Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery
Abstract
:1. Introduction
2. The Clinical Problem: A Matter of “Definition”
- -
- Difficult weaning from a cardiopulmonary bypass (CPB), accompanied by an administration of >1 vasopressor and >1 inotropic drug/inhaled pulmonary vasodilator OR >1 weaning from a CPB attempt (assuming RV dysfunction to be the cause) OR weaning from a CPB only obtained through mechanical support.
- -
- Direct visualization of RV dysfunction or a >20% reduction in RV fractional area measured with echocardiography.
- -
- Central venous pressure (CVP) > 15 mmHg or the cardiac index (CI) < 1.8 L/min/m2.
- -
- Absence of elevated left atrial pressure (LAP)/pulmonary capillary wedge pressure (PCWP) > 18 mmHg/tamponade/ventricular tachycardia/pneumothorax.
- -
- RV stroke work index (RVSWI) < 4, where RVSWI = 0.136 × stroke volume index (SVI) × (mean pulmonary arterial pressure (mPAP) − right atrial pressure (RAP)) and SVI = stroke volume × body surface area (BSA).
3. Anatomy and Physiology of the Right Ventricle
4. Mechanism and Risk Factors of RV Dysfunction after Cardiac Surgery
5. Special Considerations: RV Dysfunction after LVAD
6. Diagnostic Options
6.1. Gold Standard: cMRI and Thermodilution Technique
6.2. The Role of the Echocardiography: TAPSE, RVEF, RVFAC, TDI, Strain, 3D Assessment
6.3. MUGA, Conductance Catheter Techniques/PV Loops, Nuclear Imaging/PET, Biomarkers
7. The Clinical Approach
8. Management of RV Failure after Cardiac Surgery
8.1. Intravenous Drugs
8.2. Inhalator Drugs
8.3. Ventilatory Strategies
8.4. Volumes Strategies
8.5. Mechanical Support
9. Conclusions
Parameter | Supporting Literature |
---|---|
RVFAC reduction (<35%) | Maslow et al. [84]; Dávila-Román et al. [85]; Reichert et al. [86]; Denault et al. [87]; Haddad et al. [88]. |
CVP augmentation (>18 mmHg) | Kaul et al. [89]; Schuuring et al. [90]. |
CI reduction (<2.2, with normal LAP) | Kaul et al. [89]. |
RV dilation (RVESV > 3 mm) | Dávila-Román et al. [85]; Levy et al. [1]. |
Need for RVAD | Moazami et al. [91]; Gudejko et al. [92]; Ochiai et al. [93]; Grant et al. [94]; Kavarana et al. [95]; Matthews et al. [96]; Drakos et al. [97]; Kormos et al. [27]; Fitzpatrick et al. [98]; LaRue et al. [99]. |
Hemodynamic instability | Denault et al. [87]; Levy et al. [1]. |
RVMPI augmentation (>0.5) | Haddad et al. [88]. |
Impaired RV wall motion (echo visualization) | Denault et al. [87]; Dávila-Román et al. [85]; Levy et al. [1]. |
TAPSE reduction (<16 mm) | Schuuring et al. [90]; Levy et al. [1]. |
RV S’ reduction (<11 cm/s) | Schuuring et al. [90]; Levy et al. [1]. |
RV longitudinal strain augmentation (>21%) | Ternacle et al. [100]. |
Inotropic support (for >14 days) | Gudejko et al. [92]; Grant et al. [94]; Kavarana et al. [95]; Matthews et al. [96]; Drakos et al. [97]; Kormos et al. [27]; LaRue et al. [99]. |
Pulmonary vasodilator support (for >48 h) | Gudejko et al. [92]; Matthews et al. [96]; Drakos et al. [97]; Levy et al. [1]. |
Common procedures (right ventricular dysfunction related to a cardiac surgery per se or a cardiopulmonary bypass) | Conditions at increased risk | Preoperative right ventricular dysfunction Tricuspid valve surgery Pulmonary hypertension (primary or secondary) |
Cardiopulmonary bypass Myocardial protection | Right atrial cannulation Pericardiectomy and alteration in diastolic function Myocardial stunning Myocardial mal-protection (especially if chronic coronary occlusion is present) Coronary air embolism (especially in valvular procedures) Inadequate right ventricular unloading | |
Operative management | Protamine or vasopressors => increased pulmonary vascular resistance Lung deflation => increased pulmonary arterial pressure Reperfusion injury => increased pulmonary arterial pressure | |
Specific procedures (right ventricular dysfunction related to specific cardiac procedures) | Heart transplantation | Autonomic storm => decreased systemic vascular resistance Ischemic time after procurement Cardioplegic solution and preservation solution Perioperative mechanical circulatory support |
