Next Article in Journal
How Cardiac Fibrosis Assessed via T1 Mapping Is Associated with Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease
Next Article in Special Issue
Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art
Previous Article in Journal
The Effect of Bariatric Surgery on Microvascular Structure and Function, Peripheral Pressure Waveform and General Cardiovascular Risk: A Longitudinal Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis

1
Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
2
Radiology Unit, “A. Cardarelli” Hospital, 80131 Campobasso, Italy
3
General Surgery Unit, University of Milano-Bicocca, 20126 Milan, Italy
4
San Giovanni di Dio e Ruggi d’Aragona Hospital, 84131 Salerno, Italy
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2023, 12(23), 7380; https://doi.org/10.3390/jcm12237380
Submission received: 3 October 2023 / Revised: 21 November 2023 / Accepted: 23 November 2023 / Published: 28 November 2023
(This article belongs to the Special Issue Radiomics and Machine Learning for Medical Imaging)

Abstract

:
Background: Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer-related deaths worldwide. Surgical resection is the main driver to improving survival in resectable tumors, while neoadjuvant treatment based on chemotherapy (and radiotherapy) is the best option-treatment for a non-primally resectable disease. CT-based imaging has a central role in detecting, staging, and managing PDAC. As several authors have proposed radiomics for risk stratification in patients undergoing surgery for PADC, in this narrative review, we have explored the actual fields of interest of radiomics tools in PDAC built on pre-surgical imaging and clinical variables, to obtain more objective and reliable predictors. Methods: The PubMed database was searched for papers published in the English language no earlier than January 2018. Results: We found 301 studies, and 11 satisfied our research criteria. Of those included, four were on resectability status prediction, three on preoperative pancreatic fistula (POPF) prediction, and four on survival prediction. Most of the studies were retrospective. Conclusions: It is possible to conclude that many performing models have been developed to get predictive information in pre-surgical evaluation. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths worldwide. By 2030, it is predicted to become the second leading cause of mortality for cancer [1,2,3].
As reported in the surgical management of other gastrointestinal cancers, such as metastatic colorectal cancer [4,5,6,7,8], due to the late presentation of clinical symptoms, only 15–20% of patients are candidates for curative intent pancreatectomy at diagnosis [9,10,11,12].
However, in pancreatic cancer, resectable upfront the 5-year survival is low, estimated at 25–30% [13,14,15,16]. Moreover, undetectable micro-metastases can develop once the primary tumor manifests in imaging, giving the appearance of resectable disease with standard diagnostic protocols even when there is indeed systemic spread [17,18,19,20,21].
In most clinical practice recommendations and guidelines, contrast-enhanced-CT (CECT) is the first-line tool for the detection, staging, and therapeutic determining of PDAC, representing the gold standard imaging method in patients undergoing surgery [22,23,24,25,26,27,28].
CT can be also associated in selected patients with MRI, to evaluate the tumor invasion or contact with bordering vascular structures such as vein porta, mesenteric vein, and mesenteric artery. However, the diagnostic sensitivity of CT and MRI of vascular invasion is approximately 71–74% and specificity is 97% [29,30].
The typical appearance of PDAC at CT imaging is a hypoenhancing infiltrative mass, hypodense in the pancreatic phase (late arterial phase) with delayed enhancement in later phase images because of central necrosis and desmoplastic reaction [31]. Distal pancreatic duct dilatation and atrophy are related to an obstruction in the head of the pancreas [32]. Pancreatic lesions may also be secondary to renal cancer and other gastrointestinal cancers, but they are rare and do not undergo surgical treatment [33].
In many fields of radiology, to improve the diagnostic performance of the standard radiological protocols, several studies have already proposed radiomics tools. Radiomics refers to a non-invasive methodology able to extract and analyze data from radiological images. In this way, radiomics process images through numerical features that may be related to a clinical pattern undetectable to the naked eye [34,35].
Those features usually include signal intensity, shape, texture, and higher-order texture features. One of the most important clinical-relevant applications of radiomics is the ability to help predict the survival of cancer patients in a preoperative setting [36,37,38].
Many artificial intelligence methodologies have been proposed using CT or MRI imaging, with the best results in gastrointestinal tumors, gangliomas, lung cancer, and head and neck cancer [39,40,41,42,43,44,45,46]. Concerning PDAC, radiomics have been applied to the diagnosis, to the pre-operative evaluation, to response to therapy, and to predict prognosis and complications after treatment [47,48,49,50,51].
Therefore, several authors have proposed radiomics models for early preoperative risk stratification, including studies addressed to main topics: preoperative prediction of resectability status, preoperative prediction of postoperative pancreatic fistula (POPF), and preoperative prediction of overall survival after treatment [52,53,54,55].
Radiomics approach to medical imaging usually consists of automatic or manual segmentation of the ROI, followed by feature extraction, feature selection and reduction, statistical analysis, and model creation [56,57,58,59,60].
Then, machine learning methods are used to associate the features with the given clinical task. Deep learning methods consist of automated learning of relevant features, avoiding the requirement of human interventions [61,62,63,64,65].
Going further, 3D convolutional neural network (CNN)-based prognosis models have shown good performances in outcome prediction, actually of lung cancer and gliomas [66,67,68,69,70,71].
The aim of this review is to report on the results of several studies and the real application of radiomics in clinical practice in the large field of PDAC diagnosis, therapy, and prognosis. The included studies address the following main topics: preoperative prediction of resectability status and preoperative prediction of POPF.

1.1. Resectability Status

According to the 2021 NCCN guidelines, the resectability status of pancreatic cancer is differentiated by contrast-enhanced CT scanning into four classes: resectable, borderline resectable, locally advanced/unresectable, and metastatic pancreatic adenocarcinoma. Different resectability statuses reflect different management and prognosis [72,73,74,75,76].
According to the guidelines, a resectable PDAC is characterized by no evidence of distant metastases, no CT signs of superior mesenteric vein or portal vein distortion, and clear fat planes around celiac axis, hepatic artery, and superior mesenteric artery [77]. Since surgical R0-resection may be a potentially curative treatment option for patients with PDAC, accurate quantitative preoperative prediction of primary resectable tumors is required [78,79,80,81,82,83].
Borderline resectable PDAC definition includes vascular invasion of the superior mesenteric vein and portal vein, gastroduodenal encasement up to the hepatic artery without extension to the celiac axis, and tumor contact <180° of the circumference of the vessel wall of the superior mesenteric artery.
The correct timing of surgery is still under debate in spite of neoadjuvant therapy in PDAC with resectable or reconstructable vessels involved. A study conducted by Kelly et al. showed no significant difference in survival among patients undergoing R0 resection with vascular reconstruction comparable to that observed in upfront resectable PDAC [84].
Locally advanced pancreatic cancer (LAPC) is defined as a non-metastatic cancer, with an extensive vascular involvement that does not allow a radical resection [85]. At the time of diagnosis, one-third of patients present with locally advanced pancreatic cancer (LAPC) [86,87,88,89,90].
The actual standard of care for LAPC consists of multiagent chemotherapy regimens neoadjuvant treatment, with improved survival compared to mono-chemotherapy schedules, and then evaluating the response to therapy [86,91,92,93,94,95,96].
In selected patients, there is the possibility of maximizing the benefits of the oncological treatment integrating radiation therapy (RT) approaches both in locally advanced patients and after R0 resection as adjuvant therapy [97,98,99,100,101].
When the response to neoadjuvant therapy consists of an important regression of disease, the surgical treatment can improve overall survival in LAPC [102,103,104,105,106].
However, after neoadjuvant therapy, the restaging CT imaging has a low diagnostic performance to evaluate the residual tumor-burden, due to the difficulty in distinguishing neoplastic tissue from fibrous scar or inflammation [61,107,108,109,110]. Radiomics could play a decisive role in integrating traditional morphological parameters in predicting surgical resection, both in primarily resectable patients and even in locally advanced pancreatic cancer (LAPC) after neoadjuvant treatment [111].

1.2. Post-Operative Pancreatic Fistula

Postoperative pancreatic fistula (POPF) is a severe complication caused by pancreato-enteric anastomotic leakage, that occurs in about 10–30% of patients undergoing pancreatic head resection for surgical treatment of pancreatic cancer [112,113,114,115,116,117,118].
According to the 2016 POPF definition of the International Study Group on Pancreatic Fistula (ISGPF), an asymptomatically elevated level of drain amylase is only a mild form of biochemical leak, while the clinically relevant (CR-) POPF is the most challenging complication after pancreatoduodenectomy (PD) in terms of morbidity/mortality rates [119,120,121].
In the literature, different grades of POPF are described. Grade A has no clinical impact, as it does not imply a longer hospital stay or interventional procedures (Figure 1).
Grade B is characterized by an increase in amylase activity from the drain and it has a clinical impact on the patient (Figure 1). Interventional management is required for drain collection through US or CT-guided or endoscopic procedures. In case of POPF-related hemorrhage, pseudo-aneurism transfusions and/or angiography are required.
Grade C fistula is considered an evolution of grade B when reoperation is needed due to organ failure or clinical instability although an interventional procedure has taken place. Reoperation is related to high morbidity and mortality [122,123].
The current gold standard of assessing CR-POPF risk is based on intraoperative factors: pancreatic texture, pancreatic duct width, and BMI are established risk factors [124,125,126,127,128].
A validated and used score is the Fistula Risk Score (FRS), a 10-point scale that includes four parameters: small-sized pancreatic duct, palpatory soft glandular texture, underlying high-risk pathology (chronic pancreatitis or pancreatic adenocarcinoma) and intraoperative blood loss [129,130,131,132].
A more accurate risk assessment of developing POPF can impact the pre-surgical decision-making process and lead to better perioperative management of patients [114,133,134,135,136].
To our knowledge, there is no risk score based on diagnostic imaging, as it happens for acute pancreatitis. As AI-based models are strongly predictive, radiomic features from preoperative CT imaging related to clinical factors can help identify patients at high risk for postoperative pancreatic fistula following pancreatic head resection [137,138].

1.3. Prognosis

The common clinical-pathological factors determining prognosis and overall survival of patients who undergo surgical resection of PDAC include tumor size, lymph node involvement, margin status of surgically resected tumor, carbohydrate antigen 19-9 (CA19-9) level, and the adjuvant chemotherapy received [15,139,140,141,142,143].
Several previous studies have explored how preoperative CT texture radiological features correlate with overall survival [144,145,146,147,148,149,150].

2. Methods

We searched the PubMed database (US National Library of Medicine, http://www.ncbi.nlm.nih.gov/PubMed) using the subsequent keywords: [pancreas AND (cancer OR adenocarcinoma OR tumor OR neoplasia OR malignancy) AND (artificial intelligence OR radiomics OR deep learning OR machine learning OR neural network) AND (prognosis OR treatment OR surgery OR complications OR fistula OR outcome OR survival)].
Papers had to have been published no earlier than January 2018. Articles were first chosen based on title and abstract, but a review of the available full text was necessary in order to include the article. Clinical studies (retrospective analysis, case series, prospective cohort study) were reviewed. Case reports, reviews, comments, or letters to editors were excluded.

3. Results

We recognized 301 pertinent papers based on a review of titles and abstracts, then we narrowed them down to 11 full-text articles concerning specific radiomic tools based on CT preoperative imaging for detection, treatment strategy, and survival prediction of PDAC. Articles first excluded for title and abstract were reviews or case reports, or they did not address PDAC or CT as the chosen imaging method.
Of the 11 most pertinent original articles included, 4 were about resectability status prediction, 3 were about preoperative POPF prediction, and 4 were about survival prediction [61,137,151,152,153,154,155,156,157,158,159].

