Corneal Edema after Cataract Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Databases
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results
4. Discussion
4.1. Endothelial Cell Loss (ECL)
4.2. Pachymetry
4.3. Visual Performance
4.4. Mechanical Trauma
4.5. Treatment
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cogan, D.G. Corneal Edema: Introduction. Int. Ophthalmol. Clin. 1968, 8, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Schoessler, J.P.; Lowther, G.E. Slit lamp observations of corneal edema. Optom. Vis. Sci. 1971, 48, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Díez-Ajenjo, M.A.; Luque-Cobija, M.J.; Peris-Martínez, C.; Ortí-Navarro, S.; García-Domene, M.C. Refractive changes and visual quality in patients with corneal edema after cataract surgery. BMC Ophthalmol. 2022, 22, 242. [Google Scholar] [CrossRef] [PubMed]
- Hess, R.F.; Carney, L.G. Vision through an abnormal cornea: A pilot study of the relationship between visual loss from corneal distortion, corneal edema, keratoconus, and some allied corneal pathology. Investig. Ophthalmol. Vis. Sci. 1979, 18, 476–483. [Google Scholar]
- Costagliola, C.; Romano, V.; Forbice, E.; Angi, M.; Pascotto, A.; Boccia, T.; Semeraro, F. Corneal oedema and its medical treatment. Clin. Exp. Optom. 2013, 96, 529–535. [Google Scholar] [CrossRef]
- Narayanan, R.; Gaster, R.N.; Kenney, M.C. Pseudophakia corneal edema: A review of mechanisms and treatments. Cornea 2006, 25, 993–1004. [Google Scholar] [CrossRef]
- Calabuig-Goena, M.; López-Miguel, A.; Marqués-Fernández, V.; Coco-Martín, M.B.; Iglesias-Cortinãs, D.; Maldonado, M.J. Early Changes in Corneal Epithelial Thickness after Cataract Surgery-Pilot Study. Curr. Eye Res. 2016, 41, 311–317. [Google Scholar] [CrossRef]
- Alomar, T.S.; Al-Aqaba, M.; Gray, T.; Lowe, J.; Dua, H.S. Histological and confocal microscopy changes in chronic corneal edema: Implications for endothelial transplantation. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8193–8207. [Google Scholar] [CrossRef]
- Hos, D.; Bukowiecki, A.; Horstmann, J.; Bock, F.; Bucher, F.; Heindl, L.M.; Siebelmann, S.; Steven, P.; Dana, R.; Eming, S.A.; et al. Transient Ingrowth of Lymphatic Vessels into the Physiologically Avascular Cornea Regulates Corneal Edema and Transparency. Sci. Rep. 2017, 7, 7227. [Google Scholar] [CrossRef]
- Kausar, A.; Farooq, S.; Akhter, W.; Akhtar, N. Transient corneal edema after phacoemulsification. J. Coll. Physicians Surg. Pakistan. 2015, 25, 505–509. [Google Scholar]
- Gazit, I.; Dubinsky-Pertzov, B.; Or, L.; Pras, E.; Belkin, A.; Einan-Lifshitz, A. Eye patching after cataract surgery is associated with an increased risk of short-term corneal oedema. Acta Ophthalmol. 2021, 99, e81–e85. [Google Scholar] [CrossRef] [PubMed]
- Joussen, A.M.; Barth, U.; Cubuk, H.; Koch, H. Effect of irrigating solution and irrigation temperature on the cornea and pupil during phacoemulsification. J. Cataract Refract. Surg. 2000, 26, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kim, H.; Joo, C. Early changes in corneal edema following torsional phacoemulsification using anterior segment optical coherence tomography and Scheimpflug photography. Jpn. J. Ophthalmol. 2011, 55, 196–204. [Google Scholar] [CrossRef]
- Levenson, J.E. Corneal edema: Cause and treatment. Surv. Ophthalmol. 1975, 20, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Pricopie, S.; Istrate, S.; Voinea, L.; Leasu, C.; Paun, V.; Radu, C. Pseudophakic bullous keratopathy. Rom. J. Ophthalmol. 2017, 61, 90–94. [Google Scholar] [CrossRef]
- Kangas, T.A.; Edelhauser, H.F.; Twining, S.S.; O’Brien, W.J. Loss of stromal glycosaminoglycans during corneal edema. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1994–2002. [Google Scholar]
- Goldman, J.N.; Kuwabara, T. Histopathology of Corneal Edema. Int. Ophthalmol. Clin. 1968, 8, 561–579. [Google Scholar]
- Bonanno, J.A.; Nyguen, T.; Biehl, T.; Soni, S. Can variability in corneal metabolism explain the variability in corneal swelling? Eye Contact Lens. 2003, 29 (Suppl. S1), 7–9. [Google Scholar] [CrossRef]
