Deep Learning Techniques and Imaging in Otorhinolaryngology—A State-of-the-Art Review
Abstract
:1. Introduction
2. Head and Neck
2.1. Head and Neck Imaging
2.2. Head and Neck Radiotherapy
2.3. Endoscopy and Laryngoscopy
3. Otology
3.1. Computer Vision in Otoscopy
3.2. Imaging in Otology
4. Imaging in Rhinology
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bur, A.M.; Shew, M.; New, J. Artificial Intelligence for the Otolaryngologist: A State of the Art Review. Otolaryngol. Head. Neck Surg. 2019, 160, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Petrone, P.; Birocchi, E.; Miani, C.; Anzivino, R.; Sciancalepore, P.I.; Di Mauro, A.; Dalena, P.; Russo, C.; De Ceglie, V.; Masciavè, M.; et al. Diagnostic and Surgical Innovations in Otolaryngology for Adult and Paediatric Patients during the COVID-19 Era. Acta Otorhinolaryngol. Ital. 2022, 42 (Suppl. S1), S46–S57. [Google Scholar] [CrossRef]
- Islam, M.M.; Rahaman, A.; Islam, M.R. Development of Smart Healthcare Monitoring System in IoT Environment. SN Comput. Sci. 2020, 1, 185. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, J.; Routray, S.; Ahmad, S.; Waris, M.M. Internet of Medical Things (IoMT)-Based Smart Healthcare System: Trends and Progress. Comput. Intell. Neurosci. 2022, 2022, 7218113. [Google Scholar] [CrossRef] [PubMed]
- Bulfamante, A.M.; Ferella, F.; Miller, A.M.; Rosso, C.; Pipolo, C.; Fuccillo, E.; Felisati, G.; Saibene, A.M. Artificial Intelligence, Machine Learning, and Deep Learning in Rhinology: A Systematic Review. Eur. Arch. Otorhinolaryngol. 2023, 280, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Lamassoure, L.; Giunta, J.; Rosi, G.; Poudrel, A.-S.; Meningaud, J.-P.; Bosc, R.; Haïat, G. Anatomical Subject Validation of an Instrumented Hammer Using Machine Learning for the Classification of Osteotomy Fracture in Rhinoplasty. Med. Eng. Phys. 2021, 95, 111–116. [Google Scholar] [CrossRef]
- Kim, H.-G.; Lee, K.M.; Kim, E.J.; Lee, J.S. Improvement Diagnostic Accuracy of Sinusitis Recognition in Paranasal Sinus X-Ray Using Multiple Deep Learning Models. Quant. Imaging Med. Surg. 2019, 9, 942–951. [Google Scholar] [CrossRef]
- Kim, D.-K.; Lim, H.-S.; Eun, K.M.; Seo, Y.; Kim, J.K.; Kim, Y.S.; Kim, M.-K.; Jin, S.; Han, S.C.; Kim, D.W. Subepithelial Neutrophil Infiltration as a Predictor of the Surgical Outcome of Chronic Rhinosinusitis with Nasal Polyps. Rhinology 2021, 59, 173–180. [Google Scholar] [CrossRef]
- Olveres, J.; González, G.; Torres, F.; Moreno-Tagle, J.C.; Carbajal-Degante, E.; Valencia-Rodríguez, A.; Méndez-Sánchez, N.; Escalante-Ramírez, B. What Is New in Computer Vision and Artificial Intelligence in Medical Image Analysis Applications. Quant. Imaging Med. Surg. 2021, 11, 3830–3853. [Google Scholar] [CrossRef]
- Bambach, S.; Ho, M.-L. Deep Learning for Synthetic CT from Bone MRI in the Head and Neck. AJNR Am. J. Neuroradiol. 2022, 43, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Klages, P.; Benslimane, I.; Riyahi, S.; Jiang, J.; Hunt, M.; Deasy, J.O.; Veeraraghavan, H.; Tyagi, N. Patch-Based Generative Adversarial Neural Network Models for Head and Neck MR-Only Planning. Med. Phys. 2020, 47, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Handa, A.; Ward, J.; Grau, V.; Lee, R. A Deep Learning Pipeline to Simulate Fluorodeoxyglucose (FDG) Uptake in Head and Neck Cancers Using Non-Contrast CT Images without the Administration of Radioactive Tracer. Insights Imaging 2022, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Altmann, S.; Abello Mercado, M.A.; Ucar, F.A.; Kronfeld, A.; Al-Nawas, B.; Mukhopadhyay, A.; Booz, C.; Brockmann, M.A.; Othman, A.E. Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction—Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT. Diagnostics 2023, 13, 1534. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Andreu-Arasa, V.C.; Meibom, S.K.; Mercier, G.A.; Salama, A.R.; Truong, M.T.; Sakai, O. Deep Learning Analysis Using FDG-PET to Predict Treatment Outcome in Patients with Oral Cavity Squamous Cell Carcinoma. Eur. Radiol. 2020, 30, 6322–6330. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Andreu-Arasa, V.C.; Meibom, S.K.; Mercier, G.A.; Truong, M.T.; Hirata, K.; Yasuda, K.; Kano, S.; Homma, A.; Kudo, K.; et al. Prediction of the Local Treatment Outcome in Patients with Oropharyngeal Squamous Cell Carcinoma Using Deep Learning Analysis of Pretreatment FDG-PET Images. BMC Cancer 2021, 21, 900. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.-M.; Yao, J.; Cai, J.; Ye, X.; Zhao, S.; Zhao, K.; Zhou, W.; Nogues, I.; Huo, Y.; Liao, C.-T.; et al. Deep Learning for Fully Automated Prediction of Overall Survival in Patients with Oropharyngeal Cancer Using FDG-PET Imaging. Clin. Cancer Res. 2021, 27, 3948–3959. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Andreu-Arasa, V.C.; Meibom, S.K.; Mercier, G.A.; Truong, M.T.; Sakai, O. Prediction of the Human Papillomavirus Status in Patients with Oropharyngeal Squamous Cell Carcinoma by FDG-PET Imaging Dataset Using Deep Learning Analysis: A Hypothesis-Generating Study. Eur. J. Radiol. 2020, 126, 108936. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, L.; Yang, J.; Yin, B.; Fan, X.; Yang, J.; Li, S.; Zhong, J.; Huang, X. Noninvasive Oral Cancer Screening Based on Local Residual Adaptation Network Using Optical Coherence Tomography. Med. Biol. Eng. Comput. 2022, 60, 1363–1375. [Google Scholar] [CrossRef]