Pulmonary endarterectomy | Preoperative right ventricular dysfunction Reperfusion injury => increased pulmonary arterial pressure | |
Left ventricular assist device implantation | Increased right ventricular stress due to left ventricular unloading Left ventricular/right ventricular uncoupling Splanchnic congestion due to an increased venous return Alterations in the septal and anterior wall |
Funding
Conflicts of Interest
References
- Levy, D.; Laghlam, D.; Estagnasie, P.; Brusset, A.; Squara, P.; Nguyen, L.S. Post-operative Right Ventricular Failure after Cardiac Surgery: A Cohort Study. Front. Cardiovasc. Med. 2021, 8, 667328. [Google Scholar] [CrossRef] [PubMed]
- Denault, A.Y.; Haddad, F.; Jacobsohn, E.; Deschamps, A. Perioperative right ventricular dysfunction. Curr. Opin. Anaesthesiol. 2013, 26, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Iacovoni, A.; Scardulla, C.; Moja, L.; Pilato, M.; Kushwaha, S.S.; Senni, M.; Clemenza, F.; Agnese, V.; Falletta, C.; et al. Prediction of right ventricular failure after ventricular assist device implant: Systematic review and meta-analysis of observational studies. Eur. J. Heart Fail. 2017, 19, 926–946. [Google Scholar] [CrossRef]
- Pirola, S.; Montisci, A.; Mastroiacovo, G.; Jaber, E.A.; Fileccia, D.; Bonomi, A.; Pappalardo, F.; Bisleri, G.; Polvani, G. Right Ventricular Function after Minimally Invasive Mitral Valve Surgery. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1073–1080. [Google Scholar] [CrossRef]
- Cammalleri, V.; Antonelli, G.; De Luca, V.M.; Carpenito, M.; Nusca, A.; Bono, M.C.; Mega, S.; Ussia, G.P.; Grigioni, F. Functional Mitral and Tricuspid Regurgitation across the Whole Spectrum of Left Ventricular Ejection Fraction: Recognizing the Elephant in the Room of Heart Failure. J. Clin. Med. 2023, 12, 3316. [Google Scholar] [CrossRef] [PubMed]
- Cammalleri, V.; Nobile, E.; De Stefano, D.; Carpenito, M.; Mega, S.; Bono, M.C.; De Filippis, A.; Nusca, A.; Quattrocchi, C.C.; Grigioni, F.; et al. Tricuspid Valve Geometrical Changes in Patients with Functional Tricuspid Regurgitation: Insights from a CT Scan Analysis Focusing on Commissures. J. Clin. Med. 2023, 12, 1712. [Google Scholar] [CrossRef]
- Bootsma, I.T.; de Lange, F.; Koopmans, M.; Haenen, J.; Boonstra, P.W.; Symersky, T.; Boerma, E.C. Right Ventricular Function after Cardiac Surgery Is a Strong Independent Predictor for Long-Term Mortality. J. Cardiothorac. Vasc. Anesth. 2017, 31, 1656–1662. [Google Scholar] [CrossRef]
- Santens, B.; Van De Bruaene, A.; De Meester, P.; D’Alto, M.; Reddy, S.; Bernstein, D.; Koestenberger, M.; Hansmann, G.; Budts, W. Diagnosis and treatment of right ventricular dysfunction in congenital heart disease. Cardiovasc. Diagn. Ther. 2020, 10, 1625–1645. [Google Scholar] [CrossRef]
- Jabagi, H.; Nantsios, A.; Ruel, M.; Mielniczuk, L.M.; Denault, A.Y.; Sun, L.Y. A standardized definition for right ventricular failure in cardiac surgery patients. ESC Heart Fail. 2022, 9, 1542–1552. [Google Scholar] [CrossRef]
- Dell’Italia, L.J. Anatomy and physiology of the right ventricle. Cardiol. Clin. 2012, 30, 167–187. [Google Scholar] [CrossRef]
- Cammalleri, V.; Carpenito, M.; Bono, M.C.; Mega, S.; Ussia, G.P.; Grigioni, F. Transcatheter Tricuspid Valve Therapy: From Anatomy to Intervention. Front. Cardiovasc. Med. 2021, 8, 778445. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Sanchez-Quintana, D.; Bossone, E.; Bogaard, H.J.; Naeije, R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1463–1482. [Google Scholar] [CrossRef]
- Ho, S.Y.; Nihoyannopoulos, P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006, 92 (Suppl. S1), i2–i13. [Google Scholar] [CrossRef]
- Pinsky, M.R. The right ventricle: Interaction with the pulmonary circulation. Crit. Care 2016, 20, 266. [Google Scholar] [CrossRef]
- Nelson, G.S.; Sayed-Ahmed, E.Y.; Kroeker, C.A.; Sun, Y.H.; Keurs, H.E.; Shrive, N.G.; Tyberg, J.V. Compression of interventricular septum during right ventricular pressure loading. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H2639–H2648. [Google Scholar] [CrossRef] [PubMed]
- Crystal, G.J.; Pagel, P.S. Right Ventricular Perfusion: Physiology and Clinical Implications. Anesthesiology 2018, 128, 202–218. [Google Scholar] [CrossRef]
- Buckberg, G.D.; Group, R. The ventricular septum: The lion of right ventricular function, and its impact on right ventricular restoration. Eur. J. Cardiothorac. Surg. 2006, 29 (Suppl. S1), S272–S278. [Google Scholar] [CrossRef] [PubMed]
- Varma, P.K.; Jose, R.L.; Krishna, N.; Srimurugan, B.; Valooran, G.J.; Jayant, A. Perioperative right ventricular function and dysfunction in adult cardiac surgery–Focused review (part 1-Anatomy, pathophysiology, and diagnosis). Indian. J. Thorac. Cardiovasc. Surg. 2022, 38, 45–57. [Google Scholar] [CrossRef]
- Aranda-Michel, E.; Sultan, I. Commentary: Right ventricular dysfunction after cardiac surgery: Machine learning to teach us what we already know? J. Thorac. Cardiovasc. Surg. 2022, 164, 598–599. [Google Scholar] [CrossRef]
- Vlahakes, G.J. Right ventricular failure after cardiac surgery. Cardiol. Clin. 2012, 30, 283–289. [Google Scholar] [CrossRef]
- Singh, A.; Huang, X.; Dai, L.; Wyler, D.; Alfirevic, A.; Blackstone, E.H.; Pettersson, G.B.; Duncan, A.E. Right ventricular function is reduced during cardiac surgery independent of procedural characteristics, reoperative status, or pericardiotomy. J. Thorac. Cardiovasc. Surg. 2020, 159, 1430–1438.e1434. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.L.; Huang, X.; Alfirevic, A.; Blackstone, E.; Pettersson, G.B.; Singh, A.; Duncan, A.E. Patient characteristics and surgical variables associated with intraoperative reduced right ventricular function. J. Thorac. Cardiovasc. Surg. 2022, 164, 585–595.e5. [Google Scholar] [CrossRef]
- Estrada, V.H.; Franco, D.L.; Moreno, A.A.; Gambasica, J.A.; Nunez, C.C. Postoperative Right Ventricular Failure in Cardiac Surgery. Cardiol. Res. 2016, 7, 185–195. [Google Scholar] [CrossRef]
- Smith, G.L.; Eisner, D.A. Calcium Buffering in the Heart in Health and Disease. Circulation 2019, 139, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Veen, K.M.; Caliskan, K.; de By, T.; Mokhles, M.M.; Soliman, O.I.; Mohacsi, P.; Schoenrath, F.; Gummert, J.; Paluszkiewicz, L.; Netuka, I.; et al. Outcomes after tricuspid valve surgery concomitant with left ventricular assist device implantation in the EUROMACS registry: A propensity score matched analysis. Eur. J. Cardiothorac. Surg. 2019, 56, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Veen, K.M.; Mokhles, M.M.; Soliman, O.; de By, T.; Mohacsi, P.; Schoenrath, F.; Paluszkiewicz, L.; Netuka, I.; Bogers, A.; Takkenberg, J.J.M.; et al. Clinical impact and ‘natural’ course of uncorrected tricuspid regurgitation after implantation of a left ventricular assist device: An analysis of the European Registry for Patients with Mechanical Circulatory Support (EUROMACS). Eur. J. Cardiothorac. Surg. 2021, 59, 207–216. [Google Scholar] [CrossRef]
- Kormos, R.L.; Teuteberg, J.J.; Pagani, F.D.; Russell, S.D.; John, R.; Miller, L.W.; Massey, T.; Milano, C.A.; Moazami, N.; Sundareswaran, K.S.; et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: Incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc. Surg. 2010, 139, 1316–1324. [Google Scholar] [CrossRef]
- Lazar, J.F.; Swartz, M.F.; Schiralli, M.P.; Schneider, M.; Pisula, B.; Hallinan, W.; Hicks, G.L., Jr.; Massey, H.T. Survival after left ventricular assist device with and without temporary right ventricular support. Ann. Thorac. Surg. 2013, 96, 2155–2159. [Google Scholar] [CrossRef]
- Akin, S.; Soliman, O.; de By, T.; Muslem, R.; Tijssen, J.G.P.; Schoenrath, F.; Meyns, B.; Gummert, J.F.; Mohacsi, P.; Caliskan, K.; et al. Causes and predictors of early mortality in patients treated with left ventricular assist device implantation in the European Registry of Mechanical Circulatory Support (EUROMACS). Intensive Care Med. 2020, 46, 1349–1360. [Google Scholar] [CrossRef]
- Kapelios, C.J.; Lund, L.H.; Wever-Pinzon, O.; Selzman, C.H.; Myers, S.L.; Cantor, R.S.; Stehlik, J.; Chamogeorgakis, T.; McKellar, S.H.; Koliopoulou, A.; et al. Right Heart Failure Following Left Ventricular Device Implantation: Natural History, Risk Factors, and Outcomes: An Analysis of the STS INTERMACS Database. Circ. Heart Fail. 2022, 15, e008706. [Google Scholar] [CrossRef]
- Logstrup, B.B.; Nemec, P.; Schoenrath, F.; Gummert, J.; Pya, Y.; Potapov, E.; Netuka, I.; Ramjankhan, F.; Parner, E.T.; De By, T.; et al. Heart failure etiology and risk of right heart failure in adult left ventricular assist device support: The European Registry for Patients with Mechanical Circulatory Support (EUROMACS). Scand. Cardiovasc. J. 2020, 54, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Alfirevic, A.; Makarova, N.; Kelava, M.; Sale, S.; Soltesz, E.; Duncan, A.E. Predicting Right Ventricular Failure after LVAD Implantation: Role of Tricuspid Valve Annulus Displacement. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, N.; Falconer, D.; Wyeth, N.; Lloyd, G.; Pellerin, D.; Speechly-Dick, E.; Segal, O.R.; Lowe, M.; Rowland, E.; Lambiase, P.D.; et al. Effect of tricuspid regurgitation and right ventricular dysfunction on long-term mortality in patients undergoing cardiac devices implantation: >10-year follow-up study. Int. J. Cardiol. 2020, 319, 52–56. [Google Scholar] [CrossRef]
- Loforte, A. Tricuspid valve repair and mechanical right ventricular support in rescue left ventricular assist device implantations: Still a relevant issue. J. Card. Surg. 2022, 37, 1118–1120. [Google Scholar] [CrossRef]
- Robertson, J.O.; Grau-Sepulveda, M.V.; Okada, S.; O’Brien, S.M.; Matthew Brennan, J.; Shah, A.S.; Itoh, A.; Damiano, R.J.; Prasad, S.; Silvestry, S.C. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: A Society of Thoracic Surgeons database analysis. J. Heart Lung Transplant. 2014, 33, 609–617. [Google Scholar] [CrossRef]
- Song, H.K.; Gelow, J.M.; Mudd, J.; Chien, C.; Tibayan, F.A.; Hollifield, K.; Naftel, D.; Kirklin, J. Limited Utility of Tricuspid Valve Repair at the Time of Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2016, 101, 2168–2174. [Google Scholar] [CrossRef]
- Tang, P.C.; Haft, J.W.; Romano, M.A.; Bitar, A.; Hasan, R.; Palardy, M.; Wu, X.; Aaronson, K.D.; Pagani, F.D. Right ventricular function and residual mitral regurgitation after left ventricular assist device implantation determines the incidence of right heart failure. J. Thorac. Cardiovasc. Surg. 2020, 159, 897–905.e894. [Google Scholar] [CrossRef] [PubMed]
- Valsangiacomo Buechel, E.R.; Mertens, L.L. Imaging the right heart: The use of integrated multimodality imaging. Eur. Heart J. 2012, 33, 949–960. [Google Scholar] [CrossRef]
- Gronlykke, L.; Ravn, H.B.; Gustafsson, F.; Hassager, C.; Kjaergaard, J.; Nilsson, J.C. Right ventricular dysfunction after cardiac surgery—Diagnostic options. Scand. Cardiovasc. J. 2017, 51, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Pegg, T.J.; Selvanayagam, J.B.; Karamitsos, T.D.; Arnold, R.J.; Francis, J.M.; Neubauer, S.; Taggart, D.P. Effects of off-pump versus on-pump coronary artery bypass grafting on early and late right ventricular function. Circulation 2008, 117, 2202–2210. [Google Scholar] [CrossRef]
- Joshi, S.B.; Roswell, R.O.; Salah, A.K.; Zeman, P.R.; Corso, P.J.; Lindsay, J.; Fuisz, A.R. Right ventricular function after coronary artery bypass graft surgery–A magnetic resonance imaging study. Cardiovasc. Revasc. Med. 2010, 11, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Krittayaphong, R.; Laksanabunsong, P.; Maneesai, A.; Saiviroonporn, P.; Udompunturak, S.; Chaithiraphan, V. Comparison of cardiovascular magnetic resonance of late gadolinium enhancement and diastolic wall thickness to predict recovery of left ventricular function after coronary artery bypass surgery. J. Cardiovasc. Magn. Reson. 2008, 10, 41. [Google Scholar] [CrossRef]
- Cochran, J.M.; Alam, A.; Guerrero-Miranda, C.Y. Importance of right heart catheterization in advanced heart failure management. Rev. Cardiovasc. Med. 2022, 23, 12. [Google Scholar] [CrossRef]
- Sohail, A.; Korejo, H.B.; Shaikh, A.S.; Ahsan, A.; Chand, R.; Patel, N.; Karim, M. Correlation between Echocardiography and Cardiac Catheterization for the Assessment of Pulmonary Hypertension in Pediatric Patients. Cureus 2019, 11, e5511. [Google Scholar] [CrossRef] [PubMed]