- Rom, M.E.; Keller, W.B.; Meyer, C.J.; Meisler, D.M.; Chern, K.C.; Lowder, C.Y.; Secic, M. Relationship between Corneal Edema and Topography. Contact Lens. Assoc. Ophthalmol. 1995, 21, 191–194. [Google Scholar]
- Tzamalis, A.; Dermenoudi, M.; Diafas, A.; Oustoglou, E.; Matsou, A.; Ziakas, N.; Tsinopoulos, I. Safety and efficacy of hypertonic saline solution (5%) versus placebo in the treatment of postoperative corneal edema after uneventful phacoemulsification: A randomized double-blind study. Int. Ophthalmol. 2020, 40, 2139–2150. [Google Scholar] [CrossRef]
- Amon, M.; Menapace, R.; Radax, U.; Papapanos, P. Endothelial cell density and corneal pachometry after no-stitch, small-incision cataract surgery. Doc. Ophthalmol. 1992, 81, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.H.; Maumenee, A.E. Corneal Fluid Metabolism. AMA Arch. Ophthalmol. 1953, 50, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Jeang, L.J.; Margo, C.E.; Espana, E.M. Diseases of the corneal endothelium. Exp Eye Res. 2021, 205, 108495. [Google Scholar] [CrossRef]
- Rosado-Adames, N.; Afshari, N.A. The changing fate of the corneal endothelium in cataract surgery. Curr. Opin. Ophthalmol. 2012, 23, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Davies, E. Case Series: Novel Utilization of Rho-Kinase Inhibitor for the Treatment of Corneal Edema. Cornea 2021, 40, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Abell, R.G.; Kerr, N.M.; Howie, A.R.; Kamal, M.A.A.M.; Allen, P.L.; Vote, B.J. Effect of femtosecond laser-assisted cataract surgery on the corneal endothelium. J. Cataract Refract. Surg. 2014, 40, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Bamdad, S.; Bolkheir, A.; Sedaghat, M.R.; Motamed, M. Changes in corneal thickness and corneal endothelial cell density after phacoemulsification cataract surgery: A double-blind randomized trial. Electron Physician 2018, 10, 6616–6623. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, K.; Li, J.; Zhu, S. Comparison between the prechopping method with a reverse chopper and the routine stop-and-chop method in treating cataract with grade IV hard nucleus. J. Fr. Ophtalmol. 2018, 41, 315–320. [Google Scholar] [CrossRef]
- Altintas, A.G.K.; Yilmaz, E.; Anayol, M.A.; Can, I. Comparison of corneal edema caused by cataract surgery with different phaco times in diabetic and non-diabetic patients. Ann. Ophthalmol. 2006, 38, 61–65. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Su, T.; Tian, Y.; Wang, Y.; Xia, X.; Song, W. Comparison of clinical outcomes between cystotome-assisted prechop phacoemulsification surgery and conventional phacoemulsification surgery for hard nucleus cataracts: A CONSORT-compliant article. Medicine 2018, 97, e13124. [Google Scholar] [CrossRef]
- Arentsen, J.J.; Laibson, P.R. Surgical management of pseudophakic corneal edema: Complications and visual results following penetrating keratoplasty. Ophthalmic Surg. 1982, 13, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Behndig, A.; Lundberg, B. Transient corneal edema after phacoemulsification: Comparison of 3 viscoelastic regimens. J. Cataract Refract. Surg. 2002, 28, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Igarashi, T.; Suzuki, H.; Iketani, M.; Takahashi, H. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery. Sci. Rep. 2016, 6, 31190. [Google Scholar] [CrossRef]
- Pricopie, S.; Ciuluvică, R.; Tulin, A.; Ionescu, D.; Leașu-Braneț, C. Effective Phacoemulsification Time and Age Related Endothelial Anatomical Changes of the Cornea in Cataract Surgery. Rev. Rom. Anat. Funcțională și Clin. Macro-și Microsc. și Antropol. 2021, XX, 125–130. [Google Scholar]
- Yamazoe, K.; Yamaguchi, T.; Hotta, K.; Satake, Y.; Konomi, K.; Den, S.; Shimazaki, J. Outcomes of cataract surgery in eyes with a low corneal endothelial cell density. J. Cataract Refract. Surg. 2011, 37, 2130–2136. [Google Scholar] [CrossRef]
- Morishige, N.; Takahashi, N.; Chikamoto, N.; Nishida, T. Quantitative evaluation of corneal epithelial oedema by confocal microscopy. Clin. Exp. Ophthalmol. 2009, 37, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Do, J.R.; Oh, J.H.; Chuck, R.S.; Park, C.Y. Transient corneal edema is a predictive factor for pseudophakic cystoid macular edema after uncomplicated cataract surgery. Korean J. Ophthalmol. 2015, 29, 14–22. [Google Scholar] [CrossRef]