- Wilder-Smith, P.; Lee, K.; Guo, S.; Zhang, J.; Osann, K.; Chen, Z.; Messadi, D. In Vivo Diagnosis of Oral Dysplasia and Malignancy Using Optical Coherence Tomography: Preliminary Studies in 50 Patients. Lasers Surg. Med. 2009, 41, 353–357. [Google Scholar] [CrossRef]
- Jeyaraj, P.R.; Samuel Nadar, E.R. Computer-Assisted Medical Image Classification for Early Diagnosis of Oral Cancer Employing Deep Learning Algorithm. J. Cancer Res. Clin. Oncol. 2019, 145, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Sunny, S.; Uthoff, R.D.; Patrick, S.; Suresh, A.; Kolur, T.; Keerthi, G.; Anbarani, A.; Wilder-Smith, P.; Kuriakose, M.A.; et al. Automatic Classification of Dual-Modalilty, Smartphone-Based Oral Dysplasia and Malignancy Images Using Deep Learning. Biomed. Opt. Express 2018, 9, 5318–5329. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Chen, Y.; Li, Z.; Jing, Q.; Hu, C.; Liu, H.; Bao, J.; Hong, Y.; Shi, T.; Li, K.; et al. A Deep Learning Algorithm for Detection of Oral Cavity Squamous Cell Carcinoma from Photographic Images: A Retrospective Study. EClinicalMedicine 2020, 27, 100558. [Google Scholar] [CrossRef] [PubMed]
- Birur, N.P.; Song, B.; Sunny, S.P.; Mendonca, P.; Mukhia, N.; Li, S.; Patrick, S.; AR, S.; Imchen, T.; Leivon, S.T.; et al. Field Validation of Deep Learning Based Point-of-Care Device for Early Detection of Oral Malignant and Potentially Malignant Disorders. Sci. Rep. 2022, 12, 14283. [Google Scholar] [CrossRef] [PubMed]
- Coole, J.B.; Brenes, D.; Mitbander, R.; Vohra, I.; Hou, H.; Kortum, A.; Tang, Y.; Maker, Y.; Schwarz, R.A.; Carns, J.; et al. Multimodal Optical Imaging with Real-Time Projection of Cancer Risk and Biopsy Guidance Maps for Early Oral Cancer Diagnosis and Treatment. J. Biomed. Opt. 2023, 28, 016002. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hua, H.-L.; Li, F.; Kong, Y.-G.; Zhu, Z.-L.; Li, S.-L.; Chen, X.-X.; Deng, Y.-Q.; Tao, Z.-Z. Anatomical Partition-Based Deep Learning: An Automatic Nasopharyngeal MRI Recognition Scheme. J. Magn. Reason. Imaging 2022, 56, 1220–1229. [Google Scholar] [CrossRef]
- Ji, L.; Mao, R.; Wu, J.; Ge, C.; Xiao, F.; Xu, X.; Xie, L.; Gu, X. Deep Convolutional Neural Network for Nasopharyngeal Carcinoma Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks. Diagnostics 2022, 12, 2478. [Google Scholar] [CrossRef]
- Li, S.; Wan, X.; Deng, Y.-Q.; Hua, H.-L.; Li, S.-L.; Chen, X.-X.; Zeng, M.-L.; Zha, Y.; Tao, Z.-Z. Predicting Prognosis of Nasopharyngeal Carcinoma Based on Deep Learning: Peritumoral Region Should Be Valued. Cancer Imaging 2023, 23, 14. [Google Scholar] [CrossRef]
- Hua, H.-L.; Deng, Y.-Q.; Li, S.; Li, S.-T.; Li, F.; Xiao, B.-K.; Huang, J.; Tao, Z.-Z. Deep Learning for Predicting Distant Metastasis in Patients with Nasopharyngeal Carcinoma Based on Pre-Radiotherapy Magnetic Resonance Imaging. Comb. Chem. High. Throughput Screen. 2023, 26, 1351–1363. [Google Scholar] [CrossRef]
- Shen, X.-M.; Mao, L.; Yang, Z.-Y.; Chai, Z.-K.; Sun, T.-G.; Xu, Y.; Sun, Z.-J. Deep Learning-Assisted Diagnosis of Parotid Gland Tumors by Using Contrast-Enhanced CT Imaging. Oral. Dis. 2022. [CrossRef]
- Tu, C.-H.; Wang, R.-T.; Wang, B.-S.; Kuo, C.-E.; Wang, E.-Y.; Tu, C.-T.; Yu, W.-N. Neural Network Combining with Clinical Ultrasonography: A New Approach for Classification of Salivary Gland Tumors. Head. Neck 2023, 45, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Y.; Zhang, X.; Sha, Y.; Wang, S.; Li, H.; Liu, J. A Deep Learning Model for Classification of Parotid Neoplasms Based on Multimodal Magnetic Resonance Image Sequences. Laryngoscope 2023, 133, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, E.; Alçin, O.F.; Kizilay, A.; Yildirim, I.O. Deep Learning Model Developed by Multiparametric MRI in Differential Diagnosis of Parotid Gland Tumors. Eur. Arch. Otorhinolaryngol. 2022, 279, 5389–5399. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, Y.; Du, J.; Qin, Y.; Lu, H.; Xiang, J.; Wang, F. Deep Learning Based Classification of Ultrasound Images for Thyroid Nodules: A Large Scale of Pilot Study. Ann. Transl. Med. 2019, 7, 137. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yao, S.; Heng, Y.; Shen, P.; Lv, T.; Feng, S.; Tao, L.; Zhang, W.; Qiu, W.; Lu, H.; et al. Automated Diagnosis and Management of Follicular Thyroid Nodules Based on the Devised Small-Datasets Interpretable Foreground Optimization Network Deep Learning: A Multicenter Diagnostic Study. Int. J. Surg. 2023, 109, 2732–2741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yi, G.; Pu, S.; Wang, Q.; Sun, C.; Wang, Q.; Feng, L.; Liu, X.; Li, Z.; Niu, L. Deep Learning Based on Ultrasound to Differentiate Pathologically Proven Atypical and Typical Medullary Thyroid Carcinoma from Follicular Thyroid Adenoma. Eur. J. Radiol. 2022, 156, 110547. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Huang, X.; Zhang, Y.; Cai, S.; Liu, Z.; Qiu, T.; Cui, Z.; Zhou, A.; Yuan, X.; Zhu, W.; et al. Ultrasound Image-Based Deep Learning to Assist in Diagnosing Gross Extrathyroidal Extension Thyroid Cancer: A Retrospective Multicenter Study. EClinicalMedicine 2023, 58, 101905. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Guo, B.J.; Lei, Y.; Tian, S.; Wang, T.; Curran, W.J.; Zhang, L.J.; Liu, T.; Yang, X. Thyroid Gland Delineation in Noncontrast-Enhanced CTs Using Deep Convolutional Neural Networks. Phys. Med. Biol. 2021, 66, 055007. [Google Scholar] [CrossRef]
- Gong, J.; Holsinger, F.C.; Noel, J.E.; Mitani, S.; Jopling, J.; Bedi, N.; Koh, Y.W.; Orloff, L.A.; Cernea, C.R.; Yeung, S. Using Deep Learning to Identify the Recurrent Laryngeal Nerve during Thyroidectomy. Sci. Rep. 2021, 11, 14306. [Google Scholar] [CrossRef]
- Pisani, P.; Airoldi, M.; Allais, A.; AluffiValletti, P.; Battista, M.; Benazzo, M.; Briatore, R.; Cacciola, S.; Cocuzza, S.; Colombo, A.; et al. Metastatic Disease in Head & Neck Oncology. Acta Otorhinolaryngol. Ital. 2020, 40 (Suppl. 1), S1–S86. [Google Scholar] [CrossRef]
- Lombardo, E.; Kurz, C.; Marschner, S.; Avanzo, M.; Gagliardi, V.; Fanetti, G.; Franchin, G.; Stancanello, J.; Corradini, S.; Niyazi, M.; et al. Distant Metastasis Time to Event Analysis with CNNs in Independent Head and Neck Cancer Cohorts. Sci. Rep. 2021, 11, 6418. [Google Scholar] [CrossRef] [PubMed]
- Diamant, A.; Chatterjee, A.; Vallières, M.; Shenouda, G.; Seuntjens, J. Deep Learning in Head & Neck Cancer Outcome Prediction. Sci. Rep. 2019, 9, 2764. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Dong, D.; Fang, X.; Zhang, F.; Zhang, N.; Zhang, L.; Fang, M.; Jiang, W.; Liang, S.; Li, C.; et al. A Deep Learning-Based Radiomic Nomogram for Prognosis and Treatment Decision in Advanced Nasopharyngeal Carcinoma: A Multicentre Study. EBioMedicine 2021, 70, 103522. [Google Scholar] [CrossRef] [PubMed]
- Ariji, Y.; Fukuda, M.; Nozawa, M.; Kuwada, C.; Goto, M.; Ishibashi, K.; Nakayama, A.; Sugita, Y.; Nagao, T.; Ariji, E. Automatic Detection of Cervical Lymph Nodes in Patients with Oral Squamous Cell Carcinoma Using a Deep Learning Technique: A Preliminary Study. Oral. Radiol. 2021, 37, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Ni, X.; Zhang, X.; Yin, H.; Zhang, H.; Xu, L.; Wang, R.; Fan, G. Multiphase Dual-Energy Spectral CT-Based Deep Learning Method for the Noninvasive Prediction of Head and Neck Lymph Nodes Metastasis in Patients With Papillary Thyroid Cancer. Front. Oncol. 2022, 12, 869895. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yang, Y.; Fang, Y.; Wang, J.; Hu, W. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases. Front. Oncol. 2021, 11, 638197. [Google Scholar] [CrossRef] [PubMed]
- Thor, M.; Iyer, A.; Jiang, J.; Apte, A.; Veeraraghavan, H.; Allgood, N.B.; Kouri, J.A.; Zhou, Y.; LoCastro, E.; Elguindi, S.; et al. Deep Learning Auto-Segmentation and Automated Treatment Planning for Trismus Risk Reduction in Head and Neck Cancer Radiotherapy. Phys. Imaging Radiat. Oncol. 2021, 19, 96–101. [Google Scholar] [CrossRef]
- Kawahara, D.; Tsuneda, M.; Ozawa, S.; Okamoto, H.; Nakamura, M.; Nishio, T.; Saito, A.; Nagata, Y. Stepwise Deep Neural Network (Stepwise-Net) for Head and Neck Auto-Segmentation on CT Images. Comput. Biol. Med. 2022, 143, 105295. [Google Scholar] [CrossRef]
- Oktay, O.; Nanavati, J.; Schwaighofer, A.; Carter, D.; Bristow, M.; Tanno, R.; Jena, R.; Barnett, G.; Noble, D.; Rimmer, Y.; et al. Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers. JAMA Netw. Open 2020, 3, e2027426. [Google Scholar] [CrossRef]
- Cubero, L.; Castelli, J.; Simon, A.; de Crevoisier, R.; Acosta, O.; Pascau, J. Deep Learning-Based Segmentation of Head and Neck Organs-at-Risk with Clinical Partially Labeled Data. Entropy 2022, 24, 1661. [Google Scholar] [CrossRef]
- De Biase, A.; Sijtsema, N.M.; van Dijk, L.V.; Langendijk, J.A.; van Ooijen, P.M.A. Deep Learning Aided Oropharyngeal Cancer Segmentation with Adaptive Thresholding for Predicted Tumor Probability in FDG PET and CT Images. Phys. Med. Biol. 2023, 68, 055013. [Google Scholar] [CrossRef] [PubMed]