- Aashish, A.; Giridharan, S.; Karthikeyan, S.; Ganesh, B.A.; Prasath, P.A. Assessment of Pulmonary Artery Pressures by Various Doppler Echocardiographic Parameters and its Correlation with Cardiac Catheterization in Patients with Pulmonary Hypertension. Heart Views 2020, 21, 263–268. [Google Scholar] [CrossRef]
- Ptaszynska-Kopczynska, K.; Krentowska, A.; Sawicka, E.; Skoneczny, A.; Jasiewicz, M.; Knapp, M.; Musial, W.J.; Sobkowicz, B.; Kaminski, K.A. The strengths and weaknesses of non-invasive parameters obtained by echocardiography and cardiopulmonary exercise testing in comparison with the hemodynamic assessment by the right heart catheterization in patients with pulmonary hypertension. Adv. Med. Sci. 2017, 62, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Roscoe, A.; Zochios, V. Protecting the Right Ventricle, n. Echocardiography in Weaning Right Ventricular Mechanical Circulatory Support: Are We Measuring the Right Stuff? J. Cardiothorac. Vasc. Anesth. 2022, 36, 362–366. [Google Scholar] [CrossRef]
- Towheed, A.; Sabbagh, E.; Gupta, R.; Assiri, S.; Chowdhury, M.A.; Moukarbel, G.V.; Khuder, S.A.; Schwann, T.A.; Bonnell, M.R.; Cooper, C.J.; et al. Right Ventricular Dysfunction and Short-Term Outcomes Following Left-Sided Valvular Surgery: An Echocardiographic Study. J. Am. Heart Assoc. 2021, 10, e016283. [Google Scholar] [CrossRef]
- Garcia Gigorro, R.; Renes Carreno, E.; Mayordomo, S.; Marin, H.; Perez Vela, J.L.; Corres Peiretti, M.A.; Montejo Gonzalez, J.C. Evaluation of right ventricular function after cardiac surgery: The importance of tricuspid annular plane systolic excursion and right ventricular ejection fraction. J. Thorac. Cardiovasc. Surg. 2016, 152, 613–620. [Google Scholar] [CrossRef]
- Mandoli, G.E.; Cameli, M.; Novo, G.; Agricola, E.; Righini, F.M.; Santoro, C.; D’Ascenzi, F.; Ancona, F.; Sorrentino, R.; D’Andrea, A.; et al. Right ventricular function after cardiac surgery: The diagnostic and prognostic role of echocardiography. Heart Fail. Rev. 2019, 24, 625–635. [Google Scholar] [CrossRef]
- Izumi, C. Tricuspid regurgitation following left-sided valve surgery: Echocardiographic evaluation and optimal timing of surgical treatment. J. Echocardiogr. 2015, 13, 15–19. [Google Scholar] [CrossRef]
- Ochs, M.M.; Fritz, T.; Andre, F.; Riffel, J.; Mereles, D.; Muller-Hennessen, M.; Giannitsis, E.; Katus, H.A.; Friedrich, M.G.; Buss, S.J. A comprehensive analysis of cardiac valve plane displacement in healthy adults: Age-stratified normal values by cardiac magnetic resonance. Int. J. Cardiovasc. Imaging 2017, 33, 721–729. [Google Scholar] [CrossRef]
- Cammalleri, V.; Carpenito, M.; De Stefano, D.; Ussia, G.P.; Bono, M.C.; Mega, S.; Nusca, A.; Cocco, N.; Nobile, E.; De Filippis, A.; et al. Novel Computed Tomography Variables for Assessing Tricuspid Valve Morphology: Results from the TRIMA (Tricuspid Regurgitation IMAging) Study. J. Clin. Med. 2022, 11, 2825. [Google Scholar] [CrossRef]
- Cammalleri, V.; Mega, S.; Ussia, G.P.; Grigioni, F. Mitral and Tricuspid Valves Percutaneous Repair in Patients with Advanced Heart Failure: Panacea, or Pandora’s Box? Heart Fail. Clin. 2021, 17, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Denault, A.Y.; Couture, P.; Beaulieu, Y.; Haddad, F.; Deschamps, A.; Nozza, A.; Page, P.; Tardif, J.C.; Lambert, J. Right Ventricular Depression after Cardiopulmonary Bypass for Valvular Surgery. J. Cardiothorac. Vasc. Anesth. 2015, 29, 836–844. [Google Scholar] [CrossRef]
- Kwak, Y.L.; Oh, Y.J.; Jung, S.M.; Yoo, K.J.; Lee, J.H.; Hong, Y.W. Change in right ventricular function during off-pump coronary artery bypass graft surgery. Eur. J. Cardiothorac. Surg. 2004, 25, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Korshin, A.; Gronlykke, L.; Holmgaard, F.; Kjoller, S.M.; Gustafsson, F.; Nilsson, J.C.; Ravn, H.B. Right ventricular transverse displacement increases following cardiac surgery: Possibly compensating loss in tricuspid annular plane systolic excursion (TAPSE). J. Clin. Monit. Comput. 2020, 34, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Sumin, A.N.; Korok, E.V.; Sergeeva, T.J. Preexisting Right Ventricular Diastolic Dysfunction and Postoperative Cardiac Complications in Patients Undergoing Nonemergency Coronary Artery Bypass Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Zand, M.; Sattarzadeh, R.; Larti, F.; Mansouri, P.; Tavoosi, A. Right ventricular diastolic function predicts clinical atrial fibrillation after coronary artery bypass graft. J. Res. Med. Sci. 2022, 27, 35. [Google Scholar] [CrossRef]
