Seroprevalence of SARS-CoV-2 in Patients with Multiple Sclerosis under Disease-Modifying Therapies: A Multi-Centre Study
Abstract
:1. Introduction
- (1)
- Inflammation and Autoimmune Response: Virtually all components of the inflammatory cascade observed in MS have been identified in COVID-19 patients. It has been discovered that cytotoxic T lymphocytes and pro-inflammatory cytokines can cross the blood–brain barrier, influencing innate immune cells within the central nervous system, including macrophages, microglia, and astrocytes, thereby prompting their pro-inflammatory activation and initiating immune-mediated demyelination.
- (2)
- Direct Effect of the Virus on Oligodendrocytes: The impact of the SARS-CoV-2 virus on oligodendrocyte functionality and survival remains unexplored, but several factors strongly suggest its potential influence. Notably, SARS-CoV-2 has been observed to breach the blood–brain barrier, and an experimental study has demonstrated that infected oligodendrocytes, while surviving, exhibit altered gene expression near demyelinated regions, contributing to chronic inflammation [5].
- (3)
- Cerebral Blood Flow Impairment: Changes in brain microstructure, cerebral blood flow, and tract parameters have shown significant correlations with inflammatory markers such as C-reactive protein, procalcitonin, and interleukin-6 [6]. Multiple studies suggest that the SARS-CoV-2 virus can lead to myelin damage, oligodendrocyte death, and disruptions in neurological function due to impaired respiration, resulting in hypoxia, cerebral ischemia, and an inflammatory response to viral infection [4].
2. Material and Methods
2.1. Study Design and Patients
2.2. Blood Samples
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2019, 378, 169–180. [Google Scholar] [CrossRef]
- Milo, R.; Staun-Ram, E.; Karussis, D.; Karni, A.; Hellmann, M.A.; Bar-Haim, E.; Miller, A. Humoral and Cellular Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients with Multiple Sclerosis: An Israeli Multi-Center Experience Following 3 Vaccine Doses. Front. Immunol. 2022, 13, 868915. [Google Scholar] [CrossRef] [PubMed]
- Shabani, Z. Demyelination as a result of an immune response in patients with COVID-19. Acta Neurol. Belg. 2021, 121, 859–866. [Google Scholar] [CrossRef]
- Khodanovich, M.Y.; Kamaeva, D.A.; Naumova, A.V. Role of Demyelination in the Persistence of Neurological and Mental Impairments after COVID-19. Int. J. Mol. Sci. 2022, 23, 11291. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Zhang, Q.; Anthony, S.M.; Zhou, Y.; Zou, X.; Cassell, M.; Perlman, S. Oligodendrocytes that survive acute coronavirus infection induce prolonged inflammatory responses in the CNS. Proc. Natl. Acad. Sci. USA 2020, 117, 15902–15910. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wu, J.; Chen, T.; Li, J.; Zhang, G.; Wu, D.; Zhou, Y.; Zheng, N.; Cai, A.; Ning, Q.; et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J. Clin. Investig. 2021, 131, e147329. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef]
- Sormani, M.P.; Schiavetti, I.; Landi, D.; Carmisciano, L.; De Rossi, N.; Cordioli, C.; Moiola, L.; Radaelli, M.; Immovilli, P.; Capobianco, M.; et al. SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study. Mult. Scler. J. 2022, 28, 1034–1040. [Google Scholar] [CrossRef]
- Mallucci, G.; Zito, A.; Baldanti, F.; Gastaldi, M.; Fabbro, B.D.; Franciotta, D.; Bergamaschi, R. Safety of disease-modifying treatments in SARS-CoV-2 antibody-positive multiple sclerosis patients. Mult. Scler. Relat. Disord. 2021, 49, 102754. [Google Scholar] [CrossRef]
- Louapre, C.; Collongues, N.; Stankoff, B.; Giannesini, C.; Papeix, C.; Bensa, C.; Deschamps, R.; Créange, A.; Wahab, A.; Pelletier, J.; et al. Clinical Characteristics and Outcomes in Patients with Coronavirus Disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020, 77, 1079–1088. [Google Scholar] [CrossRef]
- Sormani, M.P.; De Rossi, N.; Schiavetti, I.; Carmisciano, L.; Cordioli, C.; Moiola, L.; Radaelli, M.; Immovilli, P.; Capobianco, M.; Trojano, M.; et al. Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Ann. Neurol. 2021, 89, 780–789. [Google Scholar] [CrossRef]
- Safavi, F.; Nourbakhsh, B.; Azimi, A.R. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult. Scler. Relat. Disord. 2020, 43, 102195. [Google Scholar] [CrossRef] [PubMed]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Tallantyre, E.C.; Vickaryous, N.; Anderson, V.; Asardag, A.N.; Baker, D.; Bestwick, J.; Bramhall, K.; Chance, R.; Evangelou, N.; George, K.; et al. COVID-19 Vaccine Response in People with Multiple Sclerosis. Ann. Neurol. 2022, 91, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Wendt, L.L.; Manickam, M.; Easwaran, M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med. Res. Rev. 2021, 41, 72–135. [Google Scholar] [CrossRef]
- Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE 2020, 15, e0244126. [Google Scholar] [CrossRef]
- Hunt, D.P.J.; Fernandes, P.M.; O’Neill, M.; Kearns, P.K.A.; Pizzo, S.; Watters, C.; Baird, S.; MacDougall, N.J.J. Impact of the first COVID-19 pandemic wave on the Scottish Multiple Sclerosis Register population. Wellcome Open Res. 2020, 5, 276. [Google Scholar] [CrossRef]
- Ferreira, L.C.; de Sousa, N.A.C.; Ferreira, M.L.B.; Dias-Carneiro, R.P.C.; Mendes, M.F.; Piccolo, A.C.; Thomaz, R.B.; Vasconcelos, C.C.F.; Alves-Leon, S.V.; dos Santos, G.A.C.; et al. Incidence and clinical outcome of Coronavirus disease 2019 in a cohort of 11,560 Brazilian patients with multiple sclerosis. Mult. Scler. J. 2021, 27, 1615–1619. [Google Scholar] [CrossRef]
- Sepúlveda, M.; Llufriu, S.; Martínez-Hernández, E.; Català, M.; Artola, M.; Hernando, A.; Montejo, C.; Pulido-Valdeolivas, I.; Martínez-Heras, E.; Guasp, M.; et al. Incidence and Impact of COVID-19 in MS: A Survey From a Barcelona MS Unit. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e954. [Google Scholar] [CrossRef]
- Iaffaldano, P.; Lucisano, G.; Manni, A.; Paolicelli, D.; Patti, F.; Capobianco, M.; Morra, V.B.; Sola, P.; Pesci, I.; Lus, G.; et al. Risk of Getting COVID-19 in People with Multiple Sclerosis A Case-Control Study. Neurol. Neuroimmunol. NeuroInflamm. 2022, 9, e1141. [Google Scholar] [CrossRef]
- Zabalza, A.; Cárdenas-Robledo, S.; Tagliani, P.; Arrambide, G.; Otero-Romero, S.; Carbonell-Mirabent, P.; Rodriguez-Barranco, M.; Rodríguez-Acevedo, B.; Restrepo Vera, J.L.; Resina-Salles, M.; et al. COVID-19 in multiple sclerosis patients: Susceptibility, severity risk factors and serological response. Eur. J. Neurol. 2021, 28, 3384–3395. [Google Scholar] [CrossRef] [PubMed]
