Which of the 37 Plates Is the Most Mechanically Appropriate for a Low-Neck Fracture of the Mandibular Condyle? A Strength Testing
Abstract
:1. Introduction
2. Materials and Methods
Plate surface area (mm2) + 0.848039 × Total fixing screws number,
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Moraissi, E.A.; Ellis, E. Surgical treatment of adult mandibular condylar fractures provides better outcomes than closed treatment: A systematic review and meta-analysis. J. Oral Maxillofac. Surg. 2015, 73, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Chrcanovic, B.R. Surgical versus non-surgical treatment of mandibular condylar fractures: A meta-analysis. J. Oral Maxillofac. Surg. 2015, 44, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M.; Walczyk, A. Current Frequency of Mandibular Condylar Process Fractures. J. Clin. Med. 2023, 12, 1394. [Google Scholar] [CrossRef] [PubMed]
- Cortese, A.; Borri, A.; Bergaminelli, M.; Bergaminelli, F.; Claudio, P.P. Condylar Neck and Sub-Condylar Fractures: Surgical Consideration and Evolution of the Technique with Short Follow-Up on Five Cases. Dent. J. 2020, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Chęciński, M.; Nowak, Z.; Chęcińska, K.; Olszowski, T.; Chlubek, D. The Use of Titanium 3D Mini-Plates in the Surgical Treatment of Fractures of the Mandibular Condyle: A Systematic Review and Meta-Analysis of Clinical Trials. J. Clin. Med. 2021, 10, 3604. [Google Scholar] [CrossRef]
- Sikora, M.; Chęciński, M.; Sielski, M.; Chlubek, D. The Use of 3D Titanium Miniplates in Surgical Treatment of Patients with Condylar Fractures. J. Clin. Med. 2020, 9, 2923. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, F.; Yang, C.; Xu, B.; Yuan, Z.; Zhang, W.; Shi, J. OCCS Classification and Treatment Algorithm for Comminuted Mandibular Fractures Based on 109 Patients and 11 Years Experiences: A Retrospective Study. J. Clin. Med. 2022, 11, 6301. [Google Scholar] [CrossRef]
- Celegatti Filho, T.S.; Rodrigues, D.C.; Lauria, A.; Moreira, R.W.; Consani, S. Development plates for stable internal fixation: Study of mechanical resistance in simulated fractures of the mandibular condyle. J. Cranio-Maxillofac. Surg. 2015, 43, 158–161. [Google Scholar] [CrossRef]
- de Souza, G.M.; Rodrigues, D.C.; Celegatti Filho, T.S.; Moreira, R.W.F.; Falci, S.G.M. In-vitro comparison of mechanical resistance between two straight plates and a Y-plate for fixation of mandibular condyle fractures. J. Cranio-Maxillofac. Surg. 2018, 46, 168–172. [Google Scholar] [CrossRef]
- Kolsuz, N.; Atali, O.; Varol, A. Assessment of biomechanical properties of specially-designed miniplate patterns in a mandibular subcondylar fracture model with finite element analysis and a servohydraulic testing unit. Br. J. Oral Maxillofac. Surg. 2020, 58, 848–853. [Google Scholar] [CrossRef]
- Kumar, S.; Chugh, A.; Kaur, A.; Aparna, G.; Srivastav, S.; Gigi, P.G.; Kumar, P.; Chaudhry, K. Treatment Outcome Comparison Between two 3-Dimensional Plates (Y-Shaped Plate Versus Trapezoidal Condylar Plate) in Management of Mandible Condylar Fracture: A Randomized Control Trial. J. Maxillofac. Oral Surg. 2023, 22, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Shamra, F.; Manjunath, K.S.; Kamath, S.; Jinu, E.; Ghorpade, B. Surgical management of medially displaced condylar neck fracture: A case report. Int. J. Appl. Dent. Sci. 2019, 5, 78–81. [Google Scholar]
- Woo, I.H.; Kim, J.W.; Kim, J.Y.; Yang, B.E. A New Method of Fixation with the Yang’s Keyhole Plate System for the Treatment of Mandible Fractures. J. Craniofac. Surg. 2017, 28, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.; Zhang, X.; Liu, L. Key points in surgical management of mandibular condylar fractures. Chin. J. Traumatol. 2020, 23, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.kronosedm.pl/tytan-r56401/ (accessed on 24 September 2023).