- Sumin, A.N.; Shcheglova, A.V.; Korok, E.V.; Sergeeva, T.J. The Outcomes of Coronary Artery Bypass Surgery after 18 Months-Is There an Influence of the Initial Right Ventricle Diastolic Dysfunction? J. Cardiovasc. Dev. Dis. 2023, 10, 18. [Google Scholar] [CrossRef]
- Kossaify, A. Echocardiographic Assessment of the Right Ventricle, from the Conventional Approach to Speckle Tracking and Three-Dimensional Imaging, and Insights into the “Right Way” to Explore the Forgotten Chamber. Clin. Med. Insights Cardiol. 2015, 9, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Varma, P.K.; Srimurugan, B.; Jose, R.L.; Krishna, N.; Valooran, G.J.; Jayant, A. Perioperative right ventricular function and dysfunction in adult cardiac surgery–Focused review (part 2-Management of right ventricular failure). Indian. J. Thorac. Cardiovasc. Surg. 2022, 38, 157–166. [Google Scholar] [CrossRef]
- Nguyen, T.; Cao, L.; Movahed, A. Altered right ventricular contractile pattern after cardiac surgery: Monitoring of septal function is essential. Echocardiography 2014, 31, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Torres, D.J.; Quintero, L.T.; Segura-Rodriguez, D.; Jimenez, J.M.G.; Molina, M.E.; Martinez, F.G.; Escobar, E.M.; Orta, R.G. Behavior of echocardiographic parameters of right ventricular function after tricuspid surgery. Sci. Rep. 2022, 12, 19447. [Google Scholar] [CrossRef]
- Orde, S.R.; Chung, S.Y.; Pulido, J.N.; Suri, R.M.; Stulak, J.M.; Oh, J.K.; Pislaru, S.V.; Michelena, H.M.; Daly, R.C.; Kane, G.C. Changes in Right Ventricle Function after Mitral Valve Repair Surgery. Heart Lung Circ. 2020, 29, 785–792. [Google Scholar] [CrossRef]
- Avery, R.; Day, K.; Jokerst, C.; Kazui, T.; Krupinski, E.; Khalpey, Z. Right ventricular functional analysis utilizing first pass radionuclide angiography for pre-operative ventricular assist device planning: A multi-modality comparison. J. Cardiothorac. Surg. 2017, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- McCabe, C.; White, P.A.; Rana, B.S.; Gopalan, D.; Agrawal, B.; Pepke-Zaba, J.; Hoole, S.P. Right ventricle functional assessment: Have new techniques supplanted the old faithful conductance catheter? Cardiol. Rev. 2014, 22, 233–240. [Google Scholar] [CrossRef]
- Mitoff, P.R.; Beauchesne, L.; Dick, A.J.; Chow, B.J.; Beanlands, R.S.; Haddad, H.; Mielniczuk, L.M. Imaging the failing right ventricle. Curr. Opin. Cardiol. 2012, 27, 148–153. [Google Scholar] [CrossRef]
- Jabagi, H.; Ruel, M.; Sun, L.Y. Can Biomarkers Provide Right Ventricular-Specific Prognostication in the Perioperative Setting? J. Card. Fail. 2020, 26, 776–780. [Google Scholar] [CrossRef]
- Itagaki, S.; Hosseinian, L.; Varghese, R. Right ventricular failure after cardiac surgery: Management strategies. Semin. Thorac. Cardiovasc. Surg. 2012, 24, 188–194. [Google Scholar] [CrossRef]
- Tacon, C.L.; McCaffrey, J.; Delaney, A. Dobutamine for patients with severe heart failure: A systematic review and meta-analysis of randomised controlled trials. Intensive Care Med. 2012, 38, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Strumia, A.; Rizzo, S.; Pumpo, A.D.; Conti, M.C.; Sarubbi, D.; Schiavoni, L.; Pascarella, G.; Mortini, L.; Stifano, M.; Quattro, E.D.E.; et al. Perfusion Index monitoring to help assessing changes in perfusion after administration of inodilator drugs in cardiac surgery patients. Minerva Anestesiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, M.; Jorgensen, K.; Houltz, E.; Ricksten, S.E. Levosimendan or milrinone for right ventricular inotropic treatment?–A secondary analysis of a randomized trial. Acta Anaesthesiol. Scand. 2020, 64, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Incampo, E.; Navarri, R.; Mandoli, G.E.; Sciaccaluga, C.; Righini, F.M.; Palmerini, E.; Sisti, N.; Mondillo, S.; Lunghetti, S. Effects of levosimendan in heart failure: The role of echocardiography. Echocardiography 2019, 36, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Bhogal, S.; Khraisha, O.; Al Madani, M.; Treece, J.; Baumrucker, S.J.; Paul, T.K. Sildenafil for Pulmonary Arterial Hypertension. Am. J. Ther. 2019, 26, e520–e526. [Google Scholar] [CrossRef]