- Lundberg, B.; Jonsson, M.; Behndig, A. Postoperative Corneal Swelling Correlates Strongly to Corneal Endothelial Cell Loss After Phacoemulsification Cataract Surgery. Am. J. Ophthalmol. 2005, 139, 1035–1041. [Google Scholar] [CrossRef]
- Sharifipour, F.; Panahi-Bazaz, M.; Idani, E.; Hajizadeh, M.; Saki, A. Oxygen therapy for corneal edema after cataract surgery. J. Cataract Refract. Surg. 2015, 41, 1370–1375. [Google Scholar] [CrossRef]
- Morikubo, S.; Takamura, Y.; Kubo, E.; Tsuzuki, S.; Akagi, Y. Corneal Changes After Small-Incision Cataract Surgery in Patients with Diabetes Mellitus. Arch. Ophthalmol. 2004, 122, 966–969. [Google Scholar] [CrossRef]
- Moser, C.L.; Martin-Baranera, M.; Garat, M.; de Miguel, P.V.; Rubio, M. Corneal edema and intraocular pressure after cataract surgery: Randomized comparison of Healon5 and Amvisc Plus. J. Cataract Refract. Surg. 2004, 30, 2359–2365. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Takahashi, H.; Hori, J.; Hiraoka, M.; Igarashi, T.; Shiwa, T. Phacoemulsification Associated Corneal Damage Evaluated by Corneal Volume. Am. J. Ophthalmol. 2006, 142, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Jeancolas, A.-L.; Lhuillier, L.; Renaudin, L.; Boiche, M.; Ghetemme, C.; Goetz, C.; Ouamara, N.; Perone, J.-M. Central corneal thickness assessment after phacoemulsification: Subluxation versus Divide-and-Conquer. J. Fr. Ophtalmol. 2017, 40, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; Findl, O.; Menapace, R.; Petternel, V.; Wirtitsch, M.; Lorang, T.; Drexler, W. Corneal endothelial cell protection with a dispersive viscoelastic material and an irrigating solution during phacoemulsification: Low-cost versus expensive combination. J. Cataract Refract. Surg. 2003, 29, 733–740. [Google Scholar] [CrossRef]
- Jiang, L.; Wan, W.; Xun, Y.; Xiong, L.; Wu, B.; Xiang, Y.; Li, Z.; Zhu, L.; Ji, Y.; Yang, P.; et al. Effect of hypothermic perfusion on phacoemulsification in cataract patients complicated with uveitis: A randomised trial. BMC Ophthalmol. 2020, 20, 232. [Google Scholar] [CrossRef]
- Kahraman, G.; Amon, M.; Franz, C.; Prinz, A.; Abela-Formanek, C. Intraindividual comparison of surgical trauma after bimanual microincision and conventional small-incision coaxial phacoemulsification. J. Cataract Refract. Surg. 2007, 33, 618–622. [Google Scholar] [CrossRef]
- Doors, M.; Berendschot, T.T.J.M.; Touwslager, W.; Webers, C.A.; Nuijts, R.M.M.A. Phacopower modulation and the risk for postoperative corneal decompensation: A randomized clinical trial. JAMA Ophthalmol. 2013, 131, 1443–1450. [Google Scholar] [CrossRef]
- Menchini, U.; Scialdone, A.; Fantaguzzi, S.; Carones, F.; Locatelli, A.; Brancato, R. Clinical evaluation of the effect of acetylcholine on the corneal endothelium. J. Cataract Refract. Surg. 1989, 15, 421–424. [Google Scholar] [CrossRef]
- Venkatesh, R.; Tan, C.S.H.; Sengupta, S.; Ravindran, R.D.; Krishnan, K.T.; Chang, D.F. Phacoemulsification versus manual small-incision cataract surgery for white cataract. J. Cataract Refract. Surg. 2010, 36, 1849–1854. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, J. Cryoirrigation in phacoemulsification facilitates a quicker cornea endothelia recovery. Can. J. Ophthalmol. 2009, 44, 446–450. [Google Scholar] [CrossRef]
- Blaydes, J.E.J.; Kelley, E.P.; Walt, J.G.; DeGryse, R.E.; Harper, D.G.; Novack, G.D. Flurbiprofen 0.03% for the control of inflammation following cataract extraction by phacoemulsification. J. Cataract Refract. Surg. 1993, 19, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Elkady, B.; Piñero, D.; Alió, J.L. Corneal incision quality: Microincision cataract surgery versus microcoaxial phacoemulsification. J. Cataract Refract. Surg. 2009, 35, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Bardoloi, N.; Deb, A.K. Comparison between 0.1% Nepafenac and 1% Prednisolone Eye Drop in Postoperative Management following Micro-incisional Cataract Surgery. Korean J. Ophthalmol. 2021, 35, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Lin, H.; Chen, W.; Qu, B.; Zhang, X.; Lin, Z.; Chen, J.; Liu, Y. Intraocular lens-shell technique: Adjustment of the surgical procedure leads to greater safety when treating dense nuclear cataracts. PLoS ONE 2014, 9, e112663. [Google Scholar] [CrossRef]