- ASTMF 1839-08; Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. ASTM International: West Conshohocken, PA, USA, 2016.
- Assari, S.; Darvish, K.; Ilyas, A.M. Biomechanical analysis of second-generation headless compression screws. Injury 2012, 43, 1159–1165. [Google Scholar] [CrossRef]
- Baran, O.; Sagol, E.; Oflaz, H.; Sarikanat, M.; Havitcioglu, H. A biomechanical study on preloaded compression effect on headless screws. Arch. Orthop. Trauma Surg. 2009, 129, 1601–1605. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Evans, S.; Kosashvili, Y. Holding power of variable pitch screws in osteoporotic, osteopenic and normal bone: Are all screws created equal? Injury 2010, 41, 179–183. [Google Scholar] [CrossRef]
- Bailey, C.A.; Kuiper, J.H.; Kelly, C.P. Biomechanical Evaluation of a New Composite Bioresorbable Screw. J. Hand Surg. 2006, 31, 208–212. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Okulski, J.; Krasowski, M.; Konieczny, B.; Zieliński, R. Which of 51 Plate Designs Can Most Stably Fixate the Fragments in a Fracture of the Mandibular Condyle Base? J. Clin. Med. 2023, 12, 4508. [Google Scholar] [CrossRef]
- Mittermiller, P.A.; Bidwell, S.S.; Thieringer, F.M.; Cornelius, C.P.; Trickey, A.W.; Kontio, R.; Girod, S.; AO Trauma Classification Study Group. The Comprehensive AO CMF Classification System for Mandibular Fractures: A Multicenter Validation Study. Craniomaxillofac. Trauma Reconstr. 2019, 12, 254–265. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Zieliński, R.; Krasowski, M. Causing One-Millimeter Displacement of Bone Fragments of Condylar Base Fractures of the Mandible after Fixation by All AvailabOkulski, J. Forces le Plate Designs. Materials 2019, 12, 3122. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S. The mechanical properties of trabecular bone: Dependence on anatomic location and function. J. Biomech. 1987, 20, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.R.; Harrington, R.M.; Lee, K.M.; Anderson, P.A.; Tencer, A.F.; Kowalski, D. Factors Affecting the Pullout Strength of Cancellous Bone Screws. J. Biomech. Eng. 1996, 118, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Schindeler, A.; Mills, R.J.; Bobyn, J.D.; Little, D.G. Preclinical models for orthopedic research and bone tissue engineering. J. Orthop. Res. 2018, 36, 832–840. [Google Scholar] [CrossRef]
- Cutcliffe, H.C.; DeFrate, L.E. Four-Point Bending Testing for Mechanical Assessment of Mouse Bone Structural Properties. Methods Mol. Biol. 2021, 2230, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Alkan, A.; Metin, M.; Muğlali, M.; Ozden, B.; Celebi, N. Biomechanical comparison of plating techniques for fractures of the mandibular condyle. Br. J. Oral Maxillofac. Surg. 2007, 45, 145–149. [Google Scholar] [CrossRef]
- Pilling, E.; Eckelt, U.; Loukota, R.; Schneider, K.; Stadlinger, B. Comparative evaluation of ten different condylar base fracture osteosynthesis techniques. Br. J. Oral Maxillofac. Surg. 2010, 48, 527–531. [Google Scholar] [CrossRef]
- Kot, C.C.S.; Verstraete, F.J.M.; Garcia, T.C.; Stover, S.M.; Arzi, B. Biomechanical evaluation of locking versus nonlocking 2.0-mm malleable L-miniplate fixation of simulated caudal mandibular fractures in cats. Am. J. Vet. Res. 2022, 83, ajvr.22.03.0043. [Google Scholar] [CrossRef]
- Olivera, L.B.; Sant’ Ana, E.; Manzato, A.J.; Guerra, F.L.; Arnett, G.W. Biomechanical in vitro evaluation of three stable internal fixation techniques used in sagittal osteotomy of the mandibular ramus: A study in sheep mandibles. J. Appl. Oral. Sci. 2012, 20, 419–426. [Google Scholar] [CrossRef]
- Cheng, C.K.; Wang, X.H.; Luan, Y.C.; Zhang, N.Z.; Liu, B.L.; Ma, X.Y.; Nie, M.D. Challenges of pre-clinical testing in orthopedic implant development. Med. Eng. Phys. 2019, 72, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Marturello, D.M.; Wei, F.; Déjardin, L.M. Characterization of the torsional structural properties of feline femurs and surrogate bone models for mechanical testing of orthopedic implants. Vet. Surg. 2019, 48, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Soliman, L.; King, V.; Yeoh, M.S.; Woo, A.S. Update on ladder plates for mandibular angle fractures. Curr. Opin. Otolaryngol. Head Neck Surg. 2023, 31, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, R.; Kozakiewicz, M.; Świniarski, J. Comparison of Titanium and Bioresorbable Plates in “A” Shape Plate Properties-Finite Element Analysis. Materials 2019, 12, 1110. [Google Scholar] [CrossRef] [PubMed]
- Mannion, C.J.; Kanatas, A.; Loukota, R.A. Paediatric maxillofacial injuries. Br. Dent. J. 2011, 210, 51. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, K.; Chopra, A.; Narayan, A.I.; Balakrishnan, D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J. Prosthodont. Res. 2018, 62, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Poli, P.P.; de Miranda, F.V.; Polo, T.O.B.; Santiago Júnior, J.F.; Lima Neto, T.J.; Rios, B.R.; Assunção, W.G.; Ervolino, E.; Maiorana, C.; Faverani, L.P. Titanium Allergy Caused by Dental Implants: A Systematic Literature Review and Case Report. Materials 2021, 14, 5239. [Google Scholar] [CrossRef]
- Wach, T.; Skorupska, M.; Trybek, G. Are Torque-Induced Bone Texture Alterations Related to Early Marginal Jawbone Loss? J. Clin. Med. 2022, 11, 6158. [Google Scholar] [CrossRef]
Name | Design Code | Design | H [mm] | W [mm] | S [mm2] | MEF | Fmax/dL [N/mm] | |
---|---|---|---|---|---|---|---|---|
Grid Compression Plate | Plate 35 | 17.3 | 9.1 | 70 | 92 | 8.9 | 1.83 ± 0.31 | |
Grid Plate | Plate 36 | 19 | 9.6 | 80 | 102 | 14.1 | 1.85 ± 0.29 | |
Rectangle Plate 4 holes | Plate 32 | 11 | 8.5 | 37 | 55 | 12.5 | 2.59 ± 0.23 | |
Kolsuz’s Rectangular Plate | Plate 48 | 11.4 | 10.1 | 49 | 67 | 9.4 | 3.81 ± 1.10 | |
Triangle lower 2 hole distally | Plate 42 | 17.8 | 10 | 67 | 90 | 13.7 | 3.87 ± 0.90 | |
Delta Condylar Plate 3 oval holes | Plate 37 | 17 | 11.4 | 64 | 87 | 10.2 | 4.39 ± 0.52 | |
Small Trapez | Plate 33 | 11.6 | 11.6 | 41 | 61 | 12.8 | 4.43 ± 1.00 | |
Kolsuz’s Triangular Plate | Plate 47 | 14 | 10.4 | 58 | 79 | 9.9 | 4.87 ± 1.42 | |
Small Trapez upper hole together | Plate 34 | 11.1 | 12.1 | 40 | 61 | 12.7 | 4.89 ± 0.31 | |
cut T-ACP | Plate 44 | 23.6 | 9.3 | 85 | 112 | 14.5 | 5.10 ± 0.75 | |
Rectangle Plate 6 holes | Plate 38 | 20 | 10 | 67 | 94 | 13.9 | 5.23 ± 1.18 | |
Lambda | Plate 41 | 25.1 | 13.3 | 72 | 106 | 14.3 | 5.65 ± 0.87 | |
Triangle lower 2 hole medially | Plate 45 | 18.1 | 9.8 | 67 | 90 | 13.7 | 5.73 ± 1.33 | |
Inverted Y * | Plate 28 | 23.6 | 11.1 | 203 | 225 | 17.5 | 5.76 ± 1.40 | |
XCP 3+5 with 2 compression holes | Plate 40 | 20.5 | 16 | 107 | 138 | 14.3 | 5.81 ± 0.49 | |
Square Plate | Plate 31 | 10 | 10 | 39 | 57 | 12.6 | 6.11 ± 0.67 | |
Trapezoidal Plate | Plate 51 | 20 | 18 | 189 | 213 | 17.2 | 6.14 ± 0.88 | |
Patent pending small triangle * | Plate 11 | 13.5 | 8 | 138 | 151 | 15.5 | 6.40 ± 1.70 | |
Delta Condyle Compression Plate * | Plate 14 | 15.3 | 8.8 | 179 | 191 | 13.9 | 6.53 ± 0.98 | |
Lambda Thinned * | Plate 01 | 25.6 | 13 | 219 | 240 | 18.0 | 6.54 ± 0.87 | |
Trapezoid Big | Plate 39 | 20.8 | 19.4 | 131 | 165 | 16.0 | 6.74 ± 1.33 | |
Yang’s Keyhole Plate | Plate 46 | 19.7 | 9,.9 | 80 | 106 | 14.3 | 6.79 ± 2.66 | |
PC7T | Plate 49 | 15 | 12,8 | 86 | 110 | 14.4 | 7.44 ± 1.27 | |
Delta TriLock * | Plate 02 | 15.4 | 8.8 | 174 | 187 | 16.5 | 7.58 ± 1.16 | |
PC7T modified * | Plate 03 | 13.5 | 11.7 | 199 | 213 | 17.2 | 7.61 ± 0.91 | |
A-Shape Plate | Plate 43 | 23.6 | 14.1 | 98 | 131 | 15.1 | 7.86 ± 1.09 | |
Cut ACP-S * | Plate 08 | 14.9 | 8.1 | 165 | 179 | 16.3 | 8.56 ± 0.53 | |
Endo-Condyle 25-288-08-09 * | Plate 21 | 22.7 | 11 | 271 | 289 | 19.1 | 8.65 ± 1.35 | |
Y geometry | Plate 50 | 25 | 19 | 119 | 155 | 15.8 | 9.41 ± 1.48 | |
Strut * | Plate 04 | 19 | 9.6 | 217 | 232 | 17.7 | 10.03 ± 3.76 | |
XCP universal 3+5 * | Plate 19 | 22.7 | 18 | 407 | 423 | 22.0 | 10.96 ± 1.22 | |
ACP-VT * | Plate 12 | 37 | 21 | 371 | 404 | 21.6 | 11.17 ± 0.70 | |
Endoscopic Retractive 10 hole * | Plate 17 | 21.6 | 15.3 | 290 | 311 | 19.0 | 11.83 ± 2.40 | |
ACP-S * | Plate 25 | 26 | 16.3 | 538 | 547 | 24.3 | 11.97 ± 0.57 | |
XCP side-dedicated 3+5 * | Plate 18 | 22.7 | 20 | 393 | 411 | 21.7 | 14.21 ± 1.30 | |
ACP-T * | Plate 23 | 30.4 | 15 | 410 | 428 | 22.1 | 14.87 ± 2.11 | |
Double Plain Plates * | Plate 20 | 16.5 | 3.4 | 227 | 236 | 17.8 | 15.23 ± 3.53 |
Homogenous Groups 1 | Mean Fmax/dL | Name |
---|---|---|
X | 1.83 | Grid Compression Plate |
X | 1.85 | Grid Plate |
XX | 2.59 | Rectangle Plate 4 holes |
XX | 3.81 | Kolsuz’s Rectangular Plate |
XX | 3.87 | Triangle lower 2 hole distally |
XX | 4.39 | Delta Condylar Plate 3 oval holes |
XX | 4.43 | Small Tarpez |
XXX | 4.87 | Kolsuz’s Triangular Plate |
XXXX | 4.89 | Small Tarpez upper hole together |
XXXXX | 5.1 | cut T-ACP |
XXXXXX | 5.23 | Rectangle Plate 6 holes |
XXXXXX | 5.65 | Lambda |
XXXXXX | 5.73 | Triangle lower 2 hole medially |
XXXXXX | 5.76 | Inverted Y |
XXXXXX | 5.81 | XCP 3+5 with 2 compression holes |
XXXXXX | 6.11 | Square Plate |
XXXXXX | 6.14 | Trapezoidal Plate |
XXXXXX | 6.4 | Patent pending small triangle |
XXXXX | 6.53 | Delta Condyle Compression Plate |
XXXXX | 6.54 | Lambda Thinned |
XXXX | 6.74 | Trapezoid big |
XXX | 6.79 | Yang’s Keyhole Plate |
XXX | 7.44 | PC7T |
XXX | 7.58 | Delta TriLock |
XXX | 7.61 | PC7T modified |
XX | 7.86 | A-Shape Plate |
XX | 8.56 | Cut ACP-S |
XX | 8.65 | Endo-Condyle 25-288-08-09 |
X | 9.41 | Y geometry |
XX | 10.03 | Strut |
XX | 10.96 | XCP universal 3+5 |
XX | 11.17 | ACP-VT |
X | 11.83 | Endoscopic retractive 10 holes |
X | 11.97 | ACP-S |
X | 14.21 | XCP side-dedicated 3+5 |
X | 14.87 | ACP-T |
X | 15.23 | Double Plain Plates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okulski, J.; Kozakiewicz, M.; Krasowski, M.; Zieliński, R.; Wach, T. Which of the 37 Plates Is the Most Mechanically Appropriate for a Low-Neck Fracture of the Mandibular Condyle? A Strength Testing. J. Clin. Med. 2023, 12, 6705. https://doi.org/10.3390/jcm12216705
Okulski J, Kozakiewicz M, Krasowski M, Zieliński R, Wach T. Which of the 37 Plates Is the Most Mechanically Appropriate for a Low-Neck Fracture of the Mandibular Condyle? A Strength Testing. Journal of Clinical Medicine. 2023; 12(21):6705. https://doi.org/10.3390/jcm12216705
Chicago/Turabian StyleOkulski, Jakub, Marcin Kozakiewicz, Michał Krasowski, Rafał Zieliński, and Tomasz Wach. 2023. "Which of the 37 Plates Is the Most Mechanically Appropriate for a Low-Neck Fracture of the Mandibular Condyle? A Strength Testing" Journal of Clinical Medicine 12, no. 21: 6705. https://doi.org/10.3390/jcm12216705
APA StyleOkulski, J., Kozakiewicz, M., Krasowski, M., Zieliński, R., & Wach, T. (2023). Which of the 37 Plates Is the Most Mechanically Appropriate for a Low-Neck Fracture of the Mandibular Condyle? A Strength Testing. Journal of Clinical Medicine, 12(21), 6705. https://doi.org/10.3390/jcm12216705