- Miyauchi, T.; Sato, R.; Sakai, S.; Kobayashi, T.; Ueno, M.; Kondo, H.; Kawano, S.; Goto, K.; Yamaguchi, I. Endothelin-1 and right-sided heart failure in rats: Effects of an endothelin receptor antagonist on the failing right ventricle. J. Cardiovasc. Pharmacol. 2000, 36 (Suppl. S1), S327–S330. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, S.; Magliocca, A.; Malhotra, R.; Ristagno, G.; Citerio, G.; Bellani, G.; Berra, L.; Rezoagli, E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide 2022, 121, 20–33. [Google Scholar] [CrossRef]
- Kerbaul, F.; Brimioulle, S.; Rondelet, B.; Dewachter, C.; Hubloue, I.; Naeije, R. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2007, 175, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Unluer, E.E.; Evrin, T.; Katipoglu, B.; Bayata, S. A bedside ultrasound technique for fluid therapy monitoring in severe hypovolemia: Tissue Doppler imaging of the right ventricle. Interv. Med. Appl. Sci. 2017, 9, 212–214. [Google Scholar] [CrossRef]
- Stickel, S.; Gin-Sing, W.; Wagenaar, M.; Gibbs, J.S.R. The practical management of fluid retention in adults with right heart failure due to pulmonary arterial hypertension. Eur. Heart J. Suppl. 2019, 21 (Suppl. SK), K46–K53. [Google Scholar] [CrossRef]
- Huu, A.L.; Shum-Tim, D. Intra-aortic balloon pump: Current evidence & future perspectives. Future Cardiol. 2018, 14, 319–328. [Google Scholar] [CrossRef]
- Sertic, F.; Ali, A. Acute-right-ventricular-failure post-cardiotomy: RVAD as a bridge to a successful recovery. J. Surg. Case Rep. 2018, 2018, rjy140. [Google Scholar] [CrossRef] [PubMed]
- Grant, C., Jr.; Richards, J.B.; Frakes, M.; Cohen, J.; Wilcox, S.R. ECMO and Right Ventricular Failure: Review of the Literature. J. Intensive Care Med. 2021, 36, 352–360. [Google Scholar] [CrossRef]
- Maslow, A.D.; Regan, M.M.; Panzica, P.; Heindel, S.; Mashikian, J.; Comunale, M.E. Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth. Analg. 2002, 95, 1507–1518, table of contents. [Google Scholar] [CrossRef]
- Davila-Roman, V.G.; Waggoner, A.D.; Hopkins, W.E.; Barzilai, B. Right ventricular dysfunction in low output syndrome after cardiac operations: Assessment by transesophageal echocardiography. Ann. Thorac. Surg. 1995, 60, 1081–1086. [Google Scholar] [CrossRef]
- Reichert, C.L.; Visser, C.A.; van den Brink, R.B.; Koolen, J.J.; van Wezel, H.B.; Moulijn, A.C.; Dunning, A.J. Prognostic value of biventricular function in hypotensive patients after cardiac surgery as assessed by transesophageal echocardiography. J. Cardiothorac. Vasc. Anesth. 1992, 6, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Denault, A.Y.; Bussieres, J.S.; Arellano, R.; Finegan, B.; Gavra, P.; Haddad, F.; Nguyen, A.Q.N.; Varin, F.; Fortier, A.; Levesque, S.; et al. A multicentre randomized-controlled trial of inhaled milrinone in high-risk cardiac surgical patients. Can. J. Anaesth. 2016, 63, 1140–1153. [Google Scholar] [CrossRef]
- Haddad, F.; Denault, A.Y.; Couture, P.; Cartier, R.; Pellerin, M.; Levesque, S.; Lambert, J.; Tardif, J.C. Right ventricular myocardial performance index predicts perioperative mortality or circulatory failure in high-risk valvular surgery. J. Am. Soc. Echocardiogr. 2007, 20, 1065–1072. [Google Scholar] [CrossRef]
- Kaul, T.K.; Fields, B.L. Postoperative acute refractory right ventricular failure: Incidence, pathogenesis, management and prognosis. Cardiovasc. Surg. 2000, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schuuring, M.J.; van Gulik, E.C.; Koolbergen, D.R.; Hazekamp, M.G.; Lagrand, W.K.; Backx, A.P.; Mulder, B.J.; Bouma, B.J. Determinants of clinical right ventricular failure after congenital heart surgery in adults. J. Cardiothorac. Vasc. Anesth. 2013, 27, 723–727. [Google Scholar] [CrossRef]