- van Rooij, W.; Dahele, M.; Nijhuis, H.; Slotman, B.J.; Verbakel, W.F. Strategies to Improve Deep Learning-Based Salivary Gland Segmentation. Radiat. Oncol. 2020, 15, 272. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, J.; Willems, S.; Bollen, H.; Maes, F.; Nuyts, S. Deep Learning for Elective Neck Delineation: More Consistent and Time Efficient. Radiother. Oncol. 2020, 153, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, C.E.; Beadle, B.M.; Garden, A.S.; Skinner, H.D.; Yang, J.; Rhee, D.J.; McCarroll, R.E.; Netherton, T.J.; Gay, S.S.; Zhang, L.; et al. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lombardo, E.; Avanzo, M.; Zschaek, S.; Weingärtner, J.; Holzgreve, A.; Albert, N.L.; Marschner, S.; Fanetti, G.; Franchin, G.; et al. Deep Learning Based Time-to-Event Analysis with PET, CT and Joint PET/CT for Head and Neck Cancer Prognosis. Comput. Methods Programs Biomed. 2022, 222, 106948. [Google Scholar] [CrossRef]
- Moe, Y.M.; Groendahl, A.R.; Tomic, O.; Dale, E.; Malinen, E.; Futsaether, C.M. Deep Learning-Based Auto-Delineation of Gross Tumour Volumes and Involved Nodes in PET/CT Images of Head and Neck Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2782–2792. [Google Scholar] [CrossRef] [PubMed]
- Paderno, A.; Holsinger, F.C.; Piazza, C. Videomics: Bringing Deep Learning to Diagnostic Endoscopy. Curr. Opin. Otolaryngol. Head Neck Surg. 2021, 29, 143–148. [Google Scholar] [CrossRef]
- Cho, W.K.; Choi, S.-H. Comparison of Convolutional Neural Network Models for Determination of Vocal Fold Normality in Laryngoscopic Images. J. Voice 2022, 36, 590–598. [Google Scholar] [CrossRef]
- Sampieri, C.; Baldini, C.; Azam, M.A.; Moccia, S.; Mattos, L.S.; Vilaseca, I.; Peretti, G.; Ioppi, A. Artificial Intelligence for Upper Aerodigestive Tract Endoscopy and Laryngoscopy: A Guide for Physicians and State-of-the-Art Review. Otolaryngol. Head. Neck Surg. 2023, 169, 811–829. [Google Scholar] [CrossRef]
- Yao, P.; Witte, D.; Gimonet, H.; German, A.; Andreadis, K.; Cheng, M.; Sulica, L.; Elemento, O.; Barnes, J.; Rameau, A. Automatic Classification of Informative Laryngoscopic Images Using Deep Learning. Laryngoscope Investig. Otolaryngol. 2022, 7, 460–466. [Google Scholar] [CrossRef]
- Patrini, I.; Ruperti, M.; Moccia, S.; Mattos, L.S.; Frontoni, E.; De Momi, E. Transfer Learning for Informative-Frame Selection in Laryngoscopic Videos through Learned Features. Med. Biol. Eng. Comput. 2020, 58, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Dunham, M.E.; Kong, K.A.; McWhorter, A.J.; Adkins, L.K. Optical Biopsy: Automated Classification of Airway Endoscopic Findings Using a Convolutional Neural Network. Laryngoscope 2022, 132 (Suppl. 4), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Lin, P.; Yu, J.-G.; Ye, J.; Xiao, L.; Tao, Y.; Jiang, Z.; Lin, W.; Liu, M.; Xu, J.; et al. Computer-Aided Diagnosis of Laryngeal Cancer via Deep Learning Based on Laryngoscopic Images. EBioMedicine 2019, 48, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; He, Y.; Wu, Y.; Huang, D.; Wang, Y.; Sun, C.; Ju, J.; Wang, J.; Mahr, J.J.-L. Vocal Cord Lesions Classification Based on Deep Convolutional Neural Network and Transfer Learning. Med. Phys. 2022, 49, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Jing, X.; Wang, J.; Ren, X.; Xu, Y.; Yang, Q.; Ma, L.; Sun, Y.; Xu, W.; Yang, N.; et al. Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique. Laryngoscope 2020, 130, E686–E693. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Lee, Y.J.; Joo, H.A.; Jeong, I.S.; Choi, Y.; Nam, S.Y.; Kim, S.Y.; Choi, S.-H. Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network-Based Image Classification System. Laryngoscope 2021, 131, 2558–2566. [Google Scholar] [CrossRef]
- Inaba, A.; Hori, K.; Yoda, Y.; Ikematsu, H.; Takano, H.; Matsuzaki, H.; Watanabe, Y.; Takeshita, N.; Tomioka, T.; Ishii, G.; et al. Artificial Intelligence System for Detecting Superficial Laryngopharyngeal Cancer with High Efficiency of Deep Learning. Head. Neck 2020, 42, 2581–2592. [Google Scholar] [CrossRef] [PubMed]
- Tamashiro, A.; Yoshio, T.; Ishiyama, A.; Tsuchida, T.; Hijikata, K.; Yoshimizu, S.; Horiuchi, Y.; Hirasawa, T.; Seto, A.; Sasaki, T.; et al. Artificial Intelligence-Based Detection of Pharyngeal Cancer Using Convolutional Neural Networks. Dig. Endosc. 2020, 32, 1057–1065. [Google Scholar] [CrossRef]
- Heo, J.; Lim, J.H.; Lee, H.R.; Jang, J.Y.; Shin, Y.S.; Kim, D.; Lim, J.Y.; Park, Y.M.; Koh, Y.W.; Ahn, S.-H.; et al. Deep Learning Model for Tongue Cancer Diagnosis Using Endoscopic Images. Sci. Rep. 2022, 12, 6281. [Google Scholar] [CrossRef]
- Azam, M.A.; Sampieri, C.; Ioppi, A.; Africano, S.; Vallin, A.; Mocellin, D.; Fragale, M.; Guastini, L.; Moccia, S.; Piazza, C.; et al. Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection. Laryngoscope 2022, 132, 1798–1806. [Google Scholar] [CrossRef]
- Kim, G.H.; Sung, E.-S.; Nam, K.W. Automated Laryngeal Mass Detection Algorithm for Home-Based Self-Screening Test Based on Convolutional Neural Network. Biomed. Eng. Online 2021, 20, 51. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, J.; Yu, J.-F.; Lin, S.-Y.; Yan, S.-Y.; Zhang, L.-Y.; Wang, S.-S.; Cai, S.-J.; Abdelhamid Ahmed, A.H.; Lin, L.-Q.; et al. Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery. Laryngoscope 2022, 132, 2516–2523. [Google Scholar] [CrossRef] [PubMed]
- Avci, S.N.; Isiktas, G.; Ergun, O.; Berber, E. A Visual Deep Learning Model to Predict Abnormal versus Normal Parathyroid Glands Using Intraoperative Autofluorescence Signals. J. Surg. Oncol. 2022, 126, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jing, B.; Ke, L.; Li, B.; Xia, W.; He, C.; Qian, C.; Zhao, C.; Mai, H.; Chen, M.; et al. Development and Validation of an Endoscopic Images-Based Deep Learning Model for Detection with Nasopharyngeal Malignancies. Cancer Commun. 2018, 38, 59. [Google Scholar] [CrossRef] [PubMed]
- Paderno, A.; Piazza, C.; Del Bon, F.; Lancini, D.; Tanagli, S.; Deganello, A.; Peretti, G.; De Momi, E.; Patrini, I.; Ruperti, M.; et al. Deep Learning for Automatic Segmentation of Oral and Oropharyngeal Cancer Using Narrow Band Imaging: Preliminary Experience in a Clinical Perspective. Front. Oncol. 2021, 11, 626602. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.A.; Sampieri, C.; Ioppi, A.; Benzi, P.; Giordano, G.G.; De Vecchi, M.; Campagnari, V.; Li, S.; Guastini, L.; Paderno, A.; et al. Videomics of the Upper Aero-Digestive Tract Cancer: Deep Learning Applied to White Light and Narrow Band Imaging for Automatic Segmentation of Endoscopic Images. Front. Oncol. 2022, 12, 900451. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Walsted, E.S.; Backer, V.; Hull, J.H.; Elson, D.S. Quantification and Analysis of Laryngeal Closure From Endoscopic Videos. IEEE Trans. Biomed. Eng. 2019, 66, 1127–1136. [Google Scholar] [CrossRef]
- DeVore, E.K.; Adamian, N.; Jowett, N.; Wang, T.; Song, P.; Franco, R.; Naunheim, M.R. Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility. Laryngoscope 2023, 133, 2285–2291. [Google Scholar] [CrossRef]
- Kruse, E.; Dollinger, M.; Schutzenberger, A.; Kist, A.M. GlottisNetV2: Temporal Glottal Midline Detection Using Deep Convolutional Neural Networks. IEEE J. Transl. Eng. Health Med. 2023, 11, 137–144. [Google Scholar] [CrossRef]
- Adamian, N.; Naunheim, M.R.; Jowett, N. An Open-Source Computer Vision Tool for Automated Vocal Fold Tracking FromVideoendoscopy. Laryngoscope 2021, 131, E219–E225. [Google Scholar] [CrossRef]
- Parker, F.; Brodsky, M.B.; Akst, L.M.; Ali, H. Machine Learning in Laryngoscopy Analysis: A Proof of Concept Observational Study for the Identification of Post-Extubation Ulcerations and Granulomas. Ann. Otol. Rhinol. Laryngol. 2021, 130, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Yousef, A.M.; Deliyski, D.D.; Zacharias, S.R.C.; de Alarcon, A.; Orlikoff, R.F.; Naghibolhosseini, M. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy. J. Speech Lang. Hear. Res. 2022, 65, 2098–2113. [Google Scholar] [CrossRef] [PubMed]
- Yousef, A.M.; Deliyski, D.D.; Zacharias, S.R.C.; de Alarcon, A.; Orlikoff, R.F.; Naghibolhosseini, M. Spatial Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech. J. Voice 2023, 37, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Imaizumi, M.; Murono, S.; Zhu, X. Expert-Level Aspiration and Penetration Detection during Flexible Endoscopic Evaluation of Swallowing with Artificial Intelligence-Assisted Diagnosis. Sci. Rep. 2022, 12, 21689. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E.; Poole, M.D. Assessing Diagnostic Accuracy and Tympanocentesis Skills in the Management of Otitis Media. Arch. Pediatr. Adolesc. Med. 2001, 155, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.-R.; Crossland, G.; Patel, H.; Wong, E.; Kong, K.; Gunasekera, H.; Richards, B.; Caffery, L.; Perry, C.; Sacks, R.; et al. An Artificial Intelligence Computer-Vision Algorithm to Triage Otoscopic Images From Australian Aboriginal and Torres Strait Islander Children. Otol. Neurotol. 2022, 43, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Binol, H.; Niazi, M.K.K.; Essig, G.; Shah, J.; Mattingly, J.K.; Harris, M.S.; Elmaraghy, C.; Teknos, T.; Taj-Schaal, N.; Yu, L.; et al. Digital Otoscopy Videos Versus Composite Images: A Reader Study to Compare the Accuracy of ENT Physicians. Laryngoscope 2021, 131, E1668–E1676. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.-T.; Tran, T.-T.; Wang, P.-C.; Chen, P.-Y.; Lo, M.-T. EAR-UNet: A Deep Learning-Based Approach for Segmentation of Tympanic Membranes from Otoscopic Images. Artif. Intell. Med. 2021, 115, 102065. [Google Scholar] [CrossRef]
- Viscaino, M.; Maass, J.C.; Delano, P.H.; Torrente, M.; Stott, C.; Auat Cheein, F. Computer-Aided Diagnosis of External and Middle Ear Conditions: A Machine Learning Approach. PLoS ONE 2020, 15, e0229226. [Google Scholar] [CrossRef]
- Viscaino, M.; Talamilla, M.; Maass, J.C.; Henríquez, P.; Délano, P.H.; Auat Cheein, C.; Auat Cheein, F. Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases. Diagnostics 2022, 12, 917. [Google Scholar] [CrossRef]
- Tsutsumi, K.; Goshtasbi, K.; Risbud, A.; Khosravi, P.; Pang, J.C.; Lin, H.W.; Djalilian, H.R.; Abouzari, M. A Web-Based Deep Learning Model for Automated Diagnosis of Otoscopic Images. Otol. Neurotol. 2021, 42, e1382–e1388. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.; Chau, J. Otoscopic Diagnosis Using Computer Vision: An Automated Machine Learning Approach. Laryngoscope 2020, 130, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.; Talai, A.S.; Chau, J.; Forkert, N.D. Building an Otoscopic Screening Prototype Tool Using Deep Learning. J. Otolaryngol. Head. Neck Surg. 2019, 48, 66. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kwon, S.; Choo, J.; Hong, S.M.; Kang, S.H.; Park, I.-H.; Kim, S.K.; Hong, S.J. Automatic Detection of Tympanic Membrane and Middle Ear Infection from Oto-Endoscopic Images via Convolutional Neural Networks. Neural Netw. 2020, 126, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lin, Z.; Li, L.; Pan, H.; Chen, G.; Fu, Y.; Qiu, Q. Deep Learning for Classification of Pediatric Otitis Media. Laryngoscope 2021, 131, E2344–E2351. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.-R.; Kajbafzadeh, M.; Hasan, Z.; Wong, E.; Gunasekera, H.; Perry, C.; Sacks, R.; Kumar, A.; Singh, N. Artificial Intelligence to Classify Ear Disease from Otoscopy: A Systematic Review and Meta-Analysis. Clin. Otolaryngol. 2022, 47, 401–413. [Google Scholar] [CrossRef]
- Byun, H.; Yu, S.; Oh, J.; Bae, J.; Yoon, M.S.; Lee, S.H.; Chung, J.H.; Kim, T.H. An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases. J. Clin. Med. 2021, 10, 3198. [Google Scholar] [CrossRef] [PubMed]
- Crowson, M.G.; Bates, D.W.; Suresh, K.; Cohen, M.S.; Hartnick, C.J. “Human vs Machine” Validation of a Deep Learning Algorithm for Pediatric Middle Ear Infection Diagnosis. Otolaryngol. Head. Neck Surg. 2023, 169, 41–46. [Google Scholar] [CrossRef]
- Habib, A.-R.; Wong, E.; Sacks, R.; Singh, N. Artificial Intelligence to Detect Tympanic Membrane Perforations. J. Laryngol. Otol. 2020, 134, 311–315. [Google Scholar] [CrossRef]
- Zeng, J.; Deng, W.; Yu, J.; Xiao, L.; Chen, S.; Zhang, X.; Zeng, L.; Chen, D.; Li, P.; Chen, Y.; et al. A Deep Learning Approach to the Diagnosis of Atelectasis and Attic Retraction Pocket in Otitis Media with Effusion Using Otoscopic Images. Eur. Arch. Otorhinolaryngol. 2023, 280, 1621–1627. [Google Scholar] [CrossRef]
- Mao, C.; Li, A.; Hu, J.; Wang, P.; Peng, D.; Wang, J.; Sun, Y. Efficient and Accurate Diagnosis of Otomycosis Using an Ensemble Deep-Learning Model. Front. Mol. Biosci. 2022, 9, 951432. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Chen, F.; Grais, E.M.; Yue, F.; Cai, Y.; Swanepoel, D.W.; Zhao, F. Machine Learning in Diagnosing Middle Ear Disorders Using Tympanic Membrane Images: A Meta-Analysis. Laryngoscope 2023, 133, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.; Park, C.J.; Oh, S.J.; Chung, M.J.; Cho, B.H.; Cho, Y.-S. Automatic Prediction of Conductive Hearing Loss Using Video Pneumatic Otoscopy and Deep Learning Algorithm. Ear Hear. 2022, 43, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Kang, W.; Chen, S.; Lin, Y.; Deng, W.; Wang, Y.; Chen, G.; Ma, K.; Zhao, F.; Zheng, Y.; et al. A Deep Learning Approach to Predict Conductive Hearing Loss in Patients With Otitis Media With Effusion Using Otoscopic Images. JAMA Otolaryngol. Head. Neck Surg. 2022, 148, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.-R.; Xu, Y.; Bock, K.; Mohanty, S.; Sederholm, T.; Weeks, W.B.; Dodhia, R.; Ferres, J.L.; Perry, C.; Sacks, R.; et al. Evaluating the Generalizability of Deep Learning Image Classification Algorithms to Detect Middle Ear Disease Using Otoscopy. Sci. Rep. 2023, 13, 5368. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Li, C.; Marzani, F.; Wang, H.; Thibouw, F.; Grayeli, A.B. Classification of Wideband Tympanometry by Deep Transfer Learning With Data Augmentation for Automatic Diagnosis of Otosclerosis. IEEE J. Biomed. Health Inform. 2022, 26, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Lv, Y.; Ma, F.; Du, Y.; Xiong, S.; Wang, J.; Wang, J. Deep Learning-Based Approach for the Automatic Segmentation of Adult and Pediatric Temporal Bone Computed Tomography Images. Quant. Imaging Med. Surg. 2023, 13, 1577–1591. [Google Scholar] [CrossRef]
- Vaidyanathan, A.; van der Lubbe, M.F.J.A.; Leijenaar, R.T.H.; van Hoof, M.; Zerka, F.; Miraglio, B.; Primakov, S.; Postma, A.A.; Bruintjes, T.D.; Bilderbeek, M.A.L.; et al. Deep Learning for the Fully Automated Segmentation of the Inner Ear on MRI. Sci. Rep. 2021, 11, 2885. [Google Scholar] [CrossRef]
- Ding, A.S.; Lu, A.; Li, Z.; Sahu, M.; Galaiya, D.; Siewerdsen, J.H.; Unberath, M.; Taylor, R.H.; Creighton, F.X. A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging. Otolaryngol. Head. Neck Surg. 2023, 169, 988–998. [Google Scholar] [CrossRef]
