Effect of Lipids on Diabetic Retinopathy in a Large Cohort of Diabetic Patients after 10 Years of Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Sample Size
2.3. Inclusion Criteria
2.4. Exclusion Criteria
- Patients with type 1 DM.
- Patients included in diabetes group III and other specific types (i.e., diseases of the exocrine pancreas, endocrinopathy, genetic defects of β-cell function, genetic defects in insulin action).
- Patients included in diabetes group IV and gestational diabetes mellitus (GDM).
- Patients who did not have a complete EHR.
- Patients with diabetic retinopathy (DR) at inclusion.
2.5. Epidemiological Risk Factors Included in the Study
- Age and sex.
- Duration of DM since diagnosis.
- DM treatment (at three levels: diet, oral hypoglycemics, and insulin).
- Arterial hypertension, which is indicated by a systolic/diastolic (normal value = 140/90 mm Hg) measurement according to the report of the sixth joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; and when the patient is taking anti-hypertension medications.
- Levels of glycosylated hemoglobin (HbA1c), defined according to the American Diabetes Association recommendation.
- BMI levels measured in kg/m2.
- Study of renal status, determining ACR (albumin-to-creatinine ratio; values in mg/g in 24 h urine). Values, normal if <30 mg/g, microalbuminuria if 30 to 299 mg/g and macroalbuminuria if >300 mg/g. In addition, determining the estimated glomerular filtration rate (eGFR), as measured by CKD-EPI (values in mL/min).
- Levels of Total-cholesterol (TC), LDL-C-cholesterol (LDL-C), VLDL-C-C-cholesterol (VLDL-C-C), HDL-C-cholesterol (HDL-C), and triglycerides (TG).
- Lipid indices, Castelli index I Total cholesterol/HDL-cholesterol (TC/HDL-C), Castelli index II LDL-cholesterol/HDL-cholesterol (LDL-C/HDL-C), No-HDL cholesterol/HDL-cholesterol (No-HDL-C/HDL-C) index, and triglycerides/HDL-cholesterol (TG/HDL-C) index.
- Use of statins or fibrates.
2.6. Description of the Clinical Data Collection
2.7. Diagnosis of Diabetic Retinopathy
2.8. Ethical Adherence
2.9. Statistical Methods
- The CH value is CH1.002 (≥1.000) and the interval is 1.000–1.023; then, the effect is positive/protective.
- The CH value is CH 0.976 (<1.000) and the interval is 0.954–0.999; then, the effect is negative.
- The CH value is CH1.002 (≥1.000) and the interval is 0.954–1.023; then, the effect is neutral.
3. Results
Univariate Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roglic, G. World Diabetes Congress 2015: The Global Health Challenges Stream: Assessing global progress and results. Diabetes Res. Clin. Pract. 2015, 108, 367–368. [Google Scholar] [CrossRef]
- Wong, T.Y.; Bressler, N.M. Artificial Intelligence with Deep Learning Technology Looks into Diabetic Retinopathy Screening. JAMA 2016, 316, 2366–2367. [Google Scholar] [CrossRef]
- Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The [email protected] Study. Diabetologia 2012, 55, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Hemmingsen, B.; Lund, S.S.; Gluud, C.; Vaag, A.; Almdal, T.; Hemmingsen, C.; Wetterslev, J. Intensive glycaemic control for patients with type 2 diabetes: Systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ 2011, 343, d6898. [Google Scholar] [CrossRef] [PubMed]
- Do, D.V.; Han, G.; Abariga, S.A.; Sleilati, G.; Vedula, S.S.; Hawkins, B.S. Blood pressure control for diabetic retinopathy. Cochrane Database Syst. Rev. 2023, 3, CD006127. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Kang, W.; Xu, G. Meta-Analysis of Diagnostic Accuracy of Retinopathy for the Detection of Diabetic Kidney Disease in Adults with Type 2 Diabetes. Can. J. Diabetes 2019, 43, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Augustine, J.; Troendle, E.P.; Barabas, P.; McAleese, C.A.; Friedel, T.; Stitt, A.W.; Curtis, T.M. The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Front. Endocrinol. 2021, 11, 621938. [Google Scholar] [CrossRef] [PubMed]
- Kohner, E.M.; Aldington, S.J.; Stratton, I.M.; Manley, S.E.; Holman, R.R.; Matthews, D.R.; Turner, R.C. RC United Kingdom Prospective Diabetes Study, 30: Diabetic retinopathy at diagnosis of non-insulin-dependent diabetes mellitus and associated risk factors. Arch. Ophthalmol. 1998, 116, 297–303. [Google Scholar] [CrossRef]
- Chou, Y.; Ma, J.; Su, X.; Zhong, Y. Emerging insights into the relationship between hyperlipidemia and the risk of diabetic retinopathy. Lipids Health Dis. 2020, 19, 241. [Google Scholar] [CrossRef]
- Klein, B.E.; Moss, S.E.; Klein, R.; Surawicz, T.S. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology 1991, 98, 1261–1265. [Google Scholar] [CrossRef]
- Chew, E.Y.; Klein, M.L.; Ferris, F.L., 3rd; Remaley, N.A.; Murphy, R.P.; Chantry, K.; Hoogwerf, B.J.; Miller, D. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch. Ophthalmol. 1996, 114, 1079–1084. [Google Scholar] [CrossRef]
- Matthews, D.R. Fenofibrate and statin therapy, compared with placebo and statin, slows the development of retinopathy in type 2 diabetes patients of 10 years duration: The ACCORD study. Evid. Based Med. 2011, 16, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Keech, A.C.; Mitchell, P.; Summanen, P.A.; O’Day, J.; Davis, T.M.; Moffitt, M.S.; Taskinen, M.R.; Simes, R.J.; Tse, D.; Williamson, E.; et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): A randomised controlled trial. Lancet 2007, 370, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Hernández, C. Prevention and treatment of diabetic retinopathy: Evidence from large, randomized trials. The emerging role of fenofibrate. Rev. Recent Clin. Trials 2012, 7, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.; Ferris, F.; Klein, R.; Lee, P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef]
- Kreis, A.J.; Wong, T.Y.; Islam, F.M.; Klein, R.; Klein, B.E.; Cotch, M.F.; Jenkins, A.J.; Shea, S.; Wang, J.J. Is nuclear magnetic resonance lipoprotein subclass related to diabetic retinopathy? The multi-ethnic study of atherosclerosis (MESA). Diabetes Vasc. Dis. Res. 2009, 6, 40–42. [Google Scholar] [CrossRef]
- Arad, Y.; Goodman, K.J.; Roth, M.; Newstein, D.; Guerci, A.D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study. J. Am. Coll. Cardiol. 2005, 46, 158–165. [Google Scholar] [CrossRef]
- Natarajan, S.; Glick, H.; Criqui, M.; Horowitz, D.; Lipsitz, S.R.; Kinosian, B. Cholesterol measures to identify and treat individuals at risk for coronary heart disease. Am. J. Prev. Med. 2003, 25, 50–57. [Google Scholar] [CrossRef]
- Soedarman, S.; Kurnia, K.H.; Prasetya, A.D.B.; Sasongko, M.B. Cholesterols, Apolipoproteins, and Their Associations with the Presence and Severity of Diabetic Retinopathy: A Systematic Review. Vision 2022, 6, 77. [Google Scholar] [CrossRef]
- Ray, K.K.; Ference, B.A.; Séverin, T.; Blom, D.; Nicholls, S.J.; Shiba, M.H.; Almahmeed, W.; Alonso, R.; Daccord, M.; Ezhov, M.; et al. World Heart Federation Cholesterol Roadmap 2022. Glob. Heart 2022, 17, 75. [Google Scholar] [CrossRef]
- Nielsen, S.F.; Nordestgaard, B.G. Statin use before diabetes diagnosis and risk of microvascular disease: A nationwide nested matched study. Lancet Diabetes Endocrinol. 2014, 2, 894–900. [Google Scholar] [CrossRef]
- Kang, E.Y.; Chen, T.H.; Garg, S.J.; Sun, C.C.; Kang, J.H.; Wu, W.C.; Hung, M.J.; Lai, C.C.; Cherng, W.J.; Hwang, Y.S. Association of Statin Therapy with Prevention of Vision-Threatening Diabetic Retinopathy. JAMA Ophthalmol. 2019, 137, 363–371. [Google Scholar] [CrossRef]
- Kawasaki, R.; Kitano, S.; Sato, Y.; Yamashita, H.; Nishimura, R.; Tajima, N.; Japan Diabetes Complication and its Prevention prospective (JDCP) study Diabetic Retinopathy working group. Factors associated with non-proliferative diabetic retinopathy in patients with type 1 and type 2 diabetes: The Japan Diabetes Complication and its Prevention prospective study (JDCP study 4). Diabetol. Int. 2018, 10, 3–11. [Google Scholar] [CrossRef] [PubMed]
- ACCORD Study Group; ACCORD Eye Study Group; Chew, E.Y.; Ambrosius, W.T.; Davis, M.D.; Danis, R.P.; Gangaputra, S.; Greven, C.M.; Hubbard, L.; Esser, B.A.; et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 2010, 363, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Davis, M.D.; Danis, R.P.; Lovato, J.F.; Perdue, L.H.; Greven, C.; Genuth, S.; Goff, D.C.; Leiter, L.A.; Ismail-Beigi, F.; et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study. Ophthalmology 2014, 121, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kim, D.; Hernández, C.; Simó, R.; Roy, S. Beneficial effects of fenofibric acid on overexpression of extracellular matrix components, COX-2, and impairment of endothelial permeability associated with diabetic retinopathy. Exp. Eye Res. 2015, 140, 124–129. [Google Scholar] [CrossRef] [PubMed]
With DR | Without DR | F Value/Odds Ratio | Significance | |
---|---|---|---|---|
Mean age in years | 67.42 ± 11.19 | 66.92 ± 11.12 | F = 1.078 | 0.299 * |
Men | 14876 (56.87%) | 85115 (55.09%) | ||
Women | 11280 (43.13%) | 64374 (44.91%) | OR = 1.003 | 0.427 ** |
DM duration in years *** | 9.36 ± 6.73 | 7.37 ± 5.86 | F = 410.3 | <0.001 * |
DM treatment | ||||
Diet | 2258 (8.63%) | 22639 (14.65%) | ||
Oral agents | 18208 (69.61%) | 111559 (72.21%) | ||
Insulin | 5690 (21.75%) | 15291 (9.86%) | OR = 3.08 | <0.001 ** |
Arterial hypertension | 9860 (37.69%) | 47236 (31.59%) | OR = 1.31 | <0.001 ** |
Body mass index | 29.85 ± 5.24 | 30.1 ± 5.32 | F = 5.538 | 0.019 * |
HbA1c in % | 7.75 ± 1.59 | 7.17 ± 1.34 | F = 1646.34 | <0.001 * |
ACR (mg/24 h) | 45.1 ± 193.19 | 23.55 ± 119.51 | F = 1483.88 | <0.001 * |
EGFR (mL/min) | 73.35 ± 18.05 | 75.43 ± 16.47 | F = 469.86 | <0.001 * |
Lipid Variable | With DR | Without DR | F Value | Significance |
---|---|---|---|---|
Cholesterol total mg/dL | 181.92 ± 37.4 | 184.09 ± 37.08 | F = 0.724 | 0.395 ** |
Cholesterol LDL-C mg/dL | 105.53 ± 31.93 | 99 ± 31.91 | F = 0.558 | <0.001 ** |
Cholesterol HDL-C mg/dL | 48.01 ± 11.41 | 48.43 ± 11.28 | F = 7.16 | <0.001 ** |
Cholesterol VLDL-C-C mg/dL | 29.33 ± 13.68 | 30.12 ± 13.63 | F = 0.03 | 0.855 ** |
Triglycerides mg/dL | 153.35 ± 84.35 | 158.94 ± 230.81 | F = 1.33 | 0.248 * |
Use of statins | 8588 (32.83%) | 44209 (29.57%) | OR = 1.164 * | <0.001 ** |
Use of fibrates | 856 (3.27%) | 5711 (3.82%) | OR = 1.148 ** | <0.001 ** |
Castelli index I (Cholesterol total/HDL-C) | Men 3.98 ± 1.06 | Men 4.03 ± 1.05 | F = 6.54 | <0.001 ** |
Women 3.78 ± 0.96 | Women 3.82 ± 0.94 | F = 6.39 | ||
Castelli index II (Cholesterol LDL-C/HDL-C) | Men 2.26 ± 0.78 | Men 2.32 ± 0.81 | F = 2.61 | p = 0.094 |
Women2.15 ± 0.74 | Women 2.19 ± 0.74 | F = 2.98 | ||
Ratio NO-HDL-C/HDL-C | 8.89 ± 1.02 | 2.94 ± 1.01 | F = 6.545 | p = 0.001 ** |
Ratio TG/HDL-C | 3.53 ± 2.52 | 3.61 ± 5.79 | F = 0.487 | p = 0.485 ** |
Mean | Survival | SE | Cumulative Hazard | IC95% | Significance | ||
---|---|---|---|---|---|---|---|
Age | 67.001 | −0.030 | 0.001 | 0.971 | 0.969 | 0.972 | <0.001 |
Sex | 0.431 | −0.039 | 0.014 | 0.960 | 0.935 | 0.986 | 0.002 |
DM treatment | 0.978 | −0.382 | 0.016 | 0.682 | 0.62 | 0.704 | <0.001 |
Body mass index | 30.069 | 0.007 | 0.001 | 1.007 | 1.004 | 1.009 | <0.001 |
Arterial hypertension | 0.325 | 0.196 | 0.013 | 1.217 | 1.186 | 1.248 | <0.001 |
HbA1c | 7.265 | 0.150 | 0.004 | 1.162 | 1.153 | 1.172 | <0.001 |
ACR | 26.765 | 0.000 | 0.000 | 1.012 | 1.000 | 1.018 | <0.001 |
CKD-EPI | 75.128 | −0.004 | 0.000 | 0.993 | 0.991 | 0.995 | <0.001 |
Cholesterol total | 183.473 | 0.002 | 0.000 | 1.001 | 0.998 | 1.002 | 0.136 |
Cholesterol LDL-C | 105.095 | 0.007 | 0.001 | 1.007 | 1.006 | 1.009 | 0.02 |
Cholesterol HDL-C | 48.370 | −0.004 | 0.001 | 0.996 | 0.994 | 0.998 | 0.001 |
Cholesterol VLDL-C-C | 30.008 | −0.005 | 0.001 | 0.995 | 0.994 | 0.997 | 0.905 |
Triglycerides | 158.115 | 0.000 | 0.000 | 1.000 | 0.998 | 1.002 | 0.632 |
Cholesterol Total/HDL-C (Castelli index I) | 3.941 | 0.088 | 0.019 | 1.092 | 1.052 | 1.134 | <0.001 |
Cholesterol LDL-C/HDL-C (Castelli index II) | 2.259 | 0.101 | 0.029 | 0.880 | 0.750 | 1.032 | 0.116 |
Ratio No-HDL-C/HDL-C | 2.941 | 0.175 | 0.057 | 1.191 | 1.065 | 1.333 | 0.002 |
Ratio TG/HDL-C | 3.607 | −0.001 | 0.003 | 0.999 | 0.994 | 1.004 | 0.660 |
Use of statins | 0.301 | 0.97 | 0.013 | 1.002 | 1.001 | 1.003 | 0.05 |
Use of fibrates | 0.037 | −0.104 | 0.035 | 0.907 | 0.846 | 0.973 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Aroca, P.; Verges, R.; Pascual-Fontanilles, J.; Valls, A.; Franch, J.; Barrot, J.; Mundet, X.; La Torre, A.; Moreno, A.; Sagarra, R.; et al. Effect of Lipids on Diabetic Retinopathy in a Large Cohort of Diabetic Patients after 10 Years of Follow-Up. J. Clin. Med. 2023, 12, 6674. https://doi.org/10.3390/jcm12206674
Romero-Aroca P, Verges R, Pascual-Fontanilles J, Valls A, Franch J, Barrot J, Mundet X, La Torre A, Moreno A, Sagarra R, et al. Effect of Lipids on Diabetic Retinopathy in a Large Cohort of Diabetic Patients after 10 Years of Follow-Up. Journal of Clinical Medicine. 2023; 12(20):6674. https://doi.org/10.3390/jcm12206674
Chicago/Turabian StyleRomero-Aroca, Pedro, Raquel Verges, Jordi Pascual-Fontanilles, Aida Valls, Josep Franch, Joan Barrot, Xavier Mundet, Alex La Torre, Antonio Moreno, Ramon Sagarra, and et al. 2023. "Effect of Lipids on Diabetic Retinopathy in a Large Cohort of Diabetic Patients after 10 Years of Follow-Up" Journal of Clinical Medicine 12, no. 20: 6674. https://doi.org/10.3390/jcm12206674