- Moazami, N.; Pasque, M.K.; Moon, M.R.; Herren, R.L.; Bailey, M.S.; Lawton, J.S.; Damiano, R.J., Jr. Mechanical support for isolated right ventricular failure in patients after cardiotomy. J. Heart Lung Transplant. 2004, 23, 1371–1375. [Google Scholar] [CrossRef]
- Gudejko, M.D.; Gebhardt, B.R.; Zahedi, F.; Jain, A.; Breeze, J.L.; Lawrence, M.R.; Shernan, S.K.; Kapur, N.K.; Kiernan, M.S.; Couper, G.; et al. Intraoperative Hemodynamic and Echocardiographic Measurements Associated with Severe Right Ventricular Failure after Left Ventricular Assist Device Implantation. Anesth. Analg. 2019, 128, 25–32. [Google Scholar] [CrossRef]
- Ochiai, Y.; McCarthy, P.M.; Smedira, N.G.; Banbury, M.K.; Navia, J.L.; Feng, J.; Hsu, A.P.; Yeager, M.L.; Buda, T.; Hoercher, K.J.; et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: Analysis of 245 patients. Circulation 2002, 106 (Suppl. S1), I198–I202. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.D.; Smedira, N.G.; Starling, R.C.; Marwick, T.H. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J. Am. Coll. Cardiol. 2012, 60, 521–528. [Google Scholar] [CrossRef]
- Kavarana, M.N.; Pessin-Minsley, M.S.; Urtecho, J.; Catanese, K.A.; Flannery, M.; Oz, M.C.; Naka, Y. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: A continuing problem. Ann. Thorac. Surg. 2002, 73, 745–750. [Google Scholar] [CrossRef]
- Matthews, J.C.; Koelling, T.M.; Pagani, F.D.; Aaronson, K.D. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J. Am. Coll. Cardiol. 2008, 51, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Drakos, S.G.; Janicki, L.; Horne, B.D.; Kfoury, A.G.; Reid, B.B.; Clayson, S.; Horton, K.; Haddad, F.; Li, D.Y.; Renlund, D.G.; et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am. J. Cardiol. 2010, 105, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.R., 3rd; Frederick, J.R.; Hiesinger, W.; Hsu, V.M.; McCormick, R.C.; Kozin, E.D.; Laporte, C.M.; O’Hara, M.L.; Howell, E.; Dougherty, D.; et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J. Thorac. Cardiovasc. Surg. 2009, 137, 971–977. [Google Scholar] [CrossRef]
- LaRue, S.J.; Raymer, D.S.; Pierce, B.R.; Nassif, M.E.; Sparrow, C.T.; Vader, J.M. Clinical outcomes associated with INTERMACS-defined right heart failure after left ventricular assist device implantation. J. Heart Lung Transplant. 2017, 36, 475–477. [Google Scholar] [CrossRef]
- Ternacle, J.; Berry, M.; Cognet, T.; Kloeckner, M.; Damy, T.; Monin, J.L.; Couetil, J.P.; Dubois-Rande, J.L.; Gueret, P.; Lim, P. Prognostic value of right ventricular two-dimensional global strain in patients referred for cardiac surgery. J. Am. Soc. Echocardiogr. 2013, 26, 721–726. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattei, A.; Strumia, A.; Benedetto, M.; Nenna, A.; Schiavoni, L.; Barbato, R.; Mastroianni, C.; Giacinto, O.; Lusini, M.; Chello, M.; et al. Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery. J. Clin. Med. 2023, 12, 7152. https://doi.org/10.3390/jcm12227152
Mattei A, Strumia A, Benedetto M, Nenna A, Schiavoni L, Barbato R, Mastroianni C, Giacinto O, Lusini M, Chello M, et al. Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery. Journal of Clinical Medicine. 2023; 12(22):7152. https://doi.org/10.3390/jcm12227152
Chicago/Turabian StyleMattei, Alessia, Alessandro Strumia, Maria Benedetto, Antonio Nenna, Lorenzo Schiavoni, Raffaele Barbato, Ciro Mastroianni, Omar Giacinto, Mario Lusini, Massimo Chello, and et al. 2023. "Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery" Journal of Clinical Medicine 12, no. 22: 7152. https://doi.org/10.3390/jcm12227152
APA StyleMattei, A., Strumia, A., Benedetto, M., Nenna, A., Schiavoni, L., Barbato, R., Mastroianni, C., Giacinto, O., Lusini, M., Chello, M., & Carassiti, M. (2023). Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery. Journal of Clinical Medicine, 12(22), 7152. https://doi.org/10.3390/jcm12227152