4. Discussion

4.1. Resectability Status

Although there is careful selection of resectable PDAC patients, the recurrence rate after upfront surgery can be very high, especially within 12 months from the index procedure, resulting in poor prognosis [160,161,162]. Upfront surgery cannot be the best treatment approach for patients who are not primary resectable, who could instead benefit from neoadjuvant chemotherapy [163,164].
The challenge of the retrospective study of Palumbo et al. [153] was to combine clinical, radiological, and radiomic features to build and validate a machine-learning-based model of preoperative risk stratification of disease recurrence in 12 months in distant sites after upfront pancreaticoduodenectomy. In a retrospective study of 147 patients who underwent upfront surgery, 182 radiomics features were extracted from preoperative clinical and radiological CT-based data, and the most discriminant features were selected. Clinical (serum level of CA19-9), radiological (necrosis), and radiomic (SurfAreaToVolumeRatio) features were significantly associated with early recurrence. The model combining these three variables performed well in the training cohort (p = 0.0015, HR = 3.58, 95%CI = 1.98–6.71) and was then confirmed in the validation cohort (p = 0.0178, HR = 5.06, 95%CI = 1.75–14.58). There was a significant statistical difference in survival curves between low and high-risk patients (p-value < 0.0001). As a result, this model may help to better define resectability status and to identify patients who would benefit from neoadjuvant chemotherapy instead of upfront surgery. Patients considered at low risk of early recurrence may represent the group potentially suitable for primary resection.
In the case of patients with locally advanced PC (LAPC) at the time of diagnosis, resectability is usually reassessed after neoadjuvant treatment by CT-scan imaging, but after radiotherapy CT cannot discriminate between post-therapy fibrosis, locoregional edema, inflammatory changes, and visible tumors [165,166].
The aim of the study of Rossi et al. [152] was to assess the capability of CT-based radiomic features to predict the response to therapy and the resectability in LAPC treated with both neoadjuvant chemotherapy and radiotherapy. In a retrospective study of 71 patients who underwent inductive chemotherapy followed by ablative radiotherapy, a predictive model of resectability status after treatment was developed and validated. ROI was defined on the gross tumor volume and 1655 radiomic features extracted from CT at primary staging integrated with clinical data. The median Area Under the Curve (AUC) was 0.862 (95% CI: 0.792–0.921) for the training set and 0.853 (95% CI: 0.706–0.960) for the validation set. The validated model was applied to the entire dataset and 4 futures were selected to build the model with predictive performance as measured using an AUC of 0.944 (95% CI: 0.892–0.996). In model-building, clinical data was not significant enough to separate resected patients from not-resected patients, therefore the radiomic model alone achieved the same results. This means that radiomics represents a fundamental tool that can be used to decode information that cannot be obtained from the naked-eye view of CT images or other clinical data alone [167].
Furthermore, in patients with unresectable advanced disease undergoing chemotherapy, Salinas et al. [156] suggest that, given the biological overlap between patients appearing resectable and patients appearing non-resectable on CT, it is possible that prognostic features in resectable PDAC may also be prognostic in unresectable PDAC. From a cohort of 108 patients enrolled in a prospective chemotherapy trial, the pre-treatment CT scans were used as a test cohort for 2 previously published prognostic radiomic features in resectable PDAC (Sum Entropy and Cluster Tendency with square-root filter (Sqrt)). Then the performance of these 2 radiomic features for the prediction of overall survival (OS) and time to progression (TTP) was assessed using Cox proportional hazard models. Sqrt Cluster Tendency was significantly associated with outcome both in terms of overall survival (HR of 1.27 for primary pancreatic tumor plus local nodes; CI: 1.01–1.6, p-value 1⁄4 0.039) and of Time to progression (HR of 1.25; CI:1.00–1.55, p-value 1/4 0.047). As a result, the CT radiomic feature Sqrt Cluster Tendency, previously demonstrated to be prognostic in resectable PDAC, remained a significant prognostic factor for OS and TTP in a test set of unresectable PDAC patients, despite the cohort being used as a test set for 2 previously validated radiomics parameters, and not as a training set. This suggests that maybe there are similarities in radiomic features of both early and advanced disease reflective of aggressive biology [156].
In the pre-operative evaluation of resectability, an accurate study of tumor biology markers is required to correctly stage the disease [168,169,170,171,172].
Finally, the work by Yao et al. [61] suggests a new multi-task CNN framework for cancer survival prediction by simultaneously predicting the tumor resection margins for PDAC patients.
Both tumor attenuation and resection margin are associated with patient’s clinical outcomes: hypo-attenuating mass indicates a low stromal fraction, related to a worse clinical outcome; while R0 resection is usually associated with relatively long-term survival, and R1 resection may have a high recurrence chance [173].
The Yao et al. [61] radiomics model, called CE-ConvLSTM, can derive the tumor attenuation signatures or patterns from patient CE-CT imaging studies.
Dynamic Contrast-Enhanced Computed tomography (DCE-CT) remains the primary initial imaging modality of choice for pancreatic cancer diagnosis. It plays a major role in depicting, staging, patient management, and evaluating PDAC resectability [174,175].
In fact, the second aim of the study was the evaluation of resection margin status in the form of tumor–vascular relationships, which is known to be strongly related to the overall survival of PDAC patients [176,177,178,179,180].
The model used a self-learning approach for automated pancreatic and peripancreatic anatomy segmentation, without requiring any annotations on PDAC datasets, and then was employed into a multi-task convolutional neural network (CNN) to accomplish both tasks of survival outcome and margin prediction.
The use of both CE-ConvLSTM and self-learning segmentation to encode dynamic tumor attenuation patterns and pancreatic anatomies significantly outperforms in terms of overall survival prediction when compared with AJCC 6th edition (C-index of 0.667 vs. 0.613; AUCs of 0.718–0.707 vs. 0.665–0.622 of pT stage). Moreover, this marker is obtained pre-operatively while the AJCC staging for patients who underwent resection is post-operative.
Both survival and resection margin predictions can serve as strong prognostic and predictive quantitative biomarkers for subgroup patients after staging by the well-established pathological TNM or tumor size criteria.
The marker proposed by Yao et al. [61] promises to guide PDAC treatment selection before surgery while likely having a higher prediction accuracy than the post-operative staging system. Possible improvements could be a more sophisticated representation of the tumor-vessel relationship, CT-based lymph node metastasis detection, and integration with other established clinical and pathological variables such as CA19-9 and AJCC staging system.
To summarize, in the field of resectability status prediction, radiomics tools have obtained promising results both in the pre-operative prediction of recurrence after upfront surgery in resectable tumors and in the prediction of resectability in LAPC after chemo-radiotherapy. Furthermore, the model proposed by Yao et al. is very promising to guide the surgical treatment recommendations of patients with primary resectable PDAC tumors.

4.2. Post-Operative Pancreatic Fistula

For the prediction and early detection of POPF, radiomic features extracted from preoperative CT imaging, in combination with clinical factors, can help to identify patients at high risk for postoperative pancreatic fistula following pancreatic head resection [137,181,182,183].
Bhasker et al.’s purpose [137] was a CR-POPF preoperative prediction model based on preoperative CT-based radiomic features, including volumes of annotated intra- and peripancreatic structures integrated with preoperative clinical data and compared with established CR-POPF clinical risk measurements.
The predictions of this pre-operative signature showed a strong correlation with the intraoperative updated alternative fistula risk score (ua-FRS), which is the clinical gold standard for intraoperative CR-POPF risk stratification. The combined radiomic and clinical signature built on 108 patients having undergone pancreatoduodenectomy achieved an AUC of 0.86 and a balanced accuracy score of 0.76 on validation data. Another study by Capretti et al. proposed a machine-learning model built on 100 patients, 20 of them with POPF. The results achieved were a specificity of 0.824 (0.133) and a sensitivity of 0.571 (0.337), with an AUC of 0.807 (0.155) [158].
These results indicate that the proposed combined radiomic and clinical preoperative evaluation can be performed for CR-POPF risk stratification.
Furthermore, several AI approaches to the quantitative preoperative CT assessment of POPF have been evaluated, with the most promising results being from Machine Learning (ML) models and Deep-Learning (DL) models.
ML could discover intricate structures in large datasets by using a backpropagation algorithm, making it useful to identify latent variables and to develop a risk prediction platform to optimize individual treatment decisions [184]. In a recent retrospective study by Han et al. [185], from 1769 patients who underwent surgery, 38 variables were inserted into AI-driven algorithms to make the risk prediction platform, with a maximal AUC using NN of 0.74. AI algorithm identified 16 risk factors for POPF: pancreatic duct diameter, body mass index, preoperative serum albumin, lipase level, amount of intraoperative fluid infusion, age, platelet count, extrapancreatic location of tumor, combined venous resection, co-existing pancreatitis, neoadjuvant radiotherapy, ASA score, sex, soft texture of the pancreas, underlying heart disease, and preoperative endoscopic biliary decompression [129,185,186,187].
On the other hand, the automated DL could reflect the morphologic features of the pancreatic duct, remnant pancreatic tissue volume, and parenchymal fibrosis. The Deep Learning Score (DLS) is particularly helpful for patients with intermediate FRS risks in predicting the risk of CR-POPF. A DLS has been described as a highly accessible DL model of routine patient examination, that automatically generates features from preoperative CT scans with excellent performance compared to CT classifiers cited in the literature (remnant pancreatic volume, MPD diameter, pancreatic width or thickness) [157,188,189,190,191,192,193].
In the study by Mu et al. [157], a group of 513 patients who underwent surgery was retrospectively collected and formed a training (70%) and a validation dataset (30%) randomly. A CNN was trained and generated a DLS to identify the patients with a higher risk of CR-POPF preoperatively using CE-CT images. As a result, compared to FRS, the DLS offered significantly greater predictability both in training (AUC:0.85 [95% CI, 0.80–0.90]), and in validation groups (0.81 [95% CI, 0.72–0.89]) with challenging results for intermediate-risk patients (FRS: 3–6), where DLS showed significantly high accuracy.
To summarize, in the field of preoperative prediction of POPF, the actual results indicate that the preoperative combination of CT-radiomic features and clinical preoperative evaluation can perform CR-POPF risk stratification better than only clinical assessment. An ML-based AI algorithm has been developed, with 16 risk factors for POPF identified, demonstrating its added value in the identification of latent variables. The study of DL-based methods suggests that DLS could be particularly helpful for patients with intermediate FRS risks in predicting the risk of CR-POPF.
Minimally invasive surgery is now common in clinical practice not only in general surgery but also in oncological pathologies [28,194,195,196,197,198,199,200,201,202,203].
Referral and peripheral centers have been developed and have participated in many hub-and-spoke learning programs to ensure the standard of care [204,205,206,207].
In this era, several studies have reported the usefulness and feasibility of pancreatic resection through laparoscopy or a robotic approach.
However, the validation and estimation of complications with different methods is still under review by randomized control trial.
There is also the conflict concerning the surgical technique used in peripheral centers of proceeding to the distal pancreatic duct occlusion in spite of the anastomosis [208]. To our knowledge, there are no studies proposing radiomic models to choose among different surgical approaches.
Radiomics can be used to help surgeons and clinicians choose the most appropriate approach for each patient in order to personalize not only the timing of resection but also the approach, predicting the different risks of complications.

4.3. Prognosis

Nomogram-based overall survival prediction is based on tumor differentiation, margins, T stage, and number of positive nodes (C-indexes up to 0.64) [209,210,211].
Presently, the pre-operative prognostic factors of PDAC are related to the CT and MRI evidence of nodal metastases and secondarism and T-stage, and also to the vascular invasion of the hepatic and mesenteric arteries and mesenteric and portal veins [212]. After surgery, the prognostic factors are also related to margin evaluation, perineural and lymphovascular invasion, and tumor grading [213].
Park et al. [154] evaluated the prognostic utility of preoperative CT radiomics features in predicting the postoperative survival of patients with PDAC, by the selection of optimal radiomics features including tumor heterogeneity and texture of the whole pancreas to capture peritumoral phenotype [214,215,216]. In a retrospective study of 153 patients who underwent pre-operative CT, a total of 478 radiomics features were extracted from tumors and 11 extra features were computed from pancreas boundaries. The 10 most relevant features were selected to distinguish the high- and low-risk groups according to survival time. High-risk patients were those who survived less than 1 year and low-risk patients were those who survived more than 3 years from the date of initial diagnosis. Survival analysis was performed considering clinical parameters both with and without the addition of the selected features. The 10 most relevant radiomics features showed 82.2% accuracy in the classification of high-risk versus low-risk groups. The C-index of survival prediction with clinical parameters alone was 0.6785.
The addition of CT radiomics features Improved the C-index to 0.7414. The high-risk group showed a higher classification performance, with 86.4% accuracy, compared with the low-risk group, with 78.3% accuracy. In conclusion, the addition of CT radiomics features to standard clinical factors improves survival prediction in patients with PDAC [145,154,217,218,219,220].
Other recent studies about survival prediction in PDAC have reported the better performance of a combination of radiomics CT features and basic clinical features [144,221,222,223,224,225,226].
Among the evaluation of significant clinical features, the evaluation of frailty surely impacts hospitalization and prognosis [227,228,229,230,231,232,233,234,235,236].
In particular, body composition features measured by CT imaging are gaining increasing attention in clinical oncology, due to an identified prognostic adverse potential in patients with breast cancer, renal cell carcinoma, and lung and esophageal cancer [234,237,238,239,240,241,242]. In this framework, the aim of the study by Shi et al. [155] was to develop a radiomics model based on radiomic signature, clinic-pathologic factors, and body composition measures to estimate the overall survival (OS) in patients with PDAC. This study also aimed to evaluate the model’s incremental value to the traditional AJCC TNM staging system, which is unable to consider that tumors have differing genetic, cellular, and behavioral characteristics even in same-stage patients [155].
For radiomics signature construction, the most significant features were extracted from CE-CT. Then, five independent variables were selected for the radiomics model: radiomics signature, CA19-9, skeletal muscle index, histologic grade, and postoperative chemotherapy. The predictive performance of the radiomics-based model was superior to the one achieved by the clinical model alone and to the AJCC TNM staging system (C-index 1/4 0.73; all p < 0.05). Patients were stratified into high-risk and low-risk groups by the radiomics model. Moreover, in their study, the multivariate Cox analysis identified body measurements as independent risk factors. This finding is in keeping with the results of other studies in which sarcopenia is an adverse prognostic indicator for PDAC [243,244,245,246,247].
On another hand, the grade of portal venous vascular involvement in patients with PDAC may be a prognostic indicator of survival, but is only a bidimensional measurement of the relationship between the tumor and the portal vein [248,249].
Several studies about prognosis prediction based on conventional radiological or radiomic features such as intensity, texture, and morphology, have not used reproducible methods, which may reduce clinical applicability because radiomic intrinsic evaluation of soft tissue tumors has low reproducibility of intensity and texture features and also among different segmentation methods [221,250,251,252,253,254,255,256,257].
The integration of radiomic features and vascular involvement could represent a more reproducible and applicable strategy in survival prediction [258,259].
The aim of the study of Rigiroli et al. [151] was to develop and evaluate task-based radiomic features extracted from the mesenteric-portal axis for the prediction of survival and response to neoadjuvant therapy in patients with PDAC. In a retrospective study of 107 patients who underwent neoadjuvant therapy followed by surgery for PDAC, task-based shape radiomic features were extracted and analyzed from the mesenteric-portal axis before (CTtp0) and after (CTtp1) neoadjuvant therapy. These features aimed to assess MPA shape, MPA narrowing, changes in shape and diameter between CTtp0 and CTtp1, and length of the MPA segment affected by the tumor.
A Cox proportional hazards model that included three selected radiomic features (Eccentricity mean tp0, Area minimum value tp1, and Ratio 2 minor tp1) plus clinical information showed an integrated AUC of 0.72 for prediction of survival, and a better fit compared to the model with only clinical information.
Finally, according to Kim et al. [260], ML models, compared to Cox models for survival prediction in resected PDAC, have not shown a significant improvement.
Two ML methods (RSF and SVM) were compared to Cox models, obtained from two nationwide databases (SEER and KOTUS-BP), and then also from mixed datasets.
Compared with the Cox model, the performance of the ML survival models was not significantly improved. This is probably due to the poor number of shared variables between the datasets, which might have been too few to maximize the usefulness of ML methods. ML methods are useful to analyze more complex and nonlinear associations among high-dimensional variables such as genetic information [260]. ML survival models could probably recommend whether a patient should receive treatment or not [261,262].
To summarize, in the field of survival prediction, preoperative CT scans show the global status of pancreatic parenchyma and tumor texture, and radiomics features extracted from tumors and from the non-neoplastic pancreas can be used to improve the survival prediction models of patients who undergo surgery for PDAC. However, more information could also be considered for further studies, for example, the correlation with detailed types of adjuvant therapy, and postoperative clinical parameters, for a better prediction of overall survival [144].
Additionally, a prognostic model based on radiomics signature, clinic-pathologic features, and also on body composition measures performed better than the TNM staging system and may facilitate optimal personalized management after resection [263].
Despite this limitation, the established radiomics model has the potential to be used as a biomarker for risk stratification of survival outcomes in patients with PDAC and thus may serve as a tool to guide individual postoperative care. Moreover, radiomic features extracted from the mesenteric-portal axis play a challenging role in providing additional preoperative information for the prediction of survival, even though the involvement of arteries is crucial to survival [264].

5. Conclusions

AI models of image analysis for risk prediction of several cancers have shown huge performance, surpassing the accuracy and time efficiency of traditional procedures [265].
Radiomic information, so, may complement clinical and morphological parameters in many fields, but advances in artificial intelligence must be interpreted with caution. Unfortunately, virtually all studies about AI were made retrospectively, and more research is needed to make sure than the use of AI provides equivalent results in real-world prospective studies [266].
In all the fields of applications of radiomics concerning treatment, in particular pre-operative evaluation and resectability, surgical complications, and prognosis prediction, we have not found any prospective study or prospective validation of the model. Therefore, the main limitation of the reported models is the need for testing in clinical practice.
Moreover, the application to clinical practice is still very limited, due to methodological issues such as different imaging parameters delineation, intra and interscanner variability, and need for clinical interpretation of any radiomic signature. Radiomics models and their expression of results should be standardized and automatized to be applicable in clinical practice [267,268].

Author Contributions

G.P.: Writing—original draft; M.C.B.: Resources; E.D.: Supervision; M.R.: Methodology; A.S.: Visualization; M.C.: Writing—review & editing; G.G.: Funding acquisition; Project administration. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data supporting the reported results can be found in the references.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Koopmann, B.D.; Dunnewind, N.; van Duuren, L.A.; Lansdorp-Vogelaar, I.; Naber, S.K.; Cahen, D.L.; Bruno, M.J.; de Kok, I.M.; Dutch Pancreatic Cancer Group. The Natural Disease Course of Pancreatic Cyst-Associated Neoplasia, Dysplasia, and Ductal Adenocarcinoma: Results of a Microsimulation Model. Gastroenterology 2023, 165, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
  2. Casadei, R.; Ricci, C.; Ingaldi, C.; Alberici, L.; De Raffele, E.; Barcia, B.; Mosconi, C.; Diegoli, M.; Di Marco, M.; Brandi, G.; et al. Evolving knowledge in surgical oncology of pancreatic cancer: From theory to clinical practice-a fifteen-year journey at a tertiary referral centre. Updates Surg. 2022, 74, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
  3. Alcalá, S.; Mayoral-Varo, V.; Ruiz-Cañas, L.; López-Gil, J.C.; Heeschen, C.; Martín-Pérez, J.; Sainz, B., Jr. Targeting SRC Kinase Signaling in Pancreatic Cancer Stem Cells. Int. J. Mol. Sci. 2020, 21, 7437. [Google Scholar] [CrossRef] [PubMed]
  4. Avella, P.; Vaschetti, R.; Cappuccio, M.; Gambale, F.; Rafanelli, F.; Brunese, M.C.; Guerra, G.; Scacchi, A.; Rocca, A. The role of liver surgery in simultaneous synchronous colorectal liver metastases and colorectal cancer resections: A literature review of 1730 patients underwent open and minimally invasive surgery. Minerva Surg. 2022, 77, 582–590. [Google Scholar] [CrossRef] [PubMed]
  5. Rocca, A.; Scacchi, A.; Cappuccio, M.; Avella, P.; Bugiantella, W.; De Rosa, M.; Costa, G.; Polistena, A.; Codacci-Pisanelli, M.; Amato, B.; et al. Robotic surgery for colorectal liver metastases resection: A systematic review. Int. J. Med. Robot. 2021, 17, e2330. [Google Scholar] [CrossRef] [PubMed]
  6. Harrison, J.M.; Wo, J.Y.; Ferrone, C.R.; Horick, N.K.; Keane, F.K.; Qadan, M.; Lillemoe, K.D.; Hong, T.S.; Clark, J.W.; Blaszkowsky, L.S.; et al. Intraoperative Radiation Therapy (IORT) for Borderline Resectable and Locally Advanced Pancreatic Ductal Adenocarcinoma (BR/LA PDAC) in the Era of Modern Neoadjuvant Treatment: Short-Term and Long-Term Outcomes. Ann. Surg. Oncol. 2020, 27, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
  7. Adam, R.; de Gramont, A.; Figueras, J.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; Sobrero, A.; et al. Managing synchronous liver metastases from colorectal cancer: A multidisciplinary international consensus. Cancer Treat. Rev. 2015, 41, 729–741. [Google Scholar] [CrossRef]
  8. Wang, G.; Lei, W.; Duan, S.; Cao, A.; Shi, H. Preoperative evaluating early recurrence in resectable pancreatic ductal adenocarcinoma by using CT radiomics. Abdom. Radiol. 2023. ahead of print. [Google Scholar] [CrossRef]
  9. DiMagno, E.P.; Reber, H.A.; Tempero, M.A. AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology 1999, 117, 1464–1484. [Google Scholar] [CrossRef]
  10. Müller, P.C.; Frey, M.C.; Ruzza, C.M.; Nickel, F.; Jost, C.; Gwerder, C.; Hackert, T.; Z’Graggen, K.; Kessler, U. Neoadjuvant Chemotherapy in Pancreatic Cancer: An Appraisal of the Current High-Level Evidence. Pharmacology 2021, 106, 143–153. [Google Scholar] [CrossRef]
  11. Fogel, E.L.; Shahda, S.; Sandrasegaran, K.; DeWitt, J.; Easler, J.J.; Agarwal, D.M.; Eagleson, M.; Zyromski, N.J.; House, M.G.; Ellsworth, S.; et al. A Multidisciplinary Approach to Pancreas Cancer in 2016: A Review. Am. J. Gastroenterol. 2017, 112, 537–554. [Google Scholar] [CrossRef] [PubMed]
  12. Casadei, R.; Ricci, C.; Ingaldi, C.; Alberici, L.; Minni, F. Contemporary indications for upfront total pancreatectomy. Updates Surg. 2021, 73, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
  13. Giuliani, T.; Di Gioia, A.; Andrianello, S.; Marchegiani, G.; Bassi, C. Pancreatoduodenectomy associated with colonic resections: Indications, pitfalls, and outcomes. Updates Surg. 2021, 73, 379–390. [Google Scholar] [CrossRef]
  14. Dbouk, M.; Katona, B.W.; Brand, R.E.; Chak, A.; Syngal, S.; Farrell, J.J.; Kastrinos, F.; Stoffel, E.M.; Blackford, A.L.; Rustgi, A.K.; et al. The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. J. Clin. Oncol. 2022, 40, 3257–3266. [Google Scholar] [CrossRef] [PubMed]
  15. Khadka, R.; Tian, W.; Hao, X.; Koirala, R. Risk factor, early diagnosis and overall survival on outcome of association between pancreatic cancer and diabetes mellitus: Changes and advances, a review. Int. J. Surg. 2018, 52, 342–346. [Google Scholar] [CrossRef]
  16. Hackert, T.; Klaiber, U.; Pausch, T.; Mihaljevic, A.L.; Büchler, M.W. Fifty Years of Surgery for Pancreatic Cancer. Pancreas 2020, 49, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
  17. Ansari, D.; Friess, H.; Bauden, M.; Samnegård, J.; Andersson, R. Pancreatic cancer: Disease dynamics, tumor biology and the role of the microenvironment. Oncotarget 2018, 9, 6644–6651. [Google Scholar] [CrossRef]
  18. Ettrich, T.J.; Sturm, N.; Güthle, M.; Hüttner, F.J.; Perkhofer, L. Pancreatic Cancer: Current Multimodality Treatment Options and the Future Impact of Molecular Biological Profiling. Visc. Med. 2022, 38, 20–29. [Google Scholar] [CrossRef]
  19. Evans, D.B. What Makes a Pancreatic Cancer Resectable? Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 300–305. [Google Scholar] [CrossRef]
  20. Pajewska, M.; Partyka, O.; Czerw, A.; Deptała, A.; Cipora, E.; Gąska, I.; Wojtaszek, M.; Sygit, K.; Sygit, M.; Krzych-Fałta, E.; et al. Management of Metastatic Pancreatic Cancer-Comparison of Global Guidelines over the Last 5 Years. Cancers 2023, 15, 4400. [Google Scholar] [CrossRef]
  21. Rocca, A.; Calise, F.; Marino, G.; Montagnani, S.; Cinelli, M.; Amato, B.; Guerra, G. Primary giant hepatic neuroendocrine carcinoma: A case report. Int. J. Surg. 2014, 12 (Suppl. S1), S218–S221. [Google Scholar] [CrossRef] [PubMed]
  22. Al-Hawary, M.M.; Francis, I.R.; Chari, S.T.; Fishman, E.K.; Hough, D.M.; Lu, D.S.; Macari, M.; Megibow, A.J.; Miller, F.H.; Mortele, K.J.; et al. Pancreatic ductal adenocarcinoma radiology reporting template: Consensus statement of the society of abdominal radiology and the american pancreatic association. Gastroenterology 2014, 146, 291–304.e291. [Google Scholar] [CrossRef] [PubMed]
  23. Granata, V.; Morana, G.; D’Onofrio, M.; Fusco, R.; Coppola, F.; Grassi, F.; Cappabianca, S.; Reginelli, A.; Maggialetti, N.; Buccicardi, D.; et al. Structured Reporting of Computed Tomography and Magnetic Resonance in the Staging of Pancreatic Adenocarcinoma: A Delphi Consensus Proposal. Diagnostics 2021, 11, 2033. [Google Scholar] [CrossRef] [PubMed]
  24. Danti, G.; Flammia, F.; Matteuzzi, B.; Cozzi, D.; Berti, V.; Grazzini, G.; Pradella, S.; Recchia, L.; Brunese, L.; Miele, V. Gastrointestinal neuroendocrine neoplasms (GI-NENs): Hot topics in morphological, functional, and prognostic imaging. Radiol. Med. 2021, 126, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
  25. Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 2018, 24, 2047–2060. [Google Scholar] [CrossRef] [PubMed]
  26. Javadi, S.; Karbasian, N.; Bhosale, P.; de Castro Faria, S.; Le, O.; Katz, M.H.; Koay, E.J.; Tamm, E.P. Imaging findings of recurrent pancreatic cancer following resection. Abdom. Radiol. 2018, 43, 489–496. [Google Scholar] [CrossRef] [PubMed]
  27. Casadei, R.; Ricci, C.; Ingaldi, C.; Cornacchia, A.; Migliori, M.; Di Marco, M.; Pagano, N.; Serra, C.; Alberici, L.; Minni, F. External validation of nomogram for predicting malignant intraductal papillary mucinous neoplasm (IPMN): From the theory to the clinical practice using the decision curve analysis model. Updates Surg. 2021, 73, 429–438. [Google Scholar] [CrossRef]
  28. Ceccarelli, G.; Costa, G.; De Rosa, M.; Codacci Pisanelli, M.; Frezza, B.; De Prizio, M.; Bravi, I.; Scacchi, A.; Gallo, G.; Amato, B.; et al. Minimally Invasive Approach to Gastric GISTs: Analysis of a Multicenter Robotic and Laparoscopic Experience with Literature Review. Cancers 2021, 13, 4351. [Google Scholar] [CrossRef]
  29. Jajodia, A.; Wang, A.; Alabousi, M.; Wilks, C.; Kulkarni, A.; van der Pol, C.B. MRI vs. CT for pancreatic adenocarcinoma vascular invasion: Comparative diagnostic test accuracy systematic review and meta-analysis. Eur. Radiol. 2023, 33, 6883–6891. [Google Scholar] [CrossRef]
  30. Harrington, K.A.; Shukla-Dave, A.; Paudyal, R.; Do, R.K.G. MRI of the Pancreas. J. Magn. Reson. Imaging 2021, 53, 347–359. [Google Scholar] [CrossRef]
  31. Miller, F.H.; Lopes Vendrami, C.; Hammond, N.A.; Mittal, P.K.; Nikolaidis, P.; Jawahar, A. Pancreatic Cancer and Its Mimics. Radiographics 2023, 43, e230054. [Google Scholar] [CrossRef] [PubMed]
  32. Gassert, F.G.; Ziegelmayer, S.; Luitjens, J.; Gassert, F.T.; Tollens, F.; Rink, J.; Makowski, M.R.; Rübenthaler, J.; Froelich, M.F. Additional MRI for initial M-staging in pancreatic cancer: A cost-effectiveness analysis. Eur. Radiol. 2022, 32, 2448–2456. [Google Scholar] [CrossRef] [PubMed]
  33. Jaén-Torrejimeno, I.; López-Guerra, D.; Rojas-Holguín, A.; De-Armas-Conde, N.; Blanco-Fernández, G. Resection of isolated pancreatic metastases from pulmonary neoplasia: A systematic review. Updates Surg. 2022, 74, 1817–1825. [Google Scholar] [CrossRef]
  34. Ottens, T.; Barbieri, S.; Orton, M.R.; Klaassen, R.; van Laarhoven, H.W.M.; Crezee, H.; Nederveen, A.J.; Zhen, X.; Gurney-Champion, O.J. Deep learning DCE-MRI parameter estimation: Application in pancreatic cancer. Med. Image Anal. 2022, 80, 102512. [Google Scholar] [CrossRef] [PubMed]
  35. Chen, C.; Wu, C.Q.; Chen, T.W.; Tang, M.Y.; Zhang, X.M. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer. BioMed Res. Int. 2015, 2015, 624074. [Google Scholar] [CrossRef]
  36. Chu, L.C.; Park, S.; Kawamoto, S.; Yuille, A.L.; Hruban, R.H.; Fishman, E.K. Pancreatic Cancer Imaging: A New Look at an Old Problem. Curr. Probl. Diagn. Radiol. 2021, 50, 540–550. [Google Scholar] [CrossRef] [PubMed]
  37. Stoop, T.F.; van Veldhuisen, E.; van Rijssen, L.B.; Klaassen, R.; Gurney-Champion, O.J.; de Hingh, I.H.; Busch, O.R.; van Laarhoven, H.W.M.; van Lienden, K.P.; Stoker, J.; et al. Added value of 3T MRI and the MRI-halo sign in assessing resectability of locally advanced pancreatic cancer following induction chemotherapy (IMAGE-MRI): Prospective pilot study. Langenbeck’s Arch. Surg. 2022, 407, 3487–3499. [Google Scholar] [CrossRef]
  38. Chen, F.M.; Ni, J.M.; Zhang, Z.Y.; Zhang, L.; Li, B.; Jiang, C.J. Presurgical Evaluation of Pancreatic Cancer: A Comprehensive Imaging Comparison of CT Versus MRI. Am. J. Roentgenol. 2016, 206, 526–535. [Google Scholar] [CrossRef]
  39. Caranci, F.; Brunese, L.; Reginelli, A.; Napoli, M.; Fonio, P.; Briganti, F. Neck neoplastic conditions in the emergency setting: Role of multidetector computed tomography. Semin. Ultrasound CT MRI 2012, 33, 443–448. [Google Scholar] [CrossRef]
  40. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
  41. Kwan, J.Y.Y.; Su, J.; Huang, S.H.; Ghoraie, L.S.; Xu, W.; Chan, B.; Yip, K.W.; Giuliani, M.; Bayley, A.; Kim, J.; et al. Radiomic Biomarkers to Refine Risk Models for Distant Metastasis in HPV-related Oropharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
  42. Yang, Y.; Ma, X.; Wang, Y.; Ding, X. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest. Updates Surg. 2022, 74, 355–365. [Google Scholar] [CrossRef] [PubMed]
  43. Brunese, M.C.; Fantozzi, M.R.; Fusco, R.; De Muzio, F.; Gabelloni, M.; Danti, G.; Borgheresi, A.; Palumbo, P.; Bruno, F.; Gandolfo, N.; et al. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics 2023, 13, 1488. [Google Scholar] [CrossRef] [PubMed]
  44. Granata, V.; Fusco, R.; Setola, S.V.; Galdiero, R.; Maggialetti, N.; Silvestro, L.; De Bellis, M.; Di Girolamo, E.; Grazzini, G.; Chiti, G.; et al. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers 2023, 15, 351. [Google Scholar] [CrossRef] [PubMed]
  45. Rocca, A.; Brunese, M.C.; Santone, A.; Avella, P.; Bianco, P.; Scacchi, A.; Scaglione, M.; Bellifemine, F.; Danzi, R.; Varriano, G.; et al. Early Diagnosis of Liver Metastases from Colorectal Cancer through CT Radiomics and Formal Methods: A Pilot Study. J. Clin. Med. 2021, 11, 31. [Google Scholar] [CrossRef] [PubMed]
  46. Maggialetti, N.; Capasso, R.; Pinto, D.; Carbone, M.; Laporta, A.; Schipani, S.; Piccolo, C.L.; Zappia, M.; Reginelli, A.; D’Innocenzo, M.; et al. Diagnostic value of computed tomography colonography (CTC) after incomplete optical colonoscopy. Int. J. Surg. 2016, 33 (Suppl. S1), S36–S44. [Google Scholar] [CrossRef] [PubMed]
  47. Heinrich, S.; Lang, H. Neoadjuvant Therapy of Pancreatic Cancer: Definitions and Benefits. Int. J. Mol. Sci. 2017, 18, 1622. [Google Scholar] [CrossRef]
  48. Gugenheim, J.; Crovetto, A.; Petrucciani, N. Neoadjuvant therapy for pancreatic cancer. Updates Surg. 2022, 74, 35–42. [Google Scholar] [CrossRef]
  49. Van Dam, J.L.; Janssen, Q.P.; Besselink, M.G.; Homs, M.Y.V.; van Santvoort, H.C.; van Tienhoven, G.; de Wilde, R.F.; Wilmink, J.W.; van Eijck, C.H.J.; Groot Koerkamp, B. Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: A meta-analysis of randomised controlled trials. Eur. J. Cancer 2022, 160, 140–149. [Google Scholar] [CrossRef]
  50. Ferrari, C.; Maggialetti, N.; Masi, T.; Nappi, A.G.; Santo, G.; Niccoli Asabella, A.; Rubini, G. Early Evaluation of Immunotherapy Response in Lymphoma Patients by 18F-FDG PET/CT: A Literature Overview. J. Pers. Med. 2021, 11, 217. [Google Scholar] [CrossRef]
  51. Danti, G.; Addeo, G.; Cozzi, D.; Maggialetti, N.; Lanzetta, M.M.; Frezzetti, G.; Masserelli, A.; Pradella, S.; Giovagnoni, A.; Miele, V. Relationship between diagnostic imaging features and prognostic outcomes in gastrointestinal stromal tumors (GIST). Acta Biomed. 2019, 90, 9–19. [Google Scholar] [CrossRef] [PubMed]
  52. Napoli, N.; Kauffmann, E.; Cacace, C.; Menonna, F.; Caramella, D.; Cappelli, C.; Campani, D.; Cacciato Insilla, A.; Vasile, E.; Vivaldi, C.; et al. Factors predicting survival in patients with locally advanced pancreatic cancer undergoing pancreatectomy with arterial resection. Updates Surg. 2021, 73, 233–249. [Google Scholar] [CrossRef] [PubMed]
  53. Mungroop, T.H.; van Rijssen, L.B.; van Klaveren, D.; Smits, F.J.; van Woerden, V.; Linnemann, R.J.; de Pastena, M.; Klompmaker, S.; Marchegiani, G.; Ecker, B.L.; et al. Alternative Fistula Risk Score for Pancreatoduodenectomy (a-FRS): Design and International External Validation. Ann. Surg. 2019, 269, 937–943. [Google Scholar] [CrossRef] [PubMed]
  54. Schlanger, D.; Graur, F.; Popa, C.; Moiș, E.; Al Hajjar, N. The role of artificial intelligence in pancreatic surgery: A systematic review. Updates Surg. 2022, 74, 417–429. [Google Scholar] [CrossRef] [PubMed]
  55. Wu, C.; Yu, S.; Zhang, Y.; Zhu, L.; Chen, S.; Liu, Y. CT-Based Radiomics Nomogram Improves Risk Stratification and Prediction of Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. Front. Oncol. 2022, 12, 896002. [Google Scholar] [CrossRef] [PubMed]
  56. Zhang, X.; Zhang, Y.; Zhang, G.; Qiu, X.; Tan, W.; Yin, X.; Liao, L. Deep Learning with Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front. Oncol. 2022, 12, 773840. [Google Scholar] [CrossRef]
  57. Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
  58. Cardenas, C.E.; Yang, J.; Anderson, B.M.; Court, L.E.; Brock, K.B. Advances in Auto-Segmentation. Semin. Radiat. Oncol. 2019, 29, 185–197. [Google Scholar] [CrossRef]
  59. Lin, Y.C.; Lin, G.; Pandey, S.; Yeh, C.H.; Wang, J.J.; Lin, C.Y.; Ho, T.Y.; Ko, S.F.; Ng, S.H. Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning. Eur. Radiol. 2023, 33, 6548–6556. [Google Scholar] [CrossRef]
  60. Ma, M.; Gan, L.; Liu, Y.; Jiang, Y.; Xin, L.; Qin, N.; Cheng, Y.; Liu, Q.; Xu, L.; Zhang, Y.; et al. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy. Eur. J. Radiol. 2022, 146, 110095. [Google Scholar] [CrossRef]
  61. Yao, J.; Shi, Y.; Cao, K.; Lu, L.; Lu, J.; Song, Q.; Jin, G.; Xiao, J.; Hou, Y.; Zhang, L. DeepPrognosis: Preoperative prediction of pancreatic cancer survival and surgical margin via comprehensive understanding of dynamic contrast-enhanced CT imaging and tumor-vascular contact parsing. Med. Image Anal. 2021, 73, 102150. [Google Scholar] [CrossRef] [PubMed]
  62. Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning methods for radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef] [PubMed]
  63. Stanzione, A.; Verde, F.; Romeo, V.; Boccadifuoco, F.; Mainenti, P.P.; Maurea, S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J. Gastroenterol. 2021, 27, 5306–5321. [Google Scholar] [CrossRef] [PubMed]
  64. Peng, Z.; Wang, Y.; Jiang, S.; Fan, R.; Zhang, H.; Jiang, W. Application of radiomics and machine learning in head and neck cancers. Int. J. Biol. Sci. 2021, 17, 475–486. [Google Scholar] [CrossRef] [PubMed]
  65. Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med. Imaging Radiat. Sci. 2019, 50, 477–487. [Google Scholar] [CrossRef] [PubMed]
  66. Lou, B.; Doken, S.; Zhuang, T.; Wingerter, D.; Gidwani, M.; Mistry, N.; Ladic, L.; Kamen, A.; Abazeed, M.E. An image-based deep learning framework for individualizing radiotherapy dose. Lancet Digit. Health 2019, 1, e136–e147. [Google Scholar] [CrossRef] [PubMed]
  67. Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.; Wang, Q.; Wu, J.; Shen, D. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef]
  68. Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. Med. Image Comput. Comput. Assist. Interv. 2016, 9901, 212–220. [Google Scholar] [CrossRef]
  69. Manimegalai, P.; Suresh Kumar, R.; Valsalan, P.; Dhanagopal, R.; Vasanth Raj, P.T.; Christhudass, J. 3D Convolutional Neural Network Framework with Deep Learning for Nuclear Medicine. Scanning 2022, 2022, 9640177. [Google Scholar] [CrossRef]
  70. Yee, E.; Ma, D.; Popuri, K.; Chen, S.; Lee, H.; Chow, V.; Ma, C.; Wang, L.; Beg, M.F. 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation. Comput. Med. Imaging Graph. 2022, 95, 102000. [Google Scholar] [CrossRef]
  71. Yuan, H.; Fan, Z.; Wu, Y.; Cheng, J. An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
  72. Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef] [PubMed]
  73. Bockhorn, M.; Uzunoglu, F.G.; Adham, M.; Imrie, C.; Milicevic, M.; Sandberg, A.A.; Asbun, H.J.; Bassi, C.; Büchler, M.; Charnley, R.M.; et al. Borderline resectable pancreatic cancer: A consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2014, 155, 977–988. [Google Scholar] [CrossRef] [PubMed]
  74. Falconi, M. Total pancreatectomy: How, when and why? Updates Surg. 2021, 73, 1203–1204. [Google Scholar] [CrossRef] [PubMed]
  75. Zhou, Y.; Liao, S.; You, J.; Wu, H. Conversion surgery for initially unresectable pancreatic ductal adenocarcinoma following induction therapy: A systematic review of the published literature. Updates Surg. 2022, 74, 43–53. [Google Scholar] [CrossRef] [PubMed]
  76. Karunakaran, M.; Barreto, S.G. Surgery for pancreatic cancer: Current controversies and challenges. Future Oncol. 2021, 17, 5135–5162. [Google Scholar] [CrossRef] [PubMed]
  77. Colucci, G.F.D.C.; Falconi, M.; Giuliani, F.; Parisi, S.; Reni, M. Linee Guida del Carcinoma del Pancreas; AIOM: Milan, Italy, 2009; Volume 1. [Google Scholar]
  78. Joo, I.; Lee, J.M.; Lee, E.S.; Son, J.Y.; Lee, D.H.; Ahn, S.J.; Chang, W.; Lee, S.M.; Kang, H.J.; Yang, H.K. Preoperative CT Classification of the Resectability of Pancreatic Cancer: Interobserver Agreement. Radiology 2019, 293, 343–349. [Google Scholar] [CrossRef]
  79. Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
  80. Versteijne, E.; Vogel, J.A.; Besselink, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.G.; van Eijck, C.H.J.; Groot Koerkamp, B.; Rasch, C.R.N.; van Tienhoven, G. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 2018, 105, 946–958. [Google Scholar] [CrossRef]
  81. Seufferlein, T.; Uhl, W.; Kornmann, M.; Algül, H.; Friess, H.; König, A.; Ghadimi, M.; Gallmeier, E.; Bartsch, D.K.; Lutz, M.P.; et al. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX)-a randomized phase II trial of the AIO pancreatic cancer group. Ann. Oncol. 2023, 34, 91–100. [Google Scholar] [CrossRef]
  82. Lee, E.S.; Lee, J.M. Imaging diagnosis of pancreatic cancer: A state-of-the-art review. World J. Gastroenterol. 2014, 20, 7864–7877. [Google Scholar] [CrossRef] [PubMed]
  83. Hong, S.B.; Lee, S.S.; Kim, J.H.; Kim, H.J.; Byun, J.H.; Hong, S.M.; Song, K.B.; Kim, S.C. Pancreatic Cancer CT: Prediction of Resectability according to NCCN Criteria. Radiology 2018, 289, 710–718. [Google Scholar] [CrossRef] [PubMed]
  84. Kelly, K.J.; Winslow, E.; Kooby, D.; Lad, N.L.; Parikh, A.A.; Scoggins, C.R.; Ahmad, S.; Martin, R.C.; Maithel, S.K.; Kim, H.J.; et al. Vein involvement during pancreaticoduodenectomy: Is there a need for redefinition of “borderline resectable disease”? J. Gastrointest. Surg. 2013, 17, 1209–1217, discussion 1217. [Google Scholar] [CrossRef] [PubMed]
  85. Van Veldhuisen, E.; van den Oord, C.; Brada, L.J.; Walma, M.S.; Vogel, J.A.; Wilmink, J.W.; Del Chiaro, M.; van Lienden, K.P.; Meijerink, M.R.; van Tienhoven, G.; et al. Locally Advanced Pancreatic Cancer: Work-Up, Staging, and Local Intervention Strategies. Cancers 2019, 11, 976. [Google Scholar] [CrossRef] [PubMed]
  86. Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
  87. Giani, A.; Mazzola, M.; Morini, L.; Zironda, A.; Bertoglio, C.L.; De Martini, P.; Magistro, C.; Ferrari, G. Hepatic vascular anomalies during totally laparoscopic pancreaticoduodenectomy: Challenging the challenge. Updates Surg. 2022, 74, 583–590. [Google Scholar] [CrossRef] [PubMed]
  88. Noda, Y.; Kawai, N.; Kaga, T.; Ishihara, T.; Hyodo, F.; Kato, H.; Kambadakone, A.R.; Matsuo, M. Vascular involvement and resectability of pancreatic ductal adenocarcinoma on contrast-enhanced MRI: Comparison with pancreatic protocol CT. Abdom. Radiol. 2022, 47, 2835–2844. [Google Scholar] [CrossRef]
  89. GM, O.K.; Knox, J.J. Locally advanced pancreatic cancer: An emerging entity. Curr. Probl. Cancer 2018, 42, 12–25. [Google Scholar] [CrossRef]
  90. Huguet, F.; Mukherjee, S.; Javle, M. Locally advanced pancreatic cancer: The role of definitive chemoradiotherapy. Clin. Oncol. 2014, 26, 560–568. [Google Scholar] [CrossRef]
  91. Maggino, L.; Malleo, G.; Marchegiani, G.; Viviani, E.; Nessi, C.; Ciprani, D.; Esposito, A.; Landoni, L.; Casetti, L.; Tuveri, M.; et al. Outcomes of Primary Chemotherapy for Borderline Resectable and Locally Advanced Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2019, 154, 932–942. [Google Scholar] [CrossRef]
  92. Reni, M.; Zanon, S.; Balzano, G.; Nobile, S.; Pircher, C.C.; Chiaravalli, M.; Passoni, P.; Arcidiacono, P.G.; Nicoletti, R.; Crippa, S.; et al. Selecting patients for resection after primary chemotherapy for non-metastatic pancreatic adenocarcinoma. Ann. Oncol. 2017, 28, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
  93. Ding, W.; Wu, W.; Tan, Y.; Chen, X.; Duan, Y.; Sun, D.; Lu, Y.; Xu, X. The comparation of short-term outcome between laparoscopic and open pancreaticoduodenectomy: A propensity score matching analysis. Updates Surg. 2021, 73, 419–427. [Google Scholar] [CrossRef] [PubMed]
  94. Delpero, J.R.; Sauvanet, A. Vascular Resection for Pancreatic Cancer: 2019 French Recommendations Based on a Literature Review From 2008 to 6-2019. Front. Oncol. 2020, 10, 40. [Google Scholar] [CrossRef] [PubMed]
  95. Quero, G.; Pecorelli, N.; Paiella, S.; Fiorillo, C.; Petrone, M.C.; Rosa, F.; Capretti, G.; Laterza, V.; Kauffmann, E.; Nobile, S.; et al. Quantitative assessment of the impact of COVID-19 pandemic on pancreatic surgery: An Italian multicenter analysis of 1423 cases from 10 tertiary referral centers. Updates Surg. 2022, 74, 255–266. [Google Scholar] [CrossRef] [PubMed]
  96. Shaib, W.L.; Ip, A.; Cardona, K.; Alese, O.B.; Maithel, S.K.; Kooby, D.; Landry, J.; El-Rayes, B.F. Contemporary Management of Borderline Resectable and Locally Advanced Unresectable Pancreatic Cancer. Oncologist 2016, 21, 178–187. [Google Scholar] [CrossRef] [PubMed]
  97. Krishnan, S.; Chadha, A.S.; Suh, Y.; Chen, H.C.; Rao, A.; Das, P.; Minsky, B.D.; Mahmood, U.; Delclos, M.E.; Sawakuchi, G.O.; et al. Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 755–765. [Google Scholar] [CrossRef] [PubMed]
  98. De Geus, S.W.L.; Eskander, M.F.; Kasumova, G.G.; Ng, S.C.; Kent, T.S.; Mancias, J.D.; Callery, M.P.; Mahadevan, A.; Tseng, J.F. Stereotactic body radiotherapy for unresected pancreatic cancer: A nationwide review. Cancer 2017, 123, 4158–4167. [Google Scholar] [CrossRef] [PubMed]
  99. Ermongkonchai, T.; Khor, R.; Muralidharan, V.; Tebbutt, N.; Lim, K.; Kutaiba, N.; Ng, S.P. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer. World J. Gastroenterol. 2022, 28, 745–754. [Google Scholar] [CrossRef]
  100. Reyngold, M.; Parikh, P.; Crane, C.H. Ablative radiation therapy for locally advanced pancreatic cancer: Techniques and results. Radiat. Oncol. 2019, 14, 95. [Google Scholar] [CrossRef]
  101. Neoptolemos, J.P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 333–348. [Google Scholar] [CrossRef]
  102. Gemenetzis, G.; Groot, V.P.; Blair, A.B.; Laheru, D.A.; Zheng, L.; Narang, A.K.; Fishman, E.K.; Hruban, R.H.; Yu, J.; Burkhart, R.A.; et al. Survival in Locally Advanced Pancreatic Cancer After Neoadjuvant Therapy and Surgical Resection. Ann. Surg. 2019, 270, 340–347. [Google Scholar] [CrossRef]
  103. Marchegiani, G.; Perri, G.; Bianchi, B.; Esposito, A.; Landoni, L.; Casetti, L.; Tuveri, M.; Malleo, G.; Paiella, S.; Fontana, M.; et al. Pancreatic surgery during COVID-19 pandemic: Major activity disruption of a third-level referral center during 2020. Updates Surg. 2022, 74, 953–961. [Google Scholar] [CrossRef] [PubMed]
  104. Guilbaud, T.; Girard, E.; Lemoine, C.; Schlienger, G.; Alao, O.; Risse, O.; Berdah, S.; Chirica, M.; Moutardier, V.; Birnbaum, D.J. Intra-pancreatic distal cholangiocarcinoma and pancreatic ductal adenocarcinoma: A common short and long-term prognosis? Updates Surg. 2021, 73, 439–450. [Google Scholar] [CrossRef] [PubMed]
  105. Abi Jaoude, J.; Kouzy, R.; Nguyen, N.D.; Lin, D.; Noticewala, S.S.; Ludmir, E.B.; Taniguchi, C.M. Radiation therapy for patients with locally advanced pancreatic cancer: Evolving techniques and treatment strategies. Curr. Probl. Cancer 2020, 44, 100607. [Google Scholar] [CrossRef]
  106. Crippa, S.; Belfiori, G.; Tamburrino, D.; Partelli, S.; Falconi, M. Indications to total pancreatectomy for positive neck margin after partial pancreatectomy: A review of a slippery ground. Updates Surg. 2021, 73, 1219–1229. [Google Scholar] [CrossRef]
  107. Cassinotto, C.; Sa-Cunha, A.; Trillaud, H. Radiological evaluation of response to neoadjuvant treatment in pancreatic cancer. Diagn. Interv. Imaging 2016, 97, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
  108. Jeon, S.K.; Lee, J.M.; Lee, E.S.; Yu, M.H.; Joo, I.; Yoon, J.H.; Jang, J.Y.; Lee, K.B.; Lee, S.H. How to approach pancreatic cancer after neoadjuvant treatment: Assessment of resectability using multidetector CT and tumor markers. Eur. Radiol. 2022, 32, 56–66. [Google Scholar] [CrossRef]
  109. Wagner, M.; Antunes, C.; Pietrasz, D.; Cassinotto, C.; Zappa, M.; Sa Cunha, A.; Lucidarme, O.; Bachet, J.B. CT evaluation after neoadjuvant FOLFIRINOX chemotherapy for borderline and locally advanced pancreatic adenocarcinoma. Eur. Radiol. 2017, 27, 3104–3116. [Google Scholar] [CrossRef]
  110. Strobel, O.; Neoptolemos, J.; Jäger, D.; Büchler, M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2019, 16, 11–26. [Google Scholar] [CrossRef]
  111. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
  112. Van der Heijde, N.; Lof, S.; Busch, O.R.; de Hingh, I.; de Kleine, R.H.; Molenaar, I.Q.; Mungroop, T.H.; Stommel, M.W.; Besselink, M.G.; van Eijck, C. Incidence and impact of postoperative pancreatic fistula after minimally invasive and open distal pancreatectomy. Surgery 2022, 171, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
  113. Nahm, C.B.; Connor, S.J.; Samra, J.S.; Mittal, A. Postoperative pancreatic fistula: A review of traditional and emerging concepts. Clin. Exp. Gastroenterol. 2018, 11, 105–118. [Google Scholar] [CrossRef] [PubMed]
  114. Marchegiani, G.; Bassi, C. Prevention, prediction, and mitigation of postoperative pancreatic fistula. Br. J. Surg. 2021, 108, 602–604. [Google Scholar] [CrossRef] [PubMed]
  115. Kauffmann, E.F.; Napoli, N.; Genovese, V.; Ginesini, M.; Gianfaldoni, C.; Vistoli, F.; Amorese, G.; Boggi, U. Feasibility and safety of robotic-assisted total pancreatectomy: A pilot western series. Updates Surg. 2021, 73, 955–966. [Google Scholar] [CrossRef]
  116. Giovinazzo, F.; Linneman, R.; Riva, G.V.D.; Greener, D.; Morano, C.; Patijn, G.A.; Besselink, M.G.H.; Nieuwenhuijs, V.B.; Abu Hilal, M.; de Hingh, I.H.; et al. Clinical relevant pancreatic fistula after pancreatoduodenectomy: When negative amylase levels tell the truth. Updates Surg. 2021, 73, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
  117. Hackert, T.; Werner, J.; Büchler, M.W. Postoperative pancreatic fistula. Surgeon 2011, 9, 211–217. [Google Scholar] [CrossRef] [PubMed]
  118. Simon, R. Complications After Pancreaticoduodenectomy. Surg. Clin. N. Am. 2021, 101, 865–874. [Google Scholar] [CrossRef]
  119. Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years after. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef]
  120. Wang, Z.Z.; Zhao, G.D.; Zhao, Z.M.; Hu, M.G.; Tan, X.L.; Zhang, X.; Gao, Y.X.; Liu, R. A comparative study of end-to-end pancreatic anastomosis versus pancreaticojejunostomy after robotic central pancreatectomy. Updates Surg. 2021, 73, 967–975. [Google Scholar] [CrossRef]
  121. Zhang, W.; Huang, Z.; Zhang, J.; Che, X. Safety and efficacy of robot-assisted versus open pancreaticoduodenectomy: A meta-analysis of multiple worldwide centers. Updates Surg. 2021, 73, 893–907. [Google Scholar] [CrossRef]
  122. Lee, J.M.; Yoon, J.H. Dual-Energy CT for Risk of Postoperative Pancreatic Fistula. Radiology 2022, 304, 73–74. [Google Scholar] [CrossRef] [PubMed]
  123. Andreasi, V.; Partelli, S.; Rancoita, P.M.V.; Mele, S.; Mazza, M.; La Fauci, D.; Pecorelli, N.; Guarneri, G.; Tamburrino, D.; Crippa, S.; et al. Clinical and economic validation of grade B postoperative pancreatic fistula subclassification. Surgery 2022, 171, 846–853. [Google Scholar] [CrossRef] [PubMed]
  124. Kamarajah, S.K.; Bundred, J.R.; Lin, A.; Halle-Smith, J.; Pande, R.; Sutcliffe, R.; Harrison, E.M.; Roberts, K.J. Systematic review and meta-analysis of factors associated with post-operative pancreatic fistula following pancreatoduodenectomy. ANZ J. Surg. 2021, 91, 810–821. [Google Scholar] [CrossRef] [PubMed]
  125. Salvia, R.; Lionetto, G.; Perri, G.; Malleo, G.; Marchegiani, G. Total pancreatectomy and pancreatic fistula: Friend or foe? Updates Surg. 2021, 73, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
  126. Pande, R.; Halle-Smith, J.M.; Phelan, L.; Thorne, T.; Panikkar, M.; Hodson, J.; Roberts, K.J.; Arshad, A.; Connor, S.; Conlon, K.C.; et al. External validation of postoperative pancreatic fistula prediction scores in pancreatoduodenectomy: A systematic review and meta-analysis. HPB 2022, 24, 287–298. [Google Scholar] [CrossRef] [PubMed]
  127. Yang, J.; Huang, Q.; Wang, C. Postoperative drain amylase predicts pancreatic fistula in pancreatic surgery: A systematic review and meta-analysis. Int. J. Surg. 2015, 22, 38–45. [Google Scholar] [CrossRef] [PubMed]
  128. Zhang, Y.X.; Yang, Y.F.; Han, P.; Ye, P.C.; Kong, H. Protein-energy malnutrition worsens hospitalization outcomes of patients with pancreatic cancer undergoing open pancreaticoduodenectomy. Updates Surg. 2022, 74, 1627–1636. [Google Scholar] [CrossRef]
  129. Callery, M.P.; Pratt, W.B.; Kent, T.S.; Chaikof, E.L.; Vollmer, C.M., Jr. A prospectively validated clinical risk score accurately predicts pancreatic fistula after pancreatoduodenectomy. J. Am. Coll. Surg. 2013, 216, 1–14. [Google Scholar] [CrossRef]
  130. Chao, Y.J.; Liao, T.K.; Su, P.J.; Wang, C.J.; Shan, Y.S. Impact of body mass index on the early experience of robotic pancreaticoduodenectomy. Updates Surg. 2021, 73, 929–937. [Google Scholar] [CrossRef]
  131. McMillan, M.T.; Soi, S.; Asbun, H.J.; Ball, C.G.; Bassi, C.; Beane, J.D.; Behrman, S.W.; Berger, A.C.; Bloomston, M.; Callery, M.P.; et al. Risk-adjusted Outcomes of Clinically Relevant Pancreatic Fistula Following Pancreatoduodenectomy: A Model for Performance Evaluation. Ann. Surg. 2016, 264, 344–352. [Google Scholar] [CrossRef]
  132. Chopra, A.; Nassour, I.; Zureikat, A.; Paniccia, A. Perioperative and oncologic outcomes of open, laparoscopic, and robotic distal pancreatectomy for pancreatic adenocarcinoma. Updates Surg. 2021, 73, 947–953. [Google Scholar] [CrossRef] [PubMed]
  133. Kolbinger, F.R.; Lambrecht, J.; Leger, S.; Ittermann, T.; Speidel, S.; Weitz, J.; Hoffmann, R.T.; Distler, M.; Kühn, J.P. The image-based preoperative fistula risk score (preFRS) predicts postoperative pancreatic fistula in patients undergoing pancreatic head resection. Sci. Rep. 2022, 12, 4064. [Google Scholar] [CrossRef] [PubMed]
  134. Zimmitti, G.; Coppola, A.; Ardito, F.; Meniconi, R.; Ettorre, G.M.; Rosso, E.; Manzoni, A.; Colasanti, M.; Clemente, G.; Murazio, M.; et al. Outcomes comparison of Pancreato-Gastrostomy and Isolated Jejunal Loop Pancreato-Jejunostomy following Pancreato-Duodenectomy in patients with soft pancreas and at moderate-high risk for POPF: A retrospective multicenter experience-based analysis. Updates Surg. 2022, 74, 223–234. [Google Scholar] [CrossRef] [PubMed]
  135. Bonsdorff, A.; Sallinen, V. Prediction of postoperative pancreatic fistula and pancreatitis after pancreatoduodenectomy or distal pancreatectomy: A review. Scand. J. Surg. 2023, 112, 126–134. [Google Scholar] [CrossRef] [PubMed]
  136. Tian, X.F.; Kuang, T.T.; Dong, Y.; Zuo, D.; Qiu, Y.J.; Lou, W.H.; Wang, W.P. Prediction of pancreatic fistula after pancreatectomy by virtual touch tissue imaging and quantification (VTIQ) technology. Pancreatology 2021, 21, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
  137. Bhasker, N.; Kolbinger, F.R.; Skorobohach, N.; Zwanenburg, A.; Löck, S.; Weitz, J.; Hoffmann, R.T.; Distler, M.; Speidel, S.; Leger, S.; et al. Prediction of clinically relevant postoperative pancreatic fistula using radiomic features and preoperative data. Sci. Rep. 2023, 13, 7506. [Google Scholar] [CrossRef] [PubMed]
  138. Tajima, Y.; Kawabata, Y.; Hirahara, N. Preoperative imaging evaluation of pancreatic pathologies for the objective prediction of pancreatic fistula after pancreaticoduodenectomy. Surg. Today 2018, 48, 140–150. [Google Scholar] [CrossRef] [PubMed]
  139. Cleary, S.P.; Gryfe, R.; Guindi, M.; Greig, P.; Smith, L.; Mackenzie, R.; Strasberg, S.; Hanna, S.; Taylor, B.; Langer, B.; et al. Prognostic factors in resected pancreatic adenocarcinoma: Analysis of actual 5-year survivors. J. Am. Coll. Surg. 2004, 198, 722–731. [Google Scholar] [CrossRef]
  140. Cai, J.; Chen, H.; Lu, M.; Zhang, Y.; Lu, B.; You, L.; Zhang, T.; Dai, M.; Zhao, Y. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 2021, 520, 1–11. [Google Scholar] [CrossRef]
  141. Zhang, W.; Ji, L.; Wang, X.; Zhu, S.; Luo, J.; Zhang, Y.; Tong, Y.; Feng, F.; Kang, Y.; Bi, Q. Nomogram Predicts Risk and Prognostic Factors for Bone Metastasis of Pancreatic Cancer: A Population-Based Analysis. Front. Endocrinol. 2021, 12, 752176. [Google Scholar] [CrossRef]
  142. Distler, M.; Pilarsky, E.; Kersting, S.; Grützmann, R. Preoperative CEA and CA 19-9 are prognostic markers for survival after curative resection for ductal adenocarcinoma of the pancreas—A retrospective tumor marker prognostic study. Int. J. Surg. 2013, 11, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
  143. Shyr, B.U.; Shyr, B.S.; Chen, S.C.; Shyr, Y.M.; Wang, S.E. Robotic and open pancreaticoduodenectomy: Results from Taipei Veterans General Hospital in Taiwan. Updates Surg. 2021, 73, 939–946. [Google Scholar] [CrossRef] [PubMed]
  144. Attiyeh, M.A.; Chakraborty, J.; Doussot, A.; Langdon-Embry, L.; Mainarich, S.; Gönen, M.; Balachandran, V.P.; D’Angelica, M.I.; DeMatteo, R.P.; Jarnagin, W.R.; et al. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. Ann. Surg. Oncol. 2018, 25, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
  145. Bakasa, W.; Viriri, S. Pancreatic Cancer Survival Prediction: A Survey of the State-of-the-Art. Comput. Math. Methods Med. 2021, 2021, 1188414. [Google Scholar] [CrossRef] [PubMed]
  146. Yokoyama, S.; Hamada, T.; Higashi, M.; Matsuo, K.; Maemura, K.; Kurahara, H.; Horinouchi, M.; Hiraki, T.; Sugimoto, T.; Akahane, T.; et al. Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning. Clin. Cancer Res. 2020, 26, 2411–2421. [Google Scholar] [CrossRef] [PubMed]
  147. Terasaki, F.; Sugiura, T.; Okamura, Y.; Ito, T.; Yamamoto, Y.; Ashida, R.; Ohgi, K.; Uesaka, K. The preoperative controlling nutritional status (CONUT) score is an independent prognostic marker for pancreatic ductal adenocarcinoma. Updates Surg. 2021, 73, 251–259. [Google Scholar] [CrossRef] [PubMed]
  148. Kim, H.S.; Kim, Y.J.; Kim, K.G.; Park, J.S. Preoperative CT texture features predict prognosis after curative resection in pancreatic cancer. Sci. Rep. 2019, 9, 17389. [Google Scholar] [CrossRef]
  149. Cassinotto, C.; Chong, J.; Zogopoulos, G.; Reinhold, C.; Chiche, L.; Lafourcade, J.P.; Cuggia, A.; Terrebonne, E.; Dohan, A.; Gallix, B. Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur. J. Radiol. 2017, 90, 152–158. [Google Scholar] [CrossRef]
  150. Zhang, W.; Ji, L.; Zhong, X.; Zhu, S.; Zhang, Y.; Ge, M.; Kang, Y.; Bi, Q. Two Novel Nomograms Predicting the Risk and Prognosis of Pancreatic Cancer Patients with Lung Metastases: A Population-Based Study. Front. Public Health 2022, 10, 884349. [Google Scholar] [CrossRef]
  151. Rigiroli, F.; Hoye, J.; Lerebours, R.; Lyu, P.; Lafata, K.J.; Zhang, A.R.; Erkanli, A.; Mettu, N.B.; Morgan, D.E.; Samei, E.; et al. Exploratory analysis of mesenteric-portal axis CT radiomic features for survival prediction of patients with pancreatic ductal adenocarcinoma. Eur. Radiol. 2023, 33, 5779–5791. [Google Scholar] [CrossRef]
  152. Rossi, G.; Altabella, L.; Simoni, N.; Benetti, G.; Rossi, R.; Venezia, M.; Paiella, S.; Malleo, G.; Salvia, R.; Guariglia, S.; et al. Computed tomography-based radiomic to predict resectability in locally advanced pancreatic cancer treated with chemotherapy and radiotherapy. World J. Gastrointest. Oncol. 2022, 14, 703–715. [Google Scholar] [CrossRef] [PubMed]
  153. Palumbo, D.; Mori, M.; Prato, F.; Crippa, S.; Belfiori, G.; Reni, M.; Mushtaq, J.; Aleotti, F.; Guazzarotti, G.; Cao, R.; et al. Prediction of Early Distant Recurrence in Upfront Resectable Pancreatic Adenocarcinoma: A Multidisciplinary, Machine Learning-Based Approach. Cancers 2021, 13, 4938. [Google Scholar] [CrossRef] [PubMed]
  154. Park, S.; Sham, J.G.; Kawamoto, S.; Blair, A.B.; Rozich, N.; Fouladi, D.F.; Shayesteh, S.; Hruban, R.H.; He, J.; Wolfgang, C.L.; et al. CT Radiomics-Based Preoperative Survival Prediction in Patients with Pancreatic Ductal Adenocarcinoma. Am. J. Roentgenol. 2021, 217, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
  155. Shi, H.; Wei, Y.; Cheng, S.; Lu, Z.; Zhang, K.; Jiang, K.; Xu, Q. Survival prediction after upfront surgery in patients with pancreatic ductal adenocarcinoma: Radiomic, clinic-pathologic and body composition analysis. Pancreatology 2021, 21, 731–737. [Google Scholar] [CrossRef] [PubMed]
  156. Salinas-Miranda, E.; Khalvati, F.; Namdar, K.; Deniffel, D.; Dong, X.; Abbas, E.; Wilson, J.M.; O’Kane, G.M.; Knox, J.; Gallinger, S.; et al. Validation of Prognostic Radiomic Features from Resectable Pancreatic Ductal Adenocarcinoma in Patients with Advanced Disease Undergoing Chemotherapy. Can. Assoc. Radiol. J. 2021, 72, 605–613. [Google Scholar] [CrossRef] [PubMed]
  157. Mu, W.; Liu, C.; Gao, F.; Qi, Y.; Lu, H.; Liu, Z.; Zhang, X.; Cai, X.; Ji, R.Y.; Hou, Y.; et al. Prediction of Clinically Relevant Pancreatico-Enteric Anastomotic Fistulas after Pancreatoduodenectomy Using Deep Learning of Preoperative Computed Tomography. Theranostics 2020, 10, 9779–9788. [Google Scholar] [CrossRef] [PubMed]
  158. Capretti, G.; Bonifacio, C.; De Palma, C.; Nebbia, M.; Giannitto, C.; Cancian, P.; Laino, M.E.; Balzarini, L.; Papanikolaou, N.; Savevski, V.; et al. A machine learning risk model based on preoperative computed tomography scan to predict postoperative outcomes after pancreatoduodenectomy. Updates Surg. 2022, 74, 235–243. [Google Scholar] [CrossRef]
  159. Alves, N.; Schuurmans, M.; Litjens, G.; Bosma, J.S.; Hermans, J.; Huisman, H. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers 2022, 14, 376. [Google Scholar] [CrossRef]
  160. Petrelli, F.; Inno, A.; Barni, S.; Ghidini, A.; Labianca, R.; Falconi, M.; Reni, M.; Cascinu, S. Borderline resectable pancreatic cancer: More than an anatomical concept. Dig. Liver Dis. 2017, 49, 223–226. [Google Scholar] [CrossRef]
  161. Matsumoto, I.; Murakami, Y.; Shinzeki, M.; Asari, S.; Goto, T.; Tani, M.; Motoi, F.; Uemura, K.; Sho, M.; Satoi, S.; et al. Proposed preoperative risk factors for early recurrence in patients with resectable pancreatic ductal adenocarcinoma after surgical resection: A multi-center retrospective study. Pancreatology 2015, 15, 674–680. [Google Scholar] [CrossRef]
  162. Napoli, N.; Kauffmann, E.F.; Vistoli, F.; Amorese, G.; Boggi, U. State of the art of robotic pancreatoduodenectomy. Updates Surg. 2021, 73, 873–880. [Google Scholar] [CrossRef]
  163. Lee, Y.S.; Lee, J.C.; Yang, S.Y.; Kim, J.; Hwang, J.H. Neoadjuvant therapy versus upfront surgery in resectable pancreatic cancer according to intention-to-treat and per-protocol analysis: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 15662. [Google Scholar] [CrossRef] [PubMed]
  164. Al Abbas, A.I.; Zeh Iii, H.J.; Polanco, P.M. State of the art robotic distal pancreatectomy: A review of the literature. Updates Surg. 2021, 73, 881–891. [Google Scholar] [CrossRef] [PubMed]
  165. Kim, Y.E.; Park, M.S.; Hong, H.S.; Kang, C.M.; Choi, J.Y.; Lim, J.S.; Lee, W.J.; Kim, M.J.; Kim, K.W. Effects of neoadjuvant combined chemotherapy and radiation therapy on the CT evaluation of resectability and staging in patients with pancreatic head cancer. Radiology 2009, 250, 758–765. [Google Scholar] [CrossRef] [PubMed]
  166. Cassinotto, C.; Mouries, A.; Lafourcade, J.P.; Terrebonne, E.; Belleannée, G.; Blanc, J.F.; Lapuyade, B.; Vendrely, V.; Laurent, C.; Chiche, L.; et al. Locally advanced pancreatic adenocarcinoma: Reassessment of response with CT after neoadjuvant chemotherapy and radiation therapy. Radiology 2014, 273, 108–116. [Google Scholar] [CrossRef] [PubMed]
  167. Limkin, E.J.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef] [PubMed]
  168. Pagano, N.; Ricci, C.; Ingaldi, C.; Sadalla, S.; Fabbri, A.; Alberici, L.; Impellizeri, G.; Pallio, S.; Zagari, R.M.; De Leo, A.; et al. Performance of EUS-FNB in solid pancreatic masses: A lesson from 463 consecutive procedures and a practical nomogram. Updates Surg. 2022, 74, 945–952. [Google Scholar] [CrossRef]
  169. Das, R.; McGrath, K.; Seiser, N.; Smith, K.; Uttam, S.; Brand, R.E.; Fasanella, K.E.; Khalid, A.; Chennat, J.S.; Sarkaria, S.; et al. Tumor Size Differences Between Preoperative Endoscopic Ultrasound and Postoperative Pathology for Neoadjuvant-Treated Pancreatic Ductal Adenocarcinoma Predict Patient Outcome. Clin. Gastroenterol. Hepatol. 2022, 20, 886–897. [Google Scholar] [CrossRef]
  170. Kang, C.M.; Lee, S.H.; Hwang, H.K.; Yun, M.; Lee, W.J. Preoperative Volume-Based PET Parameter, MTV2.5, as a Potential Surrogate Marker for Tumor Biology and Recurrence in Resected Pancreatic Cancer. Medicine 2016, 95, e2595. [Google Scholar] [CrossRef]
  171. Abdalla, T.S.A.; Almanfalouti, V.; Effenberger, K.; Uzunoglu, F.G.; Ghadban, T.; Dupreé, A.; Izbicki, J.R.; Pantel, K.; Reeh, M. Evaluation of the Hamburg-Glasgow Classification in Pancreatic Cancer: Preoperative Staging by Combining Disseminated Tumor Load and Systemic Inflammation. Cancers 2021, 13, 5942. [Google Scholar] [CrossRef]
  172. Rho, S.Y.; Lee, S.G.; Park, M.; Lee, J.; Lee, S.H.; Hwang, H.K.; Lee, M.J.; Paik, Y.K.; Lee, W.J.; Kang, C.M. Developing a preoperative serum metabolome-based recurrence-predicting nomogram for patients with resected pancreatic ductal adenocarcinoma. Sci. Rep. 2019, 9, 18634. [Google Scholar] [CrossRef] [PubMed]
  173. Tummers, W.S.; Groen, J.V.; Sibinga Mulder, B.G.; Farina-Sarasqueta, A.; Morreau, J.; Putter, H.; van de Velde, C.J.; Vahrmeijer, A.L.; Bonsing, B.A.; Mieog, J.S.; et al. Impact of resection margin status on recurrence and survival in pancreatic cancer surgery. Br. J. Surg. 2019, 106, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
  174. He, S.; Feng, Y.; Grant, P.E.; Ou, Y. Segmentation ability map: Interpret deep features for medical image segmentation. Med Image Anal. 2023, 84, 102726. [Google Scholar] [CrossRef] [PubMed]
  175. Dickinson, S.M.; McIntyre, C.A.; Schilsky, J.B.; Harrington, K.A.; Gerst, S.R.; Flynn, J.R.; Gonen, M.; Capanu, M.; Wong, W.; Lawrence, S.; et al. Preoperative CT predictors of survival in patients with pancreatic ductal adenocarcinoma undergoing curative intent surgery. Abdom. Radiol. 2021, 46, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
  176. Barreto, S.G.; Pandanaboyana, S.; Ironside, N.; Windsor, J.A. Does revision of resection margins based on frozen section improve overall survival following pancreatoduodenectomy for pancreatic ductal adenocarcinoma? A meta-analysis. HPB 2017, 19, 573–579. [Google Scholar] [CrossRef] [PubMed]
  177. Kleive, D.; Labori, K.J.; Line, P.D.; Gladhaug, I.P.; Verbeke, C.S. Pancreatoduodenectomy with venous resection for ductal adenocarcinoma rarely achieves complete (R0) resection. HPB 2020, 22, 50–57. [Google Scholar] [CrossRef] [PubMed]
  178. Markov, P.; Satoi, S.; Kon, M. Redefining the R1 resection in patients with pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat. Sci. 2016, 23, 523–532. [Google Scholar] [CrossRef]
  179. Zhao, G.; Liu, Q.; Zhao, Z.; Zhang, X.; Gao, Y.; Tan, X.; Liu, R. The standardized technique and surgical video of robotic pancreaticoduodenectomy at the Chinese PLA General Hospital. Updates Surg. 2022, 74, 245–254. [Google Scholar] [CrossRef]
  180. Partelli, S.; Cinelli, L.; Andreasi, V.; Rancoita, P.M.V.; Pecorelli, N.; Tamburrino, D.; Crippa, S.; Falconi, M. Evaluation of factors predicting loss of benefit provided by laparoscopic distal pancreatectomy compared to open approach. Updates Surg. 2022, 74, 213–221. [Google Scholar] [CrossRef]
  181. Lindholm, E.; Bergmann, G.B.; Haugaa, H.; Labori, K.J.; Yaqub, S.; Bjørnbeth, B.A.; Line, P.D.; Grindheim, G.; Kjøsen, G.; Pischke, S.E.; et al. Early detection of anastomotic leakage after pancreatoduodenectomy with microdialysis catheters: An observational Study. HPB 2022, 24, 901–909. [Google Scholar] [CrossRef]
  182. Malgras, B.; Dokmak, S.; Aussilhou, B.; Pocard, M.; Sauvanet, A. Management of postoperative pancreatic fistula after pancreaticoduodenectomy. J. Visc. Surg. 2023, 160, 39–51. [Google Scholar] [CrossRef] [PubMed]
  183. Casadei, R.; Ricci, C.; D’Ambra, M.; Marrano, N.; Alagna, V.; Rega, D.; Monari, F.; Minni, F. Laparoscopic versus open distal pancreatectomy in pancreatic tumours: A case-control study. Updates Surg. 2010, 62, 171–174. [Google Scholar] [CrossRef] [PubMed]
  184. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
  185. Han, I.W.; Cho, K.; Ryu, Y.; Shin, S.H.; Heo, J.S.; Choi, D.W.; Chung, M.J.; Kwon, O.C.; Cho, B.H. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. World J. Gastroenterol. 2020, 26, 4453–4464. [Google Scholar] [CrossRef] [PubMed]
  186. Wang, G.Q.; Yadav, D.K.; Jiang, W.; Hua, Y.F.; Lu, C. Risk Factors for Clinically Relevant Postoperative Pancreatic Fistula (CR-POPF) after Distal Pancreatectomy: A Single Center Retrospective Study. Can. J. Gastroenterol. Hepatol. 2021, 2021, 8874504. [Google Scholar] [CrossRef] [PubMed]
  187. Chong, E.; Ratnayake, B.; Lee, S.; French, J.J.; Wilson, C.; Roberts, K.J.; Loveday, B.P.T.; Manas, D.; Windsor, J.; White, S.; et al. Systematic review and meta-analysis of risk factors of postoperative pancreatic fistula after distal pancreatectomy in the era of 2016 International Study Group pancreatic fistula definition. HPB 2021, 23, 1139–1151. [Google Scholar] [CrossRef]
  188. Kanda, M.; Fujii, T.; Suenaga, M.; Takami, H.; Hattori, M.; Inokawa, Y.; Yamada, S.; Nakayama, G.; Sugimoto, H.; Koike, M.; et al. Estimated pancreatic parenchymal remnant volume accurately predicts clinically relevant pancreatic fistula after pancreatoduodenectomy. Surgery 2014, 156, 601–610. [Google Scholar] [CrossRef] [PubMed]
  189. Okano, K.; Oshima, M.; Kakinoki, K.; Yamamoto, N.; Akamoto, S.; Yachida, S.; Hagiike, M.; Kamada, H.; Masaki, T.; Suzuki, Y. Pancreatic thickness as a predictive factor for postoperative pancreatic fistula after distal pancreatectomy using an endopath stapler. Surg. Today 2013, 43, 141–147. [Google Scholar] [CrossRef]
  190. Kirihara, Y.; Takahashi, N.; Hashimoto, Y.; Sclabas, G.M.; Khan, S.; Moriya, T.; Sakagami, J.; Huebner, M.; Sarr, M.G.; Farnell, M.B. Prediction of pancreatic anastomotic failure after pancreatoduodenectomy: The use of preoperative, quantitative computed tomography to measure remnant pancreatic volume and body composition. Ann. Surg. 2013, 257, 512–519. [Google Scholar] [CrossRef]
  191. Tranchart, H.; Gaujoux, S.; Rebours, V.; Vullierme, M.P.; Dokmak, S.; Levy, P.; Couvelard, A.; Belghiti, J.; Sauvanet, A. Preoperative CT scan helps to predict the occurrence of severe pancreatic fistula after pancreaticoduodenectomy. Ann. Surg. 2012, 256, 139–145. [Google Scholar] [CrossRef]
  192. Kakizawa, N.; Noda, H.; Watanabe, F.; Ichida, K.; Suzuki, K.; Rikiyama, T. A High Abdominal Aortic Calcification Score on CT is a Risk Factor for Postoperative Pancreatic Fistula in Elderly Patients Undergoing Pancreaticoduodenectomy. World J. Surg. 2018, 42, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
  193. Aiolfi, A.; Lombardo, F.; Bonitta, G.; Danelli, P.; Bona, D. Systematic review and updated network meta-analysis comparing open, laparoscopic, and robotic pancreaticoduodenectomy. Updates Surg. 2021, 73, 909–922. [Google Scholar] [CrossRef] [PubMed]
  194. Ceccarelli, G.; Pasculli, A.; Bugiantella, W.; De Rosa, M.; Catena, F.; Rondelli, F.; Costa, G.; Rocca, A.; Longaroni, M.; Testini, M. Minimally invasive laparoscopic and robot-assisted emergency treatment of strangulated giant hiatal hernias: Report of five cases and literature review. World J. Emerg. Surg. 2020, 15, 37. [Google Scholar] [CrossRef] [PubMed]
  195. Cianci, S.; Perrone, E.; Rossitto, C.; Fanfani, F.; Tropea, A.; Biondi, A.; Scambia, G.; Gueli Alletti, S. Percutaneous-assisted vs mini-laparoscopic hysterectomy: Comparison of ultra-minimally invasive approaches. Updates Surg. 2021, 73, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
  196. Fabbi, M.; De Pascale, S.; Ascari, F.; Petz, W.L.; Fumagalli Romario, U. Side-to-side esophagogastric anastomosis for minimally invasive Ivor-Lewis esophagectomy: Operative technique and short-term outcomes. Updates Surg. 2021, 73, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
  197. Rocca, A.; Cipriani, F.; Belli, G.; Berti, S.; Boggi, U.; Bottino, V.; Cillo, U.; Cescon, M.; Cimino, M.; Corcione, F.; et al. The Italian Consensus on minimally invasive simultaneous resections for synchronous liver metastasis and primary colorectal cancer: A Delphi methodology. Updates Surg. 2021, 73, 1247–1265. [Google Scholar] [CrossRef] [PubMed]
  198. Casas, M.A.; Laxague, F.; Schlottmann, F.; Sadava, E.E. Re-laparoscopy for the treatment of complications after laparoscopic appendectomy: Is it possible to maintain the minimally invasive approach? Updates Surg. 2021, 73, 2199–2204. [Google Scholar] [CrossRef]
  199. Chen, W.H.; Chen, C.Y. Postoperative quality of life and cosmetic outcome between minimally invasive video-assisted thyroidectomy and bilateral axillo-breast approach robotic thyroidectomy: A single center retrospective cohort study. Updates Surg. 2021, 73, 1459–1465. [Google Scholar] [CrossRef]
  200. Ceccarelli, G.; Valeri, M.; Amato, L.; De Rosa, M.; Rondelli, F.; Cappuccio, M.; Gambale, F.E.; Fantozzi, M.; Sciaudone, G.; Avella, P.; et al. Robotic revision surgery after failed Nissen anti-reflux surgery: A single center experience and a literature review. J. Robot. Surg. 2023, 17, 1517–1524. [Google Scholar] [CrossRef]
  201. Birindelli, A.; Martin, M.; Khan, M.; Gallo, G.; Segalini, E.; Gori, A.; Yetasook, A.; Podda, M.; Giuliani, A.; Tugnoli, G.; et al. Laparoscopic splenectomy as a definitive management option for high-grade traumatic splenic injury when non operative management is not feasible or failed: A 5-year experience from a level one trauma center with minimally invasive surgery expertise. Updates Surg. 2021, 73, 1515–1531. [Google Scholar] [CrossRef]
  202. Ceccarelli, G.; Rocca, A.; De Rosa, M.; Fontani, A.; Ermili, F.; Andolfi, E.; Bugiantella, W.; Levi Sandri, G.B. Minimally invasive robotic-assisted combined colorectal and liver excision surgery: Feasibility, safety and surgical technique in a pilot series. Updates Surg. 2021, 73, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
  203. Cipriani, F.; Ratti, F.; Fiorentini, G.; Reineke, R.; Aldrighetti, L. Systematic review of perioperative and oncologic outcomes of minimally-invasive surgery for hilar cholangiocarcinoma. Updates Surg. 2021, 73, 359–377. [Google Scholar] [CrossRef] [PubMed]
  204. Buondonno, A.; Avella, P.; Cappuccio, M.; Scacchi, A.; Vaschetti, R.; Di Marzo, G.; Maida, P.; Luciani, C.; Amato, B.; Brunese, M.C.; et al. A Hub and Spoke Learning Program in Bariatric Surgery in a Small Region of Italy. Front. Surg. 2022, 9, 855527. [Google Scholar] [CrossRef] [PubMed]
  205. Cavaliere, D.; Parini, D.; Marano, L.; Cipriani, F.; Di Marzo, F.; Macrì, A.; D’Ugo, D.; Roviello, F.; Gronchi, A. Surgical management of oncologic patient during and after the COVID-19 outbreak: Practical recommendations from the Italian society of Surgical Oncology. Updates Surg. 2021, 73, 321–329. [Google Scholar] [CrossRef] [PubMed]
  206. Ceccarelli, G.; Andolfi, E.; Fontani, A.; Calise, F.; Rocca, A.; Giuliani, A. Robot-assisted liver surgery in a general surgery unit with a “Referral Centre Hub&Spoke Learning Program”. Early outcomes after our first 70 consecutive patients. Minerva Chir. 2018, 73, 460–468. [Google Scholar] [CrossRef] [PubMed]
  207. Bracale, U.; Podda, M.; Castiglioni, S.; Peltrini, R.; Sartori, A.; Arezzo, A.; Corcione, F.; Agresta, F. Changes in surgical behaviors during the COVID-19 pandemic. The SICE CLOUD19 Study. Updates Surg. 2021, 73, 731–744. [Google Scholar] [CrossRef] [PubMed]
  208. Giuliani, A.; Avella, P.; Segreto, A.L.; Izzo, M.L.; Buondonno, A.; Coluzzi, M.; Cappuccio, M.; Brunese, M.C.; Vaschetti, R.; Scacchi, A.; et al. Postoperative Outcomes Analysis after Pancreatic Duct Occlusion: A Safe Option to Treat the Pancreatic Stump after Pancreaticoduodenectomy in Low-Volume Centers. Front. Surg. 2021, 8, 804675. [Google Scholar] [CrossRef] [PubMed]
  209. Brennan, M.F.; Kattan, M.W.; Klimstra, D.; Conlon, K. Prognostic nomogram for patients undergoing resection for adenocarcinoma of the pancreas. Ann. Surg. 2004, 240, 293–298. [Google Scholar] [CrossRef]
  210. Xu, J.; Shi, K.Q.; Chen, B.C.; Huang, Z.P.; Lu, F.Y.; Zhou, M.T. A nomogram based on preoperative inflammatory markers predicting the overall survival of pancreatic ductal adenocarcinoma. J. Gastroenterol. Hepatol. 2017, 32, 1394–1402. [Google Scholar] [CrossRef]
  211. Ielpo, B.; Sanchez, P.; Grande, L.; Burdio, F. Laparoscopic pancreatoduodenectomy: How we have standardized the technique (with video). Updates Surg. 2022, 74, 1479–1481. [Google Scholar] [CrossRef]
  212. Puleo, F.; Nicolle, R.; Blum, Y.; Cros, J.; Marisa, L.; Demetter, P.; Quertinmont, E.; Svrcek, M.; Elarouci, N.; Iovanna, J.; et al. Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and Microenvironment Features. Gastroenterology 2018, 155, 1999–2013.e1993. [Google Scholar] [CrossRef] [PubMed]
  213. Bowman, A.W.; Bolan, C.W. MRI evaluation of pancreatic ductal adenocarcinoma: Diagnosis, mimics, and staging. Abdom. Radiol. 2019, 44, 936–949. [Google Scholar] [CrossRef] [PubMed]
  214. Yun, G.; Kim, Y.H.; Lee, Y.J.; Kim, B.; Hwang, J.H.; Choi, D.J. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: Association with survival outcomes after curative resection. Sci. Rep. 2018, 8, 7226. [Google Scholar] [CrossRef] [PubMed]
  215. McQuerry, J.A.; Chang, J.T.; Bowtell, D.D.L.; Cohen, A.; Bild, A.H. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J. Mol. Med. 2017, 95, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
  216. Marusyk, A.; Janiszewska, M.; Polyak, K. Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance. Cancer Cell 2020, 37, 471–484. [Google Scholar] [CrossRef] [PubMed]
  217. Kröner, P.T.; Engels, M.M.; Glicksberg, B.S.; Johnson, K.W.; Mzaik, O.; van Hooft, J.E.; Wallace, M.B.; El-Serag, H.B.; Krittanawong, C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J. Gastroenterol. 2021, 27, 6794–6824. [Google Scholar] [CrossRef] [PubMed]
  218. Kenner, B.; Chari, S.T.; Kelsen, D.; Klimstra, D.S.; Pandol, S.J.; Rosenthal, M.; Rustgi, A.K.; Taylor, J.A.; Yala, A.; Abul-Husn, N.; et al. Artificial Intelligence and Early Detection of Pancreatic Cancer: 2020 Summative Review. Pancreas 2021, 50, 251–279. [Google Scholar] [CrossRef]
  219. Wang, H.; Chetty, R.; Hosseini, M.; Allende, D.S.; Esposito, I.; Matsuda, Y.; Deshpande, V.; Shi, J.; Dhall, D.; Jang, K.T.; et al. Pathologic Examination of Pancreatic Specimens Resected for Treated Pancreatic Ductal Adenocarcinoma: Recommendations from the Pancreatobiliary Pathology Society. Am. J. Surg. Pathol. 2022, 46, 754–764. [Google Scholar] [CrossRef]
  220. Faur, A.C.; Lazar, D.C.; Ghenciu, L.A. Artificial intelligence as a noninvasive tool for pancreatic cancer prediction and diagnosis. World J. Gastroenterol. 2023, 29, 1811–1823. [Google Scholar] [CrossRef]
  221. Xie, T.; Wang, X.; Li, M.; Tong, T.; Yu, X.; Zhou, Z. Pancreatic ductal adenocarcinoma: A radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection. Eur. Radiol. 2020, 30, 2513–2524. [Google Scholar] [CrossRef]
  222. Granata, V.; Grassi, R.; Fusco, R.; Galdiero, R.; Setola, S.V.; Palaia, R.; Belli, A.; Silvestro, L.; Cozzi, D.; Brunese, L.; et al. Pancreatic cancer detection and characterization: State of the art and radiomics. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3684–3699. [Google Scholar] [CrossRef] [PubMed]
  223. Bartoli, M.; Barat, M.; Dohan, A.; Gaujoux, S.; Coriat, R.; Hoeffel, C.; Cassinotto, C.; Chassagnon, G.; Soyer, P. CT and MRI of pancreatic tumors: An update in the era of radiomics. Jpn. J. Radiol. 2020, 38, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
  224. Tovar, D.R.; Rosenthal, M.H.; Maitra, A.; Koay, E.J. Potential of artificial intelligence in the risk stratification for and early detection of pancreatic cancer. Artif. Intell. Surg. 2023, 3, 14–26. [Google Scholar] [CrossRef] [PubMed]
  225. Mori, Y.; Yokota, H.; Hoshino, I.; Iwatate, Y.; Wakamatsu, K.; Uno, T.; Suyari, H. Deep learning-based gene selection in comprehensive gene analysis in pancreatic cancer. Sci. Rep. 2021, 11, 16521. [Google Scholar] [CrossRef] [PubMed]
  226. Bian, Y.; Guo, S.; Jiang, H.; Gao, S.; Shao, C.; Cao, K.; Fang, X.; Li, J.; Wang, L.; Hua, W.; et al. Relationship between Radiomics and Risk of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Pancreas 2019, 48, 1195–1203. [Google Scholar] [CrossRef]
  227. Popa, F.; Mihai, P. Geriatric surgery—Present and perspective. J. Med. Life 2008, 1, 239–246. [Google Scholar] [PubMed]
  228. Chia, C.L.; Tan, K.Y. The Era of Geriatric Surgery. Ann. Acad. Med. Singap. 2019, 48, 345–346. [Google Scholar] [CrossRef] [PubMed]
  229. Rocca, A.; Brunese, M.C.; Cappuccio, M.; Scacchi, A.; Martucci, G.; Buondonno, A.; Perrotta, F.M.; Quarto, G.; Avella, P.; Amato, B. Impact of Physical Activity on Disability Risk in Elderly Patients Hospitalized for Mild Acute Diverticulitis and Diverticular Bleeding Undergone Conservative Management. Medicina 2021, 57, 360. [Google Scholar] [CrossRef]
  230. Aldrighetti, L.; Boggi, U.; Falconi, M.; Giuliante, F.; Cipriani, F.; Ratti, F.; Torzilli, G. Perspectives from Italy during the COVID-19 pandemic: Nationwide survey-based focus on minimally invasive HPB surgery. Updates Surg. 2020, 72, 241–247. [Google Scholar] [CrossRef]
  231. Guerra, G.; Testa, D.; Montagnani, S.; Tafuri, D.; Salzano, F.A.; Rocca, A.; Amato, B.; Salzano, G.; Dell’Aversana Orabona, G.; Piombino, P.; et al. Surgical management of pleomorphic adenoma of parotid gland in elderly patients: Role of morphological features. Int. J. Surg. 2014, 12 (Suppl. S2), S12–S16. [Google Scholar] [CrossRef]
  232. Komici, K.; Dello Iacono, A.; De Luca, A.; Perrotta, F.; Bencivenga, L.; Rengo, G.; Rocca, A.; Guerra, G. Adiponectin and Sarcopenia: A Systematic Review With Meta-Analysis. Front. Endocrinol. 2021, 12, 576619. [Google Scholar] [CrossRef] [PubMed]
  233. Aprea, G.; De Rosa, D.; Milone, M.; Rocca, A.; Bianco, T.; Massa, G.; Compagna, R.; Johnson, L.B.; Sanguinetti, A.; Polistena, A.; et al. Laparoscopic distal pancreatectomy in elderly patients: Is it safe? Aging Clin. Exp. Res. 2017, 29 (Suppl. S1), 41–45. [Google Scholar] [CrossRef] [PubMed]
  234. Rocca, A.; Porfidia, C.; Russo, R.; Tamburrino, A.; Avella, P.; Vaschetti, R.; Bianco, P.; Calise, F. Neuraxial anesthesia in hepato-pancreatic-bilio surgery: A first western pilot study of 46 patients. Updates Surg. 2023, 75, 481–491. [Google Scholar] [CrossRef] [PubMed]
  235. Komici, K.; Cappuccio, M.; Scacchi, A.; Vaschetti, R.; Delli Carpini, G.; Picerno, V.; Avella, P.; Brunese, M.C.; Rengo, G.; Guerra, G.; et al. The Prevalence and the Impact of Frailty in Hepato-Biliary Pancreatic Cancers: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1116. [Google Scholar] [CrossRef]
  236. Luciani, C.; Scacchi, A.; Vaschetti, R.; Di Marzo, G.; Fatica, I.; Cappuccio, M.; Guerra, G.; Ceccarelli, G.; Avella, P.; Rocca, A. The uniportal VATS in the treatment of stage II pleural empyema: A safe and effective approach for adults and elderly patients-a single-center experience and literature review. World J. Emerg. Surg. 2022, 17, 46. [Google Scholar] [CrossRef]
  237. Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography with Survival in Patients with Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef] [PubMed]
  238. Floridi, C.; De Bernardi, I.; Fontana, F.; Muollo, A.; Ierardi, A.M.; Agostini, A.; Fonio, P.; Squillaci, E.; Brunese, L.; Fugazzola, C.; et al. Microwave ablation of renal tumors: State of the art and development trends. Radiol. Med. 2014, 119, 533–540. [Google Scholar] [CrossRef]
  239. Chianca, V.; Albano, D.; Messina, C.; Gitto, S.; Ruffo, G.; Guarino, S.; Del Grande, F.; Sconfienza, L.M. Sarcopenia: Imaging assessment and clinical application. Abdom. Radiol. 2022, 47, 3205–3216. [Google Scholar] [CrossRef]
  240. Anconina, R.; Ortega, C.; Metser, U.; Liu, Z.A.; Elimova, E.; Allen, M.; Darling, G.E.; Wong, R.; Taylor, K.; Yeung, J.; et al. Combined 18 F-FDG PET/CT Radiomics and Sarcopenia Score in Predicting Relapse-Free Survival and Overall Survival in Patients with Esophagogastric Cancer. Clin. Nucl. Med. 2022, 47, 684–691. [Google Scholar] [CrossRef]
  241. Aleixo, G.F.P.; Shachar, S.S.; Nyrop, K.A.; Muss, H.B.; Battaglini, C.L.; Williams, G.R. Bioelectrical Impedance Analysis for the Assessment of Sarcopenia in Patients with Cancer: A Systematic Review. Oncologist 2020, 25, 170–182. [Google Scholar] [CrossRef]
  242. Brunese, L.; Greco, B.; Setola, F.R.; Lassandro, F.; Guarracino, M.R.; De Rimini, M.; Piccolo, S.; De Rosa, N.; Muto, R.; Bianco, A.; et al. Non-small cell lung cancer evaluated with quantitative contrast-enhanced CT and PET-CT: Net enhancement and standardized uptake values are related to tumour size and histology. Med. Sci. Monit. 2013, 19, 95–101. [Google Scholar] [CrossRef] [PubMed]
  243. Tan, B.H.; Birdsell, L.A.; Martin, L.; Baracos, V.E.; Fearon, K.C. Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin. Cancer Res. 2009, 15, 6973–6979. [Google Scholar] [CrossRef] [PubMed]
  244. Peng, P.; Hyder, O.; Firoozmand, A.; Kneuertz, P.; Schulick, R.D.; Huang, D.; Makary, M.; Hirose, K.; Edil, B.; Choti, M.A.; et al. Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma. J. Gastrointest. Surg. 2012, 16, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
  245. Zhong, X.; Narasimhan, A.; Silverman, L.M.; Young, A.R.; Shahda, S.; Liu, S.; Wan, J.; Liu, Y.; Koniaris, L.G.; Zimmers, T.A. Sex specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice and humans: Role of Activin. J. Cachexia Sarcopenia Muscle 2022, 13, 2146–2161. [Google Scholar] [CrossRef] [PubMed]
  246. Hou, Y.C.; Chen, C.Y.; Huang, C.J.; Wang, C.J.; Chao, Y.J.; Chiang, N.J.; Wang, H.C.; Tung, H.L.; Liu, H.C.; Shan, Y.S. The Differential Clinical Impacts of Cachexia and Sarcopenia on the Prognosis of Advanced Pancreatic Cancer. Cancers 2022, 14, 3137. [Google Scholar] [CrossRef] [PubMed]
  247. Ryu, Y.; Shin, S.H.; Kim, J.H.; Jeong, W.K.; Park, D.J.; Kim, N.; Heo, J.S.; Choi, D.W.; Han, I.W. The effects of sarcopenia and sarcopenic obesity after pancreaticoduodenectomy in patients with pancreatic head cancer. HPB 2020, 22, 1782–1792. [Google Scholar] [CrossRef] [PubMed]
  248. Jaseanchiun, W.; Kato, H.; Hayasaki, A.; Fujii, T.; Iizawa, Y.; Tanemura, A.; Murata, Y.; Azumi, Y.; Kuriyama, N.; Kishiwada, M.; et al. The clinical impact of portal venous patency ratio on prognosis of patients with pancreatic ductal adenocarcinoma undergoing pancreatectomy with combined resection of portal vein following preoperative chemoradiotherapy. Pancreatology 2019, 19, 307–315. [Google Scholar] [CrossRef]
  249. Song, A.; Liu, F.; Wu, L.; Si, X.; Zhou, Y. Histopathologic tumor invasion of superior mesenteric vein/portal vein is a poor prognostic indicator in patients with pancreatic ductal adenocarcinoma: Results from a systematic review and meta-analysis. Oncotarget 2017, 8, 32600–32607. [Google Scholar] [CrossRef]
  250. Kim, M.; Kang, T.W.; Cha, D.I.; Kim, Y.K.; Kim, S.H.; Jang, K.T.; Han, I.W.; Sohn, I. Prediction and clinical implications of portal vein/superior mesenteric vein invasion in patients with resected pancreatic head cancer: The significance of preoperative CT parameters. Clin. Radiol. 2018, 73, 564–573. [Google Scholar] [CrossRef]
  251. Nakai, A.; Kamata, K.; Hyodo, T.; Chikugo, T.; Hara, A.; Otsuka, Y.; Tanaka, H.; Yoshikawa, T.; Ishikawa, R.; Okamoto, A.; et al. Utility of contrast-enhanced harmonic EUS for diagnosis of portal vein invasion by pancreatic cancer. Endosc. Ultrasound 2022, 11, 401–406. [Google Scholar] [CrossRef]
  252. Meyer, M.; Ronald, J.; Vernuccio, F.; Nelson, R.C.; Ramirez-Giraldo, J.C.; Solomon, J.; Patel, B.N.; Samei, E.; Marin, D. Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology 2019, 293, 583–591. [Google Scholar] [CrossRef]
  253. Zwanenburg, A.; Leger, S.; Agolli, L.; Pilz, K.; Troost, E.G.C.; Richter, C.; Löck, S. Assessing robustness of radiomic features by image perturbation. Sci. Rep. 2019, 9, 614. [Google Scholar] [CrossRef]
  254. Wong, J.; Baine, M.; Wisnoskie, S.; Bennion, N.; Zheng, D.; Yu, L.; Dalal, V.; Hollingsworth, M.A.; Lin, C. Effects of interobserver and interdisciplinary segmentation variabilities on CT-based radiomics for pancreatic cancer. Sci. Rep. 2021, 11, 16328. [Google Scholar] [CrossRef] [PubMed]
  255. Huang, B.; Lin, X.; Shen, J.; Chen, X.; Chen, J.; Li, Z.P.; Wang, M.; Yuan, C.; Diao, X.F.; Luo, Y.; et al. Accurate and Feasible Deep Learning Based Semi-Automatic Segmentation in CT for Radiomics Analysis in Pancreatic Neuroendocrine Neoplasms. IEEE J. Biomed. Health Inform. 2021, 25, 3498–3506. [Google Scholar] [CrossRef] [PubMed]
  256. Kaur, H.; Kaur Saini, S.; Thakur, N.; Juneja, M. Survey of Denoising, Segmentation and C lassification of Pancreatic Cancer Imaging. Curr. