, 152–158. [Google Scholar] [CrossRef]
- Salamah, A.; El Amrousy, D.; Elsheikh, M.; Mehrez, M. Citicoline in hypoxic ischemic encephalopathy in neonates: A randomized controlled trial. Ital. J. Pediatr. 2023, 49, 55. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Sabin, J.; Roman, G.C. The role of citicoline in neuroprotection and neurorepair in ischemic stroke. Brain Sci. 2013, 3, 1395–1414. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef]
- Cao, G.; Gong, T.; Du, Y.; Wang, Y.; Ge, T.; Liu, J. Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed. Pharmacother. 2022, 156, 113686. [Google Scholar] [CrossRef]
- Yuan, Y.; Fan, X.; Guo, Z.; Zhou, Z.; Gao, W. Metformin Protects against Spinal Cord Injury and Cell Pyroptosis via AMPK/NLRP3 Inflammasome Pathway. Anal. Cell. Pathol. 2022, 2022, 3634908. [Google Scholar] [CrossRef]
- Ruan, C.; Guo, H.; Gao, J.; Wang, Y.; Liu, Z.; Yan, J.; Li, X.; Lv, H. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway. Brain Behav. 2021, 11, e2335. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Jiang, H.; Ye, L.; Cai, C.; Hu, Y.; Pan, S.; Li, P.; Xiao, J.; Lin, Z. Metformin treatment after the hypoxia-ischemia attenuates brain injury in newborn rats. Oncotarget 2017, 8, 75308–75325. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nozohouri, S.; Vaidya, B.; Abbruscato, T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci. 2021, 274, 119343. [Google Scholar] [CrossRef]
- Lee, B.E.; Toledo, A.H.; Anaya-Prado, R.; Roach, R.R.; Toledo-Pereyra, L.H. Allopurinol, xanthine oxidase, and cardiac ischemia. J. Investig. Med. 2009, 57, 902–909. [Google Scholar] [CrossRef]
- Kostić, D.A.; Dimitrijević, D.S.; Stojanović, G.S.; Palić, I.R.; Đorđević, A.S.; Ickovski, J.D. Xanthine Oxidase: Isolation, Assays of Activity, and Inhibition. J. Chem. 2015, 2015, 294858. [Google Scholar] [CrossRef]
- Liu, N.; Xu, H.; Sun, Q.; Yu, X.; Chen, W.; Wei, H.; Jiang, J.; Xu, Y.; Lu, W. The Role of Oxidative Stress in Hyperuricemia and Xanthine Oxidoreductase (XOR) Inhibitors. Oxid. Med. Cell. Longev. 2021, 2021, 1470380. [Google Scholar] [CrossRef] [PubMed]
- Marro, P.J.; Mishra, O.P.; Delivoria-Papadopoulos, M. Effect of allopurinol on brain adenosine levels during hypoxia in newborn piglets. Brain Res. 2006, 1073–1074, 444–450. [Google Scholar] [CrossRef]
- Kaya, D.; Micili, S.C.; Kizmazoglu, C.; Mucuoglu, A.O.; Buyukcoban, S.; Ersoy, N.; Yilmaz, O.; Isik, A.T. Allopurinol attenuates repeated traumatic brain injury in old rats: A preliminary report. Exp. Neurol. 2022, 357, 114196. [Google Scholar] [CrossRef]
- Goss, J.; Hair, P.; Kumar, P.; Iacono, G.; Redden, L.; Morelli, G.; Krishna, N.; Thienel, U.; Cunnion, K. RLS-0071, a dual-targeting anti-inflammatory peptide—Biomarker findings from a first in human clinical trial. Transl. Med. Commun. 2023, 8, 1. [Google Scholar] [CrossRef]
- Soliman, H.; Theret, M.; Scott, W.; Hill, L.; Underhill, T.M.; Hinz, B.; Rossi, F.M.V. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell 2021, 28, 1690–1707. [Google Scholar] [CrossRef]
- van Velthoven, C.T.; Kavelaars, A.; Heijnen, C.J. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr. Res. 2012, 71, 474–481. [Google Scholar] [CrossRef]
- Serrenho, I.; Rosado, M.; Dinis, A.; Cardoso, C.M.; Graos, M.; Manadas, B.; Baltazar, G. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int. J. Mol. Sci. 2021, 22, 3142. [Google Scholar] [CrossRef] [PubMed]
- Nabetani, M.; Shintaku, H.; Hamazaki, T. Future perspectives of cell therapy for neonatal hypoxic-ischemic encephalopathy. Pediatr. Res. 2018, 83, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Cotten, C.M.; Fisher, K.; Malcolm, W.; Gustafson, K.E.; Cheatham, L.; Marion, A.; Greenberg, R.; Kurtzberg, J. A Pilot Phase I Trial of Allogeneic Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells in Neonates with Hypoxic-Ischemic Encephalopathy. Stem Cells Transl. Med. 2023, 12, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.K.; Gulati, A. Sovateltide Mediated Endothelin B Receptors Agonism and Curbing Neurological Disorders. Int. J. Mol. Sci. 2022, 23, 3146. [Google Scholar] [CrossRef]
- Takai, M.; Umemura, I.; Yamasaki, K.; Watakabe, T.; Fujitani, Y.; Oda, K.; Urade, Y.; Inui, T.; Yamamura, T.; Okada, T. A potent and specific agonist, Suc-[Glu9,Ala11,15]-endothelin-1(8-21), IRL 1620, for the ETB receptor. Biochem. Biophys. Res. Commun. 1992, 184, 953–959. [Google Scholar] [CrossRef]
- Ramos, M.D.; Briyal, S.; Prazad, P.; Gulati, A. Neuroprotective Effect of Sovateltide (IRL 1620, PMZ 1620) in a Neonatal Rat Model of Hypoxic-Ischemic Encephalopathy. Neuroscience 2022, 480, 194–202. [Google Scholar] [CrossRef]
- Gulati, A.; Hornick, M.G.; Briyal, S.; Lavhale, M.S. A novel neuroregenerative approach using ET(B) receptor agonist, IRL-1620, to treat CNS disorders. Physiol. Res. 2018, 67, S95–S113. [Google Scholar] [CrossRef]
- Gulati, A.; Kumar, A.; Morrison, S.; Shahani, B.T. Effect of centrally administered endothelin agonists on systemic and regional blood circulation in the rat: Role of sympathetic nervous system. Neuropeptides 1997, 31, 301–309. [Google Scholar] [CrossRef]
- Kaundal, R.K.; Deshpande, T.A.; Gulati, A.; Sharma, S.S. Targeting endothelin receptors for pharmacotherapy of ischemic stroke: Current scenario and future perspectives. Drug Discov. Today 2012, 17, 793–804. [Google Scholar] [CrossRef]
- Leonard, M.G.; Briyal, S.; Gulati, A. Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats. Brain Res. 2011, 1420, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.G.; Briyal, S.; Gulati, A. Endothelin B receptor agonist, IRL-1620, provides long-term neuroprotection in cerebral ischemia in rats. Brain Res. 2012, 1464, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.G.; Prazad, P.; Puppala, B.; Gulati, A. Selective Endothelin-B Receptor Stimulation Increases Vascular Endothelial Growth Factor in the Rat Brain during Postnatal Development. Drug Res. 2015, 65, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.G.; Gulati, A. Endothelin B receptor agonist, IRL-1620, enhances angiogenesis and neurogenesis following cerebral ischemia in rats. Brain Res. 2013, 1528, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.K.; Briyal, S.; Gulati, A. Sovateltide (IRL-1620) activates neuronal differentiation and prevents mitochondrial dysfunction in adult mammalian brains following stroke. Sci. Rep. 2020, 10, 12737. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Briyal, S.; Khandekar, D.; Gulati, A. Sovateltide (IRL-1620) affects neuronal progenitors and prevents cerebral tissue damage after ischemic stroke. Can. J. Physiol. Pharmacol. 2020, 98, 659–666. [Google Scholar] [CrossRef]
- Briyal, S.; Ranjan, A.K.; Hornick, M.G.; Puppala, A.K.; Luu, T.; Gulati, A. Anti-apoptotic activity of ET(B) receptor agonist, IRL-1620, protects neural cells in rats with cerebral ischemia. Sci. Rep. 2019, 9, 10439. [Google Scholar] [CrossRef]
- Cifuentes, E.G.; Hornick, M.G.; Havalad, S.; Donovan, R.L.; Gulati, A. Neuroprotective Effect of IRL-1620, an Endothelin B Receptor Agonist, on a Pediatric Rat Model of Middle Cerebral Artery Occlusion. Front. Pediatr. 2018, 6, 310. [Google Scholar] [CrossRef]
- Gulati, A.; Agrawal, N.; Vibha, D.; Misra, U.K.; Paul, B.; Jain, D.; Pandian, J.; Borgohain, R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs 2021, 35, 85–104. [Google Scholar] [CrossRef]
- Keam, S.J. Sovateltide: First Approval. Drugs 2023, 83, 1239–1244. [Google Scholar] [CrossRef]
- Chaitanya, G.V.; Cromer, W.E.; Parker, C.P.; Couraud, P.O.; Romero, I.A.; Weksler, B.; Mathis, J.M.; Minagar, A.; Alexander, J.S. A recombinant inhibitory isoform of vascular endothelial growth factor164/165 aggravates ischemic brain damage in a mouse model of focal cerebral ischemia. Am. J. Pathol. 2013, 183, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, H.; Lu, J.; Qu, Y.; Yu, D.; Tong, Y. Vascular endothelial growth factor: An attractive target in the treatment of hypoxic/ischemic brain injury. Neural Regen. Res. 2016, 11, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Martini, S.; Austin, T.; Aceti, A.; Faldella, G.; Corvaglia, L. Free radicals and neonatal encephalopathy: Mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr. Res. 2020, 87, 823–833. [Google Scholar] [CrossRef] [PubMed]
No. | NCT Number | Study Title | Study Status | Conditions | Interventions | Sponsor | Study Type |
---|---|---|---|---|---|---|---|
1 | NCT01962233 | Umbilical Cord Derived Mesenchymal Stem Cells Therapy in Hypoxic Ischemic Encephalopathy | UNKNOWN | Hypoxic-Ischemic Encephalopathy | BIOLOGICAL: Mesenchymal stem cells | Hebei Medical University | INTERVENTIONAL |
2 | NCT05610085 | A Dose Escalation Study of Levetiracetam in the Treatment of Neonatal Seizures | RECRUITING | Neonatal Seizure|Neonatal Encephalopathy|Hypoxic-Ischemic Encephalopathy|Seizure Newborn | DRUG: Levetiracetam injection|DRUG: Phenobarbital Sodium injection | University of California, San Diego | INTERVENTIONAL |
3 | NCT04772222 | Dexmedetomidine Use in Infants Undergoing Cooling Due to Neonatal Encephalopathy (DICE Trial) | RECRUITING | Hypoxic-Ischemic Encephalopathy|Pain | DRUG: Dexmedetomidine hydrochloride|DRUG: Morphine sulfate | University of Utah | INTERVENTIONAL |
4 | NCT05687708 | Effect of Non-nutritive Sucking on Transition to Oral Feeding in Infants With Asphyxia | RECRUITING | Swallowing Disorder|Perinatal Asphyxia|Feeding; Difficult, Newborn|Feeding Disorder of Infancy or Early Childhood|Hypoxic-Ischemic Encephalopathy|Speech Therapy | OTHER: Non-nutritive sucking | Medipol University | INTERVENTIONAL |