- Sancho-saldaña, A.; Gil-s, A.; Quirant-sánchez, B.; Nogueras, L.; Peralta, S.; Solana, M.J.; González-mingot, C.; Gallego, Y.; Quibus, L.; Ramo, C.; et al. Seroprevalence of SARS-CoV-2 in a Cohort of Patients with Multiple Sclerosis under Disease-Modifying Therapies. J. Clin. Med. 2022, 11, 2509. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, J.; Czarnowska, A.; Gudowska-Sawczuk, M.; Kulczyńska-Przybik, A.; Bazylewicz, M.; Collins, F.; Chorąży, M.; Mroczko, B.; Kochanowicz, J.; Kapica-Topczewska, K.; et al. Antibodies against SARS-CoV-2 S and N proteins in relapsing-remitting multiple sclerosis patients treated with disease-modifying therapies. Neurol. Neurochir. Pol. 2023, 57, 121–130. [Google Scholar] [CrossRef]
- Avouac, J.; Drumez, E.; Hachulla, E.; Seror, R.; Georgin-Lavialle, S.; El Mahou, S.; Pertuiset, E.; Pham, T.; Marotte, H.; Servettaz, A.; et al. COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: A cohort study. Lancet Rheumatol. 2021, 3, e419–e426. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, A.; Arrambide, G.; Tagliani, P.; Cárdenas-Robledo, S.; Otero-Romero, S.; Esperalba, J.; Fernandez-Naval, C.; Trocoli Campuzano, J.; Martínez Gallo, M.; Castillo, M.; et al. Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1143. [Google Scholar] [CrossRef] [PubMed]
- Simpson-Yap, S.; De Brouwer, E.; Kalincik, T.; Rijke, N.; Hillert, J.A.; Walton, C.; Edan, G.; Moreau, Y.; Spelman, T.; Geys, L.; et al. Associations of Disease-Modifying Therapies with COVID-19 Severity in Multiple Sclerosis. Neurology 2021, 97, E1870–E1885. [Google Scholar] [CrossRef]
- Alonso, R.; Silva, B.; Garcea, O.; Diaz, P.E.C.; Dos Passos, G.R.; Navarro, D.A.R.; Valle, L.A.G.; Salinas, L.C.R.; Negrotto, L.; Luetic, G.; et al. COVID-19 in multiple sclerosis and neuromyelitis optica spectrum disorder patients in Latin America: COVID-19 in MS and NMOSD patients in LATAM. Mult. Scler. Relat. Disord. 2021, 51, 102886. [Google Scholar] [CrossRef]
- Sekine, T.; Perez-Potti, A.; Rivera-Ballesteros, O.; Strålin, K.; Gorin, J.-B.; Olsson, A.; Llewellyn-Lacey, S.; Kamal, H.; Bogdanovic, G.; Muschiol, S.; et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020, 183, 158–168.e14. [Google Scholar] [CrossRef]
- Torres, P.; Sancho-Saldaña, A.; Gil Sánchez, A.; Peralta, S.; Solana, M.J.; Bakkioui, S.; González-Mingot, C.; Quibus, L.; Ruiz-Fernández, E.; San Pedro-Murillo, E.; et al. A prospective study of cellular immune response to booster COVID-19 vaccination in multiple sclerosis patients treated with a broad spectrum of disease-modifying therapies. J. Neurol. 2023, 270, 2380–2391. [Google Scholar] [CrossRef]
- Crescenzo, F.; Marastoni, D.; Bovo, C.; Calabrese, M. Frequency and severity of COVID-19 in multiple sclerosis: A short single-site report from northern Italy. Mult. Scler. Relat. Disord. 2020, 44, 102372. [Google Scholar] [CrossRef]
- García, L.F. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front. Immunol. 2020, 11, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska, A.; Brola, W.; Zajkowska, O.; Rusek, S.; Adamczyk-Sowa, M.; Kubicka-Bączyk, K.; Kalinowska-Łyszczarz, A.; Kania, K.; Słowik, A.; Wnuk, M.; et al. Clinical course and outcome of SARS-CoV-2 infection in multiple sclerosis patients treated with disease-modifying therapies—The Polish experience. Neurol. Neurochir. Pol. 2021, 55, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Landtblom, A.M.; Berntsson, S.G.; Boström, I.; Iacobaeus, E. Multiple sclerosis and COVID-19: The Swedish experience. Acta Neurol. Scand. 2021, 144, 229–235. [Google Scholar] [CrossRef] [PubMed]
Basal (N = 709) | |
---|---|
Sex | |
Female | 481/706 (68.1%) |
Male | 225/706 (31.9%) |
Age (years) | |
Median [IQR] | 43 [36–50] |
Weight | |
Underweight | 12/469 (2.5%) |
Healthy weight | 269/469 (57.3%) |
Overweight | 113/469 (24.1%) |
Obesity | 75/469 (16%) |
Hypertension | |
59 (8.3%) | |
Diabetes | |
19 (2.7%) | |
Ethnicity | |
Asian | 2 (0.3%) |
Black or African American | 2 (0.3%) |
Caucasian | 682 (96.2%) |
Other | 23 (3.2%) |
Pregnancy: Basal (if female) | |
Yes | 6 (0.8%) |
Smoker history: Basal | |
Current smoker | 134/602 (22.3%) |
Former smoker | 125/602 (20.8%) |
Never smoked | 343/602 (57.0%) |
Alcohol: Basal | |
Never used alcohol | 333 (47%) |
Occasional consumption | 362 (51.1%) |
Regular consumption | 14 (2%) |
MS type: Basal | |
Primary progressive MS (PPMS) | 41/708 (5.8%) |
Relapsing remitting MS (RRMS) | 600/708 (84.7%) |
Secondary progressive MS (SPMS) | 67/708 (9.5%) |
EDSS | |
Median [IQR] | 2 [1–4] |
Relapses in previous year | |
92/690 (13.3%) | |
Steroids in last 3 months, n (%) | |
14 (2%) | |
First-line DMT, n (%) | |
Interferon | 71 (10%) |
Copaxone | 28 (3.9%) |
Teriflunomide | 55 (7.8%) |
Dimethyl | 114 (16.1%) |
Second-line DMT, n (%) | |
Cladribine | 43 (6.1%) |
Fingolimod | 47 (6.6%) |
Alemtuzumab | 69 (9.7%) |
Natalizumab | 124 (17.5%) |
Ocrelizumab | 109 (14.5%) |
Rituximab | 55 (7.8%) |
COVID-19 symptoms | |
Asymptomatic | 631 (89.0%) |
Symptomatic | 78 (11%) |
Mild | 77 (98.7%) |
Severe | 1 (1.3%) |
Lymphopenia | |
157 (22.1%) | |
≤200 Grade 4 | 23 (3.2%) |
201–500 Grade 3 | 22 (3.1%) |
501–800 Grade 2 | 42 (5.9%) |
801–1000 Grade 1 | 70 (9.9%) |
No lymphopenia | 552 (77.9%) |
Basal (N = 709) | 6 Months (N = 376) | |
---|---|---|
PCR | ||
Negative | 70/89 (78.6%) | 35/59 (59.3%) |
Positive | 19/89 (21.3%) | 24/59 (40.7%) |
Antibodies—IgG | ||
Negative | 634 (89.4%) | 334 (88.8%) |
Positive | 75 (10.6%) | 42 (11.2%) |
Antibodies—IgM | ||
Negative | 623 (87.9%) | 322 (85.6%) |
Positive | 86 (12.1%) | 54 (14.4%) |
Antibodies—IgA | ||
Negative | 661 (93.2%) | 342 (91%) |
Positive | 48 (6.8%) | 34 (9%) |
Seropositive igA or igG or igM | 136 (19.2%) | 78 (20.7%) |
Variable | Total (N = 376) | No Change (N = 315) | Positive to Negative (N = 32) | Negative to Positive (N = 29) | p |
---|---|---|---|---|---|
DMT | 0.842 | ||||
Copaxone | 13 (3.46%) | 13 (4.13%) | 0 (0.00%) | 0 (0.00%) | |
Dimethyl | 8 (27.59%) | 46 (14.60%) | 5 (15.62%) | 59 (15.69%) | |
Interferon | 43 (11.44%) | 35 (11.11%) | 7 (21.88%) | 1 (3.45%) | |
Teriflunomide | 36 (9.57%) | 29 (9.21%) | 3 (9.38%) | 4 (13.79%) | |
Alentuzumab | 18 (4.79%) | 16 (5.08%) | 1 (3.12%) | 1 (3.45%) | |
Cladribina | 27 (7.18%) | 24 (7.62%) | 1 (3.12%) | 2 (6.90%) | |
Fingolimod | 30 (7.98%) | 23 (7.30%) | 4 (12.50%) | 3 (10.34%) | |