- Jain, K.; Mallik, K.P.; Gupta, S. Corneal status following modified Blumenthal technique of manual small incision cataract surgery (MSICS) compared to phacoemulsification in treatment of grade III or more nuclear sclerosis-cohort study. Nepal. J. Ophthalmol. 2015, 7, 47–51. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Toto, L.; Vecchiarino, L.; Di Nicola, M.; Mastropasqua, R. Microcoaxial torsional cataract surgery 1.8 mm versus 2.2 mm: Functional and morphological assessment. Ophthalmic surgery, lasers imaging. Off. J. Int. Soc. Imaging Eye 2011, 42, 114–124. [Google Scholar]
- Scuderi, B.; Driussi, G.B.; Chizzolini, M.; Salvetat, M.L.; Beltrame, G. Effectiveness and tolerance of piroxicam 0.5% and diclofenac sodium 0.1% in controlling inflammation after cataract surgery. Eur. J. Ophthalmol. 2003, 13, 536–540. [Google Scholar] [CrossRef]
- Simone, J.N.; Pendelton, R.A.; Jenkins, J.E. Comparison of the efficacy and safety of ketorolac tromethamine 0.5% and prednisolone acetate 1% after cataract surgery. J. Cataract Refract. Surg. 1999, 25, 699–704. [Google Scholar] [CrossRef]
- Camesasca, F.; Bianchi, C.; Beltrame, G.; Caporossi, A.; Piovella, M.; Rapisarda, A.; Tassinari, G.; Zeppa, L. Control of inflammation and prophylaxis of endophthalmitis after cataract surgery: A multicenter study. Eur. J. Ophthalmol. 2007, 17, 733–742. [Google Scholar] [CrossRef]
- Donnenfeld, E.D.; Holland, E.J.; Solomon, K.D.; Fiore, J.; Gobbo, A.; Prince, J.; Perry, H.D. A Multicenter Randomized Controlled Fellow Eye Trial of Pulse-Dosed Difluprednate 0.05% versus Prednisolone Acetate 1% in Cataract Surgery. Am. J. Ophthalmol. 2011, 152, 609–617.e1. [Google Scholar] [CrossRef]
- Kavuncu, S.; Horoz, H.; Ardagil, A.; Erbil, H.H. Rimexolone 1% versus prednisolone acetate in preventing early postoperative inflammation after cataract surgery. Int. Ophthalmol. 2008, 28, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, M.; Miyai, T.; Nejima, R.; Maruyama, Y.; Miyata, K.; Kato, S. Effect of bromfenac ophthalmic solution on ocular inflammation following cataract surgery. Acta Ophthalmol. 2009, 87, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Pianini, V.; Passani, A.; Rossi, G.C.M.; Passani, F. Efficacy and safety of netilmycin/dexamethasone preservative-free and tobramycin/dexamethasone-preserved fixed combination in patients after cataract surgery. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2010, 26, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Werblin, T.P. Long-Term Endothelial Cell Loss Following Phacoemulsification: Model. Refract. Corneal. Surg. 1993, 9, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Lhuillier, L.; Jeancolas, A.L.; Renaudin, L.; Goetz, C.; Ameloot, F.; Premy, S.; Ouamara, N.; Perone, J.M. Impact of ophthalmic surgeon experience on early postoperative central corneal thickness after cataract surgery. Cornea 2017, 36, 541–545. [Google Scholar] [CrossRef]
- Kayiklik, A.; Guvenmez, O. Application of Vitamin E + Coenzyme Q Therapy During FAKO + IOL Implantation. Med. Arch. 2019, 73, 109–112. [Google Scholar] [CrossRef]
- Mencucci, R.; Ponchietti, C.; Virgili, G.; Giansanti, F.; Menchini, U. Corneal endothelial damage after cataract surgery: Microincision versus standard technique. J. Cataract Refract. Surg. 2006, 32, 1351–1354. [Google Scholar] [CrossRef]
- Dick, H.B.; Augustin, A.J.; Pfeiffer, N. Osmolality of various viscoelastic substances: Comparative study. J Cataract Refract Surg. 2000, 26, 1242–1246. [Google Scholar] [CrossRef]
- Perone, J.M.; Boiche, M.; Lhuillier, L.; Ameloot, F.; Premy, S.; Jeancolas, A.-L.; Goetz, C.; Neiter, E. Correlation between postoperative central corneal thickness and endothelial damage after cataract surgery by phacoemulsification. Cornea 2018, 37, 587–590. [Google Scholar] [CrossRef]
- Choi, J.Y.; Han, Y.K. Long-term (≥10 years) results of corneal endothelial cell loss after cataract surgery. Can. J. Ophthalmol. 2019, 54, 438–444. [Google Scholar] [CrossRef]
- Oh, J.H.; Yoo, C.; Kim, Y.Y.; Kim, H.M.; Song, J.S. The effect of contact lens-induced corneal edema on Goldmann applanation tonometry and dynamic contour tonometry. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Siu, A.W.; Herse, P.R. The effect of age on the edema response of the central and mid-peripheral cornea. Acta Ophthalmol. 1993, 71, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Polse, K.A.; Fonn, D.; Mertz, G.W. Effects of cataract surgery on corneal function. Investig. Ophthalmol. Vis. Sci. 1982, 22, 343–350. [Google Scholar]
- Ishikawa, S.; Kato, N.; Takeuchi, M. Quantitative evaluation of corneal epithelial edema after cataract surgery using corneal densitometry: A prospective study. BMC Ophthalmol. 2018, 18, 334. [Google Scholar] [CrossRef]
- Kuerten, D.; Plange, N.; Koch, E.C.; Koutsonas, A.; Walter, P.; Fuest, M. Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 1105–1109. [Google Scholar] [CrossRef]
- Wongchaisuwat, N.; Metheetrairat, A.; Chonpimai, P.; Nujoi, W.; Prabhasawat, P. Comparison of central corneal thickness measurements in corneal edema using ultrasound pachymetry, visante anterior-segment optical coherence tomography, cirrus optical coherence tomography, and pentacam scheimpflug camera tomography. Clin. Ophthalmol. 2018, 12, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, M.; Huang, C.; Chen, B.; Lam, D.S.C.; Zhang, S.; Congdon, N. Determinants of postoperative corneal edema and impact on Goldmann intraocular pressure. Cornea 2011, 30, 962–967. [Google Scholar] [CrossRef]
- Wertheimer, C.M.; Elhardt, C.; Wartak, A.; Luft, N.; Kassumeh, S.; Dirisamer, M.; Mayer, W.J. Corneal optical density in Fuchs endothelial dystrophy determined by anterior segment optical coherence tomography. Eur. J. Ophthalmol. 2021, 31, 1771–1778. [Google Scholar] [CrossRef]
- Addou-Regnard, M.; Fajnkuchen, F.; Bui, A.; Sarda, V.; Chaine, G.; Giocanti-Auregan, A. Impact of lens thickness on complications of hypermature cataract surgery: A prospective study. J. Fr. Ophtalmol. 2016, 39, 631–635. [Google Scholar] [CrossRef]
- Zander, D.; Grewing, V.; Glatz, A.; Lapp, T.; Maier, P.C.; Reinhard, T.; Wacker, K. Predicting Edema Resolution After Descemet Membrane Endothelial Keratoplasty for Fuchs Dystrophy Using Scheimpflug Tomography. JAMA Ophthalmol. 2021, 139, 423–430. [Google Scholar] [CrossRef]
- De Juan, V.; Herreras, J.M.; Pérez, I.; Morejón, Á.; Cristóbal, A.R.-S.; Martín, R.; Fernández, I.; Rodríguez, G. Refractive Stabilization and Corneal Swelling. Optom. Vis. Sci. 2013, 90, 31–36. [Google Scholar] [CrossRef]
- Guindolet, D.; Gemahling, A.; Azar, G.; Disegni, H.; Samie, M.; Cochereau, I.; Gabison, E.E. Detecting subclinical corneal edema using corneal thickness mapping in patients presenting Fuchs’ endothelial corneal dystrophy. Am. J. Ophthalmol. 2022, 246, 58–65. [Google Scholar] [CrossRef]
- Fukuda, S.; Kawana, K.; Yasuno, Y.; Oshika, T. Wound architecture of clear corneal incision with or without stromal hydration observed with 3-dimensional optical coherence tomography. Am. J. Ophthalmol. 2011, 151, 413–419.e1. [Google Scholar] [CrossRef] [PubMed]
- Shoshani, Y.; Pe’er, J.; Doviner, V.; Frucht-Pery, J.; Solomon, A. Increased expression of inflammatory cytokines and matrix metalloproteinases in pseudophakic corneal edema. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Fuest, M.; Mamas, N.; Walter, P.; Plange, N. Tonometry in corneal edema after cataract surgery: Rebound versus goldmann applanation tonometry. Curr. Eye Res. 2014, 39, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.; Armitage, W.J.; Stenevi, U. Corneal oedema after cataract surgery: Predisposing factors and corneal graft outcome. Acta Ophthalmol. 2009, 87, 154–159. [Google Scholar] [CrossRef]
- Laborante, A.; Buzzonetti, L.; Longo, C. Massive corneal edema treated with corneal cross-linking. Clin. Ter. 2012, 163, e1–e4. [Google Scholar]
- Song, J.-S.; Heo, J.-H.; Kim, H.-M. Protective effects of dispersive viscoelastics on corneal endothelial damage in a toxic anterior segment syndrome animal model. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6164–6170. [Google Scholar] [CrossRef]
- Bourne, W.M.; McLaren, J.W. Clinical responses of the corneal endothelium. Exp. Eye Res. 2004, 78, 561–572. [Google Scholar] [CrossRef]
- Simon, J.W.; Miter, D.; Zobal-Ratner, J.; Hodgetts, D.; Belin, M.W. Corneal edema after pediatric cataract surgery. J. AAPOS 1997, 1, 102–104. [Google Scholar] [CrossRef]
- White, P.F.; Miller, D. Corneal edema. Int. Ophthalmol. Clin. 1981, 21, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zéboulon, P.; Ghazal, W.; Gatinel, D. Corneal Edema Visualization with Optical Coherence Tomography Using Deep Learning: Proof of Concept. Cornea 2021, 40, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Ytteborg, J.; Dohlman, C. Corneal Edema and Intraocular Pressure: I. Animal Experiments. Arch. Ophthalmol. 1965, 74, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Carney, L.G.; Jacobs, R.J. Mechanisms of Visual Loss in Corneal Edema. Arch. Ophthalmol. 1984, 102, 1068–1071. [Google Scholar] [CrossRef]
- Meek, K.M.; Dennis, S.; Khan, S. Changes in the Refractive Index of the Stroma and Its Extrafibrillar Matrix When the Cornea Swells. BPJ 2003, 85, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, C.H.; Boruchoff, S.A. Corneal Edema after Cataract Surgery. Int. Ophthalmol. Clin. 1964, 4, 979–998. [Google Scholar] [CrossRef]
- Regina, M.; Bunya, V.Y.; Orlin, S.E.; Ansari, H. Corneal edema and haze after selective laser trabeculoplasty. J. Glaucoma. 2011, 20, 327–329. [Google Scholar] [CrossRef]
- Salabati, M.; Mahmoudzadeh, R.; Wakabayashi, T.; Hinkle, J.W.; Ho, A.C. Indications for surgical management of retained lens fragments. Curr. Opin. Ophthalmol. 2022, 33, 15–20. [Google Scholar] [CrossRef]
- McCarey, B.E.; Polack, F.M.; Marshall, W. The phacoemulsification procedure. I. The effect of intraocular irrigating solutions on the corneal endothelium. Investig. Ophthalmol. 1976, 15, 449–457. [Google Scholar]
- Gogate, P.M.; Parikshit, M. Small incision cataract surgery: Complications and mini-review. Indian J. Ophthalmol. 2009, 57, 45–49. [Google Scholar] [CrossRef]
- Batlan, S.J.; Dodick, J.M. Corneal complications of cataract surgery. Curr. Opin. Ophthalmol. 1996, 7, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.H.; Dana, M.R. Corneal edema after cataract surgery: Incidence and etiology. Semin. Ophthalmol. 2002, 17, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Sriram, A.; Tai, T.Y.T. Resolution of Chronic Corneal Edema after Surgical Treatment for Ocular Hypotony. J. Glaucoma. 2017, 26, e187–e189. [Google Scholar] [CrossRef] [PubMed]
Corneal Edema | After | Cataract Surgery | Variables Measured | |||
---|---|---|---|---|---|---|
“Corneal edema” OR “corneal oedema” OR “edematic cornea” OR “edematous cornea” OR “corneal edema incidence” OR “corneal inflammation” OR “corneal swelling” | AND | “after” OR “consequence” OR “following” OR “from” OR “post” OR “pursuant” OR “result” OR “subsequent” OR “succeeding” OR “successive” | AND | “Cataract surgery” OR “cataract extraction” OR “phacoemulsification” OR “manual phacoemulsification” OR “aphakia” OR “pseudophakic” OR “manual-incisioned phacoemulsification” | AND | “Central corneal thickness” OR “CCT” OR “corneal thickness” OR “pachometry” OR “pachymetry” OR “Endothelial cell density” OR “ECD” OR “endothelial cell damage” OR “endothelial cell loss” OR “corneal endothelium” OR “endothelial cells” OR “specular microscopy” |
RANDOM SEQUENCE GENERATION Selection Bias (Biased Allocation to Interventions) Due to Inadequate Generation of a Randomized Sequence. | ||
References | Judgment | Support for judgment |
[7,11,13,18,19,20,21,26,28,29,30,32,35,37,39,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] | Low risk | Referring to a random number table; minimization |
[3,8,10,12,25,27,31,36,38,40,64,65,66] | High risk | Non-random component in the sequence generation process |
[67,68,69,70] | Unclear | Insufficient information about the sequence generation process to permit judgment of “Low risk” or “High risk”. |
ALLOCATION CONCEALMENT Selection bias (biased allocation to interventions) due to inadequate concealment of allocations prior to assignment. | ||
References | Judgment | Support for judgment |
[7,11,13,18,19,20,21,26,30,35,37,39,41,42,43,44,45,46,47,49,52,56,57,58,59,60,61,62,63] | Low risk | Central allocation (including telephone, web-based, and pharmacy-controlled randomization); sequentially numbered drug containers of identical appearance; sequentially numbered, opaque, sealed envelopes. |
[3,8,10,12,25,27,31,32,36,38,40,50,53,54,55,64,65,66] | High risk | Using an open random allocation schedule (e.g., a list of random numbers); assignment envelopes were used without appropriate safeguards (e.g., if envelopes were unsealed or nonopaque or not sequentially numbered); alternation or rotation; date of birth; case record number; any other explicitly unconcealed procedure. |
[28,29,67,68,69,70] | Unclear | Insufficient information to permit judgment of “Low risk” or “High risk”. This is usually the case if the method of concealment is not described or not described in sufficient detail to allow a definite judgment—for example, if the use of assignment envelopes is described, but it remains unclear whether envelopes were sequentially numbered, opaque, and sealed. |
BLINDING OF PARTICIPANTS AND PERSONNEL Performance bias due to knowledge of the allocated interventions by participants and personnel during the study. | ||
References | Judgment | Support for judgment |
[20,37,44,45,47,48,58,60,61,62,71,72,73] | Low risk | No blinding or incomplete blinding, but the review authors judge that the outcome is not likely to be influenced by lack of blinding; blinding of participants and key study personnel ensured, and unlikely that the blinding could have been broken. |
[3,7,8,10,11,12,13,18,19,21,25,27,29,30,31,32,35,36,38,39,40,41,42,43,46,49,50,51,52,53,54,55,56,57,59,63,64,65,66,67,69,70,74] | High risk | No blinding or incomplete blinding, and the outcome is likely to be influenced by lack of blinding; blinding of key study participants and personnel attempted, but likely that the blinding could have been broken, and the outcome is likely to be influenced by lack of blinding. |
[26,28,68] | Unclear | Insufficient information to permit judgment of “Low risk” or “High risk”; the study did not address this outcome. |
BLINDING OF OUTCOME ASSESSMENT Detection bias due to knowledge of the allocated interventions by outcome assessors. | ||
References | Judgment | Support for judgment |
[20,44,45,47,49,51,52,54,56,58,60,61,62,68,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85] | Low risk | No blinding of outcome assessment, but the review authors judge that the outcome measurement is not likely to be influenced by lack of blinding; blinding of outcome assessment ensured, and unlikely that the blinding could have been broken. |
[3,7,8,10,11,12,13,18,19,21,25,27,29,30,31,32,35,36,37,38,39,40,41,42,43,46,48,50,53,55,57,59,63,64,65,66,67,69,70,86] | High risk | No blinding of outcome assessment, and the outcome measurement is likely to be influenced by lack of blinding; blinding of outcome assessment, but likely that the blinding could have been broken, and the outcome measurement is likely to be influenced by lack of blinding. |
[26,28] | Unclear | Insufficient information to permit judgment of “Low risk” or “High risk”; the study did not address this outcome. |
INCOMPLETE OUTCOME DATA Attrition bias due to amount, nature, or handling of incomplete outcome data. | ||
References | Judgment | Support for judgment |
[3,7,8,10,11,13,18,19,20,21,26,28,30,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | Low risk | No missing outcome data; reasons for missing outcome data unlikely to be related to true outcome (for survival data, censoring unlikely to be introducing bias); missing outcome data balanced in numbers across intervention groups, with similar reasons for missing data across groups; for dichotomous outcome data, the proportion of missing outcomes compared with observed event risk not enough to have a clinically relevant impact on the intervention effect estimate; for continuous outcome data, plausible effect size (difference in means or standardized difference in means) among missing outcomes not enough to have a clinically relevant impact on observed effect size; missing data have been imputed using appropriate methods. |