5 | NCT05851391 | RESTORE: buRst-supprESsion TO Stop Refractory Status Epilepticus Post-cardiac Arrest | NOT_YET_RECRUITING | Hypoxia-Ischemia, Brain|Heart Arrest|Status Epilepticus|Refractory Status Epilepticus|Seizures|Anoxic-Ischemic Encephalopathy|Anoxia-Ischemia, Cerebral | DRUG: Burst suppression EEG target intravenous anesthesia|DRUG: Seizure suppression EEG target intravenous anesthesia | University of California, San Francisco | INTERVENTIONAL |
6 | NCT04063215 | A Clinical Trial to Determine the Safety and Efficacy of Hope Biosciences Autologous Mesenchymal Stem Cell Therapy for the Treatment of Traumatic Brain Injury and Hypoxic-Ischemic Encephalopathy | ACTIVE_NOT_RECRUITING | Traumatic Brain Injury | BIOLOGICAL: HB-adMSCs | Hope Biosciences | INTERVENTIONAL |
7 | NCT03549520 | CEUS Evaluation of Hypoxic Ischemic Injury | RECRUITING | Hypoxic-Ischemic Encephalopathy|Brain Ischemia Hypoxia | DRUG: Sulfur hexafluoride lipid-type A microspheres | Children’s Hospital of Philadelphia | INTERVENTIONAL |
8 | NCT02854579 | Neural Progenitor Cell and Paracrine Factors to Treat Hypoxic Ischemic Encephalopathy | UNKNOWN | Hypoxic-Ischemic Encephalopathy | BIOLOGICAL: Neural progenitor cell|BIOLOGICAL: Paracrine factors|BIOLOGICAL: Progenitor cell and paracrine factors | Navy General Hospital, Beijing | INTERVENTIONAL |
9 | NCT03806816 | Use of Melatonin for Neuroprotection in Asphyxiated Newborns | UNKNOWN | Hypoxic-Ischemic Encephalopathy|Cell Damage|Asphyxia Perinatal | DIETARY_SUPPLEMENT: Melatonin|OTHER: Placebo group | University Hospital of Ferrara | INTERVENTIONAL |
10 | NCT02551003 | Neuroprotective Effect of Autologous Cord Blood Combined With Therapeutic Hypothermia Following Neonatal Encephalopathy | RECRUITING | Hypoxic-Ischemic Encephalopathy|Cerebral Infarction | DRUG: Autologous cord blood|DEVICE: Hypothermia | Children’s Hospital of Fudan University | INTERVENTIONAL |
11 | NCT05039697 | Normobaric Hyperoxia Combined With Endovascular Therapy in Patients With Stroke Within 6 Hours of Onset:Longterm Outcome | UNKNOWN | Stroke, Acute|Hypoxia-Ischemia, Brain|ENDOVASCULAR TREATMENT | OTHER: Oxygen | Capital Medical University | INTERVENTIONAL |
12 | NCT03079167 | PAEAN—Erythropoietin for Hypoxic Ischaemic Encephalopathy in Newborns | ACTIVE_NOT_RECRUITING | Hypoxic-Ischemic Encephalopathy | DRUG: Epoetin alfa|DRUG: Normal saline | University of Sydney | INTERVENTIONAL |
13 | NCT01646619 | Efficacy Study of Hypothermia Plus Magnesium Sulphate(MgSO4) in the Management of Term and Near Term Babies With Hypoxic Ischemic Encephalopathy | UNKNOWN | Severe Hypoxic-Ischemic Encephalopathy|Moderate Hypoxic Ischemic Encephalopathy | DRUG: Magnesium sulphate|DRUG: Placebo | Sajjad Rahman | INTERVENTIONAL |
14 | NCT03913221 | Caffeine for Hypoxic-Ischemic Encephalopathy | ACTIVE_NOT_RECRUITING | Hypoxic-Ischemic Encephalopathy | DRUG: Caffeine citrate 5 mg/kg|DRUG: Caffeine citrate 10 mg/kg | University of North Carolina, Chapel Hill | INTERVENTIONAL |
15 | NCT03181646 | Role of Citicoline in Treatment of Newborns With Hypoxic Ischemic Encephalopathy | UNKNOWN | Hypoxic-Ischemic Encephalopathy | DRUG: Citicoline | Armed Forces Hospital, Pakistan | INTERVENTIONAL |
16 | NCT04217421 | Cerebrum and Cardiac Protection With Allopurinol in Neonates With Critical Congenital Heart Disease Requiring Cardiac Surgery With Cardiopulmonary Bypass | UNKNOWN | Congenital Heart Disease in Children|Neuroprotection | DRUG: Allopurinol|DRUG: Mannitol | dr. M.J.N.L. Benders | INTERVENTIONAL |
17 | NCT03162653 | Effect of Allopurinol for Hypoxic-ischemic Brain Injury on Neurocognitive Outcome | RECRUITING | Encephalopathy, Hypoxic-Ischemic|Infant, Newborn, Diseases | DRUG: Allopurinol|DRUG: Mannitol | University Hospital Tuebingen | INTERVENTIONAL |
18 | NCT05130528 | Therapeutic Intervention Supporting Development From NICU to 6 Months for Infants Post Hypoxic-Ischemic Encephalopathy | RECRUITING | Cerebral Palsy|Hypoxic-Ischemic Encephalopathy | BEHAVIORAL: Sensorimotor intervention | University of Southern California | INTERVENTIONAL |
19 | NCT05590676 | Metformin Treatment in Infants After Perinatal Brain Injury | NOT_YET_RECRUITING | Hypoxic-Ischemic Encephalopathy of Newborn|Premature Birth | DRUG: Metformin hydrochloride | The Hospital for Sick Children | INTERVENTIONAL |
20 | NCT03123081 | Role of Umbilical Cord Milking in the Management of Hypoxic-ischemic Encephalopathy in Neonates | UNKNOWN | Hypoxic-Ischemic Encephalopathy | PROCEDURE: Umbilical cord milking | Jubilee Mission Medical College and Research Institute | INTERVENTIONAL |
21 | NCT02395276 | Hypothermia Therapy in Pediatric Cardiac Intensive Care Unit for Suspected for Brain Injury | UNKNOWN | Congenital Heart Defects|Brain Ischemia|Hypoxia Brain|Child|Hypothermia, Induced | DEVICE: Whole body hypothermia | Sheba Medical Center | INTERVENTIONAL |
22 | NCT04261335 | The Clinical Trial of CL2020 Cells for Neonatal Hypoxic Ischemic Encephalopathy | ACTIVE_NOT_RECRUITING | Hypoxia-Ischemia, Brain | BIOLOGICAL: CL2020 cells | Nagoya University | INTERVENTIONAL |
23 | NCT05568264 | Effects of a Physical Therapy Intervention on Motor Delay in Infants Admitted to a Neonatal Intensive Care Unit | RECRUITING | Motor Delay|Premature Birth|Intraventricular Hemorrhage|Hypoxic-Ischemic Encephalopathy|Bronchopulmonary Dysplasia | OTHER: Physical therapy intervention | Shirley Ryan AbilityLab | INTERVENTIONAL |
24 | NCT05490173 | The Pilot Experimental Study of the Neuroprotective Effects of Exosomes in Extremely Low Birth Weight Infants | NOT_YET_RECRUITING | Premature Birth|Extreme Prematurity|Preterm Intraventricular Hemorrhage|Hypoxia-Ischemia, Cerebral|Neurodevelopmental Disorders | OTHER: Exosomes derived from mesenchymal stromal cells (MSCs) | Federal State Budget Institution Research Center for Obstetrics, Gynecology and Perinatology Ministry of Healthcare | INTERVENTIONAL |
25 | NCT05836610 | Hydrocortisone Therapy Optimization During Hypothermia Treatment in Asphyxiated Neonates | RECRUITING | Hypoxic-Ischemic Encephalopathy|Asphyxia|Hypotension|Circulatory Failure Neonatal | DRUG: Hydrocortisone | Semmelweis University | INTERVENTIONAL |
26 | NCT05648812 | Neonatal Brain Ultrasound With CEUS and Elastography | NOT_YET_RECRUITING | Neonatal Hypoxic-Ischemic Encephalopathy|Neonatal Stroke|Neonatal Encephalopathy, Unspecified | DIAGNOSTIC_TEST: Brain contrast enhanced ultrasound, brain ultrasound elastography|DRUG: Sulfur hexafluoride | Turku University Hospital | INTERVENTIONAL |