- Ding, A.S.; Lu, A.; Li, Z.; Galaiya, D.; Siewerdsen, J.H.; Taylor, R.H.; Creighton, F.X. Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery. Otolaryngol. Head. Neck Surg. 2022, 167, 133–140. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Li, Y.; Cheng, Y.-S.; He, Z.-Y.; Yang, J.-M.; Xu, J.-H.; Chi, Z.-C.; Chi, F.-L.; Ren, D.-D. Deep Learning in Automated Region Proposal and Diagnosis of Chronic Otitis Media Based on Computed Tomography. Ear Hear. 2020, 41, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, O.; Eroğlu, Y.; Yıldırım, M.; Karlıdag, T.; Çınar, A.; Akyiğit, A.; Kaygusuz, İ.; Yıldırım, H.; Keleş, E.; Yalçın, Ş. Is It Useful. to Use Computerized Tomography Image-Based Artificial Intelligence Modelling in the Differential Diagnosis of Chronic Otitis Media with and without Cholesteatoma? Am. J. Otolaryngol. 2022, 43, 103395. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Noda, K.; Yoshida, K.; Tsuchida, K.; Yui, R.; Nakazawa, T.; Kurihara, S.; Baba, A.; Motegi, M.; Yamamoto, K.; et al. Preoperative Prediction by Artificial Intelligence for Mastoid Extension in Pars Flaccida Cholesteatoma Using Temporal Bone High-Resolution Computed Tomography: A Retrospective Study. PLoS ONE 2022, 17, e0273915. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Guan, P.; Wu, L.; Chen, H.; Li, J.; Ling, Y.; Fan, T.; Wang, Y.; Li, J.; Yan, B. The Use of Explainable Artificial Intelligence to Explore Types of Fenestral Otosclerosis Misdiagnosed When Using Temporal Bone High-Resolution Computed Tomography. Ann. Transl. Med. 2021, 9, 969. [Google Scholar] [CrossRef] [PubMed]
- Fujima, N.; Andreu-Arasa, V.C.; Onoue, K.; Weber, P.C.; Hubbell, R.D.; Setty, B.N.; Sakai, O. Utility of Deep Learning for the Diagnosis of Otosclerosis on Temporal Bone CT. Eur. Radiol. 2021, 31, 5206–5211. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Sunwoo, L.; You, S.-H.; Lee, K.J.; Ryoo, I. Application of Symmetry Evaluation to Deep Learning Algorithm in Detection of Mastoiditis on Mastoid Radiographs. Sci. Rep. 2023, 13, 5337. [Google Scholar] [CrossRef]
- Lee, K.J.; Ryoo, I.; Choi, D.; Sunwoo, L.; You, S.-H.; Jung, H.N. Performance of Deep Learning to Detect Mastoiditis Using Multiple Conventional Radiographs of Mastoid. PLoS ONE 2020, 15, e0241796. [Google Scholar] [CrossRef]
- Park, C.J.; Cho, Y.S.; Chung, M.J.; Kim, Y.-K.; Kim, H.-J.; Kim, K.; Ko, J.-W.; Chung, W.-H.; Cho, B.H. A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients with Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study. J. Med. Internet Res. 2021, 23, e29678. [Google Scholar] [CrossRef]
- Cho, Y.S.; Cho, K.; Park, C.J.; Chung, M.J.; Kim, J.H.; Kim, K.; Kim, Y.-K.; Kim, H.-J.; Ko, J.-W.; Cho, B.H.; et al. Automated Measurement of Hydrops Ratio from MRI in Patients with Ménière’s Disease Using CNN-Based Segmentation. Sci. Rep. 2020, 10, 7003. [Google Scholar] [CrossRef]
- George-Jones, N.A.; Wang, K.; Wang, J.; Hunter, J.B. Automated Detection of Vestibular Schwannoma Growth Using a Two-Dimensional U-Net Convolutional Neural Network. Laryngoscope 2021, 131, E619–E624. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, W.-K.; Wu, C.-C.; Lu, C.-F.; Yang, H.-C.; Chen, Y.-W.; Chung, W.-Y.; Hu, Y.-S.; Wu, H.-M.; Wu, Y.-T.; et al. Applying Artificial Intelligence to Longitudinal Imaging Analysis of Vestibular Schwannoma Following Radiosurgery. Sci. Rep. 2021, 11, 3106. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Shavit, S.S.; Shin, J.; Selesnick, S.; Phillips, C.D.; Strauss, S.B. Segmentation of Vestibular Schwannomas on Postoperative Gadolinium-Enhanced T1-Weighted and Noncontrast T2-Weighted Magnetic Resonance Imaging Using Deep Learning. Otol. Neurotol. 2022, 43, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; George-Jones, N.A.; Chen, L.; Hunter, J.B.; Wang, J. Joint Vestibular Schwannoma Enlargement Prediction and Segmentation Using a Deep Multi-Task Model. Laryngoscope 2023, 133, 2754–2760. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, K.; Sunwoo, L.; Choi, D.; Oh, D.Y.; Lee, K.J.; Kim, Y.; Kim, J.-W.; Cho, S.J.; Baik, S.H.; et al. Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs. Diagnostics 2021, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Ariji, Y.; Ohashi, Y.; Kawai, T.; Fukuda, M.; Funakoshi, T.; Kise, Y.; Nozawa, M.; Katsumata, A.; Fujita, H.; et al. Deep-Learning Classification Using Convolutional Neural Network for Evaluation of Maxillary Sinusitis on Panoramic Radiography. Oral. Radiol. 2019, 35, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.-J.; Kim, J.Y.; Moon, H.-M.; Park, H.C.; Kim, J.-W.; Lim, R.; Woo, J.; Fakhri, G.E.; Kim, D.W.; Kim, S. Automation of Generative Adversarial Network-Based Synthetic Data-Augmentation for Maximizing the Diagnostic Performance with Paranasal Imaging. Sci. Rep. 2022, 12, 18118. [Google Scholar] [CrossRef] [PubMed]