[48,61,64] | High risk | Reason for missing outcome data likely to be related to true outcome, with either imbalance in numbers or reasons for missing data across intervention groups; for dichotomous outcome data, the proportion of missing outcomes compared with observed event risk enough to induce clinically relevant bias in intervention effect estimate; for continuous outcome data, plausible effect size (difference in means or standardized difference in means) among missing outcomes enough to induce clinically relevant bias in observed effect size; “As-treated” analysis performed with substantial departure of the intervention received from that assigned at randomization; potentially inappropriate application of simple imputation. |
[12,25,27,29,31,32] | Unclear | Insufficient reporting of attrition/exclusions to permit judgment of “Low risk” or “High risk” (e.g., number randomized not stated, no reasons for missing data provided); the study did not address this outcome. |
SELECTIVE REPORTING Reporting bias due to selective outcome reporting. | ||
References | Judgment | Support for judgment |
[3,7,8,10,11,12,13,18,19,20,21,26,27,28,29,30,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | Low risk | The study protocol is available and all of the study’s pre-specified (primary and secondary) outcomes that are of interest in the review have been reported in the pre-specified way; the study protocol is not available, but it is clear that the published reports include all expected outcomes, including those that were pre-specified (convincing text of this nature may be uncommon). |
[25] | High risk | Not all of the study’s pre-specified primary outcomes have been reported; one or more primary outcomes are reported using measurements, analysis methods, or subsets of the data (e.g., subscales) that were not pre-specified; one or more reported primary outcomes were not pre-specified (unless clear justification for their reporting is provided, such as an unexpected adverse effect); one or more outcomes of interest in the review are reported incompletely, so they cannot be included in a meta-analysis; the study report fails to include results for a key outcome that would be expected to have been reported for such a study. |
[31] | Unclear | Insufficient information to permit judgment of “Low risk” or “High risk”. It is likely that the majority of studies will fall into this category. |
OTHER BIASES Bias due to problems not covered elsewhere in the table. | ||
References | Judgment | Support for judgment |
[3,7,8,10,11,12,13,18,19,20,21,26,27,28,29,30,32,35,36,37,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | Low risk | The study appears to be free of other sources of bias. |
[25,31,38,69,70] | High risk | Had a potential source of bias related to the specific study design used; has been claimed to have been fraudulent; or had some other problem. |
Unclear | Insufficient information to assess whether an important risk of bias exists or insufficient rationale or evidence that an identified problem will introduce bias. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briceno-Lopez, C.; Burguera-Giménez, N.; García-Domene, M.C.; Díez-Ajenjo, M.A.; Peris-Martínez, C.; Luque, M.J. Corneal Edema after Cataract Surgery. J. Clin. Med. 2023, 12, 6751. https://doi.org/10.3390/jcm12216751
Briceno-Lopez C, Burguera-Giménez N, García-Domene MC, Díez-Ajenjo MA, Peris-Martínez C, Luque MJ. Corneal Edema after Cataract Surgery. Journal of Clinical Medicine. 2023; 12(21):6751. https://doi.org/10.3390/jcm12216751
Chicago/Turabian StyleBriceno-Lopez, Celeste, Neus Burguera-Giménez, M. Carmen García-Domene, M. Amparo Díez-Ajenjo, Cristina Peris-Martínez, and M. José Luque. 2023. "Corneal Edema after Cataract Surgery" Journal of Clinical Medicine 12, no. 21: 6751. https://doi.org/10.3390/jcm12216751
APA StyleBriceno-Lopez, C., Burguera-Giménez, N., García-Domene, M. C., Díez-Ajenjo, M. A., Peris-Martínez, C., & Luque, M. J. (2023). Corneal Edema after Cataract Surgery. Journal of Clinical Medicine, 12(21), 6751. https://doi.org/10.3390/jcm12216751