27 | NCT03163589 | Erythropoietin in Management of Neonatal Hypoxic Ischemic Encephalopathy | UNKNOWN | Hypoxic-Ischemic Encephalopathy | DRUG: Erythropoietin|DRUG: normal saline | Assiut University | INTERVENTIONAL |
28 | NCT03657394 | Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Countries | RECRUITING | Hypoxic-Ischemic Encephalopathy|Birth Asphyxia | OTHER: Umbilical cord milking | Nemours Children’s Clinic | INTERVENTIONAL |
29 | NCT05951777 | Autologous Adipose Derived Mesenchymal Stem Cells for Chronic Traumatic Brain Injury | NOT_YET_RECRUITING | Traumatic Brain Injury | BIOLOGICAL: Autologous HB-adMSCs|DRUG: Normal saline | Hope Biosciences | INTERVENTIONAL |
30 | NCT03352310 | Feasibility and Safety of Umbilical Cord Blood Transfusion in the Treatment of Neonatal Cerebral Ischemia and Anemia | UNKNOWN | Hypoxic-Ischemic Encephalopathy|Hypoxia Neonatal|Cerebral Ischemia of Newborn|Anemia, Neonatal | BIOLOGICAL: Autologous umbilical cord blood (UCB)|PROCEDURE: Standard care | Mononuclear Therapeutics Ltd. | INTERVENTIONAL |
31 | NCT05778188 | A Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Preliminary Efficacy of RLS-0071 in Newborns With Moderate or Severe Hypoxic-Ischemic Encephalopathy Undergoing Therapeutic Hypothermia | NOT_YET_RECRUITING | Hypoxic-Ischemic Encephalopathy | DRUG: RLS-0071|DRUG: Placebo | ReAlta Life Sciences, Inc. | INTERVENTIONAL |
32 | NCT04217551 | Influence of Cooling Duration on Efficacy in Cardiac Arrest Patients | RECRUITING | Cardiac Arrest, Out-Of-Hospital|Hypothermia, Induced|Hypoxia-Ischemia, Brain | DEVICE: Therapeutic Hypothermia | University of Michigan | INTERVENTIONAL |
33 | NCT03682042 | Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Countries Developmental Follow Up | RECRUITING | Hypoxic-Ischemic Encephalopathy|Birth Asphyxia | OTHER: Umbilical cord milking | Nemours Children’s Clinic | INTERVENTIONAL |
34 | NCT05295784 | PK and Safety of Caffeine in Neonates With Hypoxic Ischemic Encephalopathy Receiving Therapeutic Hypothermia | NOT_YET_RECRUITING | Acute Kidney Injury|Hypoxic-Ischemic Encephalopathy|Caffeine | DRUG: Caffeine citrate | University of Arkansas | INTERVENTIONAL |
35 | NCT02578823 | Targeted Temperature Management After In-Hospital Cardiac Arrest | UNKNOWN | Hypoxic-Ischemic Encephalopathy | DEVICE: Arctic SunA®|DEVICE: Arcticgela|PROCEDURE: Conventional antipyretic treatment | Asan Medical Center | INTERVENTIONAL |
36 | NCT01765218 | Topiramate in Neonates Receiving Whole Body Cooling for Hypoxic Ischemic Encephalopathy | ACTIVE_NOT_RECRUITING | Hypoxic-Ischemic Encephalopathy | DRUG: Topiramate|DRUG: Placebo | Kristin R Hoffman | INTERVENTIONAL |
37 | NCT05379218 | RIC in HIE: A Safety and Feasibility Trial | RECRUITING | Hypoxic-Ischemic Encephalopathy | DEVICE: Remote ischemic conditioning | The Hospital for Sick Children | INTERVENTIONAL |
38 | NCT02229123 | Levetiracetam Treatment of Neonatal Seizures: Safety and Efficacy Phase II Study | UNKNOWN | Neonatal Seizures | DRUG: Intravenous levetiracetam | University Hospital, Tours | INTERVENTIONAL |
39 | NCT05820178 | tDCS and rTMS in Patients With Early Disorders of Consciousness | NOT_YET_RECRUITING | Disorder of Consciousness|Stroke|Ischemic-hypoxic Encephalopathy | DEVICE: tDCS|DEVICE: rTMS | Xuanwu Hospital, Beijing | INTERVENTIONAL |
40 | NCT03527498 | Evaluation of Long-term Neurodevelopment in Neonatal Encephalopathy by Infant Treadmill | RECRUITING | Hypoxic-Ischemic Encephalopathy|Periventricular Leukomalacia|Intraventricular Hemorrhage|Bilirubin Encephalopathy|Kernicterus|Hypoglycemia, Neonatal|Cerebral Infarction | DEVICE: Baby treadmill|BEHAVIORAL: Physical rehabilitation training | Children’s Hospital of Fudan University | INTERVENTIONAL |
41 | NCT04913324 | Early Virtual Intervention for Infants With CP Following HIE Diagnosis | NOT_YET_RECRUITING | Cerebral Palsy|Hypoxic-Ischemic Encephalopathy|Brain Injuries|Perinatal Hypoxia | BEHAVIORAL: Virtual vare | The Hospital for Sick Children | INTERVENTIONAL |
42 | NCT04896736 | Multisite Tissue Oxygenation Guided Perioperative Care in Cardiac Surgery | RECRUITING | Brain Ischemia Hypoxia|Muscle; Ischemic|Muscle Hypoxia | OTHER: Multisite tissue oxygenation-guided care|OTHER: Usual care | Yale University | INTERVENTIONAL |
43 | NCT02881970 | Neonatal Hypoxic Ischemic Encephalopathy: Safety and Feasibility Study of a Curative Treatment With Autologous Cord Blood Stem Cells | RECRUITING | Neonatal Hypoxic-ischaemic Encephalopathy | DRUG: Autologous cord blood stem cell | Assistance Publique Hopitaux De Marseille | INTERVENTIONAL |
44 | NCT05390060 | Delineating Between Pathophysiologic Phenotypes of Hypoxic-ischemic Brain Injury After Cardiac Arrest | RECRUITING | Hypoxia-Ischemia, Brain | DEVICE: Neuromonitoring | University of British Columbia | INTERVENTIONAL |
45 | NCT01138176 | Whole Body Cooling Using Phase Changing Material | UNKNOWN | Hypoxic-Ischemic Encephalopathy | PROCEDURE: Cooling | Robertson, Nicola, M.D. | INTERVENTIONAL |
46 | NCT02621944 | Melatonin as a Neuroprotective Therapy in Neonates With HIE Undergoing Hypothermia | RECRUITING | Hypoxic-Ischemic Encephalopathy | DRUG: Melatonin|OTHER: Magnetic resonance imaging|OTHER: Pharmacokinetics|BEHAVIORAL: Neurological outcome assessment | University of Florida | INTERVENTIONAL |
47 | NCT05514340 | Assess Safety and Efficacy of Sovateltide in Hypoxic-ischemic Encephalopathy | RECRUITING | Hypoxic-Ischemic Encephalopathy|Neonatal Asphyxia|Neonatal Encephalopathy | DRUG: Normal Saline along with standard treatment|DRUG: Sovateltide along with standard treatment | Pharmazz, Inc. | INTERVENTIONAL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjan, A.K.; Gulati, A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J. Clin. Med. 2023, 12, 6653. https://doi.org/10.3390/jcm12206653
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. Journal of Clinical Medicine. 2023; 12(20):6653. https://doi.org/10.3390/jcm12206653
Chicago/Turabian StyleRanjan, Amaresh K., and Anil Gulati. 2023. "Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy" Journal of Clinical Medicine 12, no. 20: 6653. https://doi.org/10.3390/jcm12206653
APA StyleRanjan, A. K., & Gulati, A. (2023). Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. Journal of Clinical Medicine, 12(20), 6653. https://doi.org/10.3390/jcm12206653