- Hua, H.-L.; Li, S.; Xu, Y.; Chen, S.-M.; Kong, Y.-G.; Yang, R.; Deng, Y.-Q.; Tao, Z.-Z. Differentiation of Eosinophilic and Non-Eosinophilic Chronic Rhinosinusitis on Preoperative Computed Tomography Using Deep Learning. Clin. Otolaryngol. 2023, 48, 330–338. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chen, W.; Wang, X.; Xie, X.; Liu, F.; Ma, X.; Li, X.; Li, A.; Feng, X. Deep Learning Radiomics-Based Preoperative Prediction of Recurrence in Chronic Rhinosinusitis. iScience 2023, 26, 106527. [Google Scholar] [CrossRef]
- Humphries, S.M.; Centeno, J.P.; Notary, A.M.; Gerow, J.; Cicchetti, G.; Katial, R.K.; Beswick, D.M.; Ramakrishnan, V.R.; Alam, R.; Lynch, D.A. Volumetric Assessment of Paranasal Sinus Opacification on Computed Tomography Can Be Automated Using a Convolutional Neural Network. Int. Forum Allergy Rhinol. 2020, 10, 1218–1225. [Google Scholar] [CrossRef]
- Massey, C.J.; Ramos, L.; Beswick, D.M.; Ramakrishnan, V.R.; Humphries, S.M. Clinical Validation and Extension of an Automated, Deep Learning-Based Algorithm for Quantitative Sinus CT Analysis. AJNR Am. J. Neuroradiol. 2022, 43, 1318–1324. [Google Scholar] [CrossRef]
- Chowdhury, N.I.; Smith, T.L.; Chandra, R.K.; Turner, J.H. Automated Classification of Osteomeatal Complex Inflammation on Computed Tomography Using Convolutional Neural Networks. Int. Forum Allergy Rhinol. 2019, 9, 46–52. [Google Scholar] [CrossRef]
- Liu, G.S.; Yang, A.; Kim, D.; Hojel, A.; Voevodsky, D.; Wang, J.; Tong, C.C.L.; Ungerer, H.; Palmer, J.N.; Kohanski, M.A.; et al. Deep Learning Classification of Inverted Papilloma Malignant Transformation Using 3D Convolutional Neural Networks and Magnetic Resonance Imaging. Int. Forum Allergy Rhinol. 2022, 12, 1025–1033. [Google Scholar] [CrossRef]
Deep Learning Contributions in Head and Neck | |
---|---|
Imaging | Generation of an imaging modality from another |
Prediction making based on imaging | |
Automated diagnosis of malignant and benign diseases | |
Automated diagnosis of pathological lymph nodes | |
Automated diagnosis of metastases | |
Analysis of specific tumor characteristics | |
Contouring of significant structures | |
Cancer risk assessment of a lesion | |
Biopsy assistance mapping | |
Intraoperative surgeon assistance | |
Radiotherapy | Auto-segmentation of structures based on imaging |
Automation of the procedure | |
Automated clinical target volume contouring | |
Endoscopy and laryngoscopy | Image quality improvement |
Segmentation of images | |
Optical detection | |
Pathological pattern detection | |
Endoscopic image classification | |
Lesion histology (benign/malignant) prediction | |
Self-screening tumor recurrence detection | |
Intra-operative endoscopic lesion detection | |
Anatomical structure and lesion automatic segmentation | |
Automatic assessment of aspiration and dysphagia | |
Evaluation of laryngeal mobility |
Deep Learning Contributions in Otology | |
---|---|
Otoscopy | Automatic detection and categorization of ear lesions |
Automatic segmentation of anatomical structures and lesions | |
Optimization of the diagnostic images | |
Lesion-based predictions | |
Imaging | Complex pattern identification |
Tele-diagnosis | |
Automatic analysis and segmentation of images | |
Automatic recognition of region of interest | |
Automatic diagnosis | |
Imaging follow-up of complex diseases |
Deep Learning Contributions in Rhinology |
---|
Identification and categorization of paranasal sinuses |
Diagnosis of benign/malignant lesions |
Prediction of disease recurrence |
Detection of pathology related to chronic sinusitis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsilivigkos, C.; Athanasopoulos, M.; Micco, R.d.; Giotakis, A.; Mastronikolis, N.S.; Mulita, F.; Verras, G.-I.; Maroulis, I.; Giotakis, E. Deep Learning Techniques and Imaging in Otorhinolaryngology—A State-of-the-Art Review. J. Clin. Med. 2023, 12, 6973. https://doi.org/10.3390/jcm12226973
Tsilivigkos C, Athanasopoulos M, Micco Rd, Giotakis A, Mastronikolis NS, Mulita F, Verras G-I, Maroulis I, Giotakis E. Deep Learning Techniques and Imaging in Otorhinolaryngology—A State-of-the-Art Review. Journal of Clinical Medicine. 2023; 12(22):6973. https://doi.org/10.3390/jcm12226973
Chicago/Turabian StyleTsilivigkos, Christos, Michail Athanasopoulos, Riccardo di Micco, Aris Giotakis, Nicholas S. Mastronikolis, Francesk Mulita, Georgios-Ioannis Verras, Ioannis Maroulis, and Evangelos Giotakis. 2023. "Deep Learning Techniques and Imaging in Otorhinolaryngology—A State-of-the-Art Review" Journal of Clinical Medicine 12, no. 22: 6973. https://doi.org/10.3390/jcm12226973
APA StyleTsilivigkos, C., Athanasopoulos, M., Micco, R. d., Giotakis, A., Mastronikolis, N. S., Mulita, F., Verras, G.-I., Maroulis, I., & Giotakis, E. (2023). Deep Learning Techniques and Imaging in Otorhinolaryngology—A State-of-the-Art Review. Journal of Clinical Medicine, 12(22), 6973. https://doi.org/10.3390/jcm12226973