Natalizumab | 63 (16.76%) | 54 (17.14%) | 5 (15.62%) | 4 (13.79%) | |
Ocrelizumab | 64 (17.02%) | 54 (17.14%) | 5 (15.62%) | 5 (17.24%) | |
Rituximab | 23 (6.12%) | 21 (6.67%) | 1 (3.12%) | 1 (3.45%) |
Seropositive (N = 136) | Seronegative (N = 573) | p | |
---|---|---|---|
Age (years) (median, [RIQ]) | 45 [38–50] | 43 [36–50] | 0.25 |
Sex (N) | 0.056 | ||
Female (481) | 102 (21.2%) | 379 (78.8%) | |
Male (225) | 34 (15.1%) | 191 (84.9%) | |
EDSS (median, [RIQ]) | 2 [1.0–4.0] | 2 [0.0–3.5] | 0.219 |
Current smoker (N = 134) | 24 (17.9%) | 110 (82.1%) | 0.412 |
MS type (N) | 0.938 | ||
PPMS (41) | 7 (17.1%) | 34 (82.9%) | |
RRMS (600) | 116 (19.3%) | 484 (80.7%) | |
SPMS (67) | 13 (19.4%) | 54 (80.6%) | |
Hypertension (N = 59) | 13 (22%) | 46 (78%) | 0.561 |
Diabetes (N = 19) | 3 (15.8%) | 16 (84.2%) | 1.00 |
Obesity (N = 75) | 16 (21.3%) | 59 (78.7%) | 0.368 |
First-line DMT (N = 268) | 61 (22.8%) | 207 (77.2%) | 0.059 |
Copaxone (N = 28) | 4 (14.3%) | 24 (85.7%) | 0.502 |
Dimethyl fumarate (N = 114) | 23 (20.2%) | 91(79.8%) | 0.769 |
Interferon (N = 71) | 23 (32.4%) | 48 (67.6%) | 0.003 |
Teriflunomide (N = 55) | 11 (20%) | 44 (80%) | 0.873 |
Second-line DMT (N = 441) | 75 (17%) | 366 (83%) | 0.059 |
Alemtuzumab (N = 69) | 13 (18.8%) | 56 (81.2%) | 0.940 |
Cladribine (N = 43) | 6 (14%) | 37 (86%) | 0.369 |
Fingolimod (N = 47) | 8 (17%) | 39 (83%) | 0.687 |
Natalizumab (N = 124) | 22 (17.7%) | 102 (82.3%) | 0.654 |
Ocrelizumab (N = 103) | 19 (18.4%) | 84 (81.6%) | 0.838 |
Rituximab (N = 55) | 7 (12.7%) | 48 (87.3%) | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sancho-Saldaña, A.; Gil-Sánchez, A.; González-Mingot, C.; Peralta, S.; Solana, M.J.; Torres, P.; Juanes, A.; Quibus, L.; Ruiz, E.; Sanpedro, E.; et al. Seroprevalence of SARS-CoV-2 in Patients with Multiple Sclerosis under Disease-Modifying Therapies: A Multi-Centre Study. J. Clin. Med. 2023, 12, 7243. https://doi.org/10.3390/jcm12237243
Sancho-Saldaña A, Gil-Sánchez A, González-Mingot C, Peralta S, Solana MJ, Torres P, Juanes A, Quibus L, Ruiz E, Sanpedro E, et al. Seroprevalence of SARS-CoV-2 in Patients with Multiple Sclerosis under Disease-Modifying Therapies: A Multi-Centre Study. Journal of Clinical Medicine. 2023; 12(23):7243. https://doi.org/10.3390/jcm12237243
Chicago/Turabian StyleSancho-Saldaña, Agustín, Anna Gil-Sánchez, Cristina González-Mingot, Silvia Peralta, Maria Jose Solana, Pascual Torres, Alba Juanes, Laura Quibus, Emilio Ruiz, Eduardo Sanpedro, and et al. 2023. "Seroprevalence of SARS-CoV-2 in Patients with Multiple Sclerosis under Disease-Modifying Therapies: A Multi-Centre Study" Journal of Clinical Medicine 12, no. 23: 7243. https://doi.org/10.3390/jcm12237243
APA StyleSancho-Saldaña, A., Gil-Sánchez, A., González-Mingot, C., Peralta, S., Solana, M. J., Torres, P., Juanes, A., Quibus, L., Ruiz, E., Sanpedro, E., Quirant-Sánchez, B., Martínez-Cáceres, E., Ramo Tello, C., Presas-Rodríguez, S., García Rubio, S., Baron, B. P., Ramió-Torrentà, L., Sotoca, J., González-Suárez, I., ... Brieva, L. (2023). Seroprevalence of SARS-CoV-2 in Patients with Multiple Sclerosis under Disease-Modifying Therapies: A Multi-Centre Study. Journal of Clinical Medicine, 12(23), 7243. https://doi.org/10.3390/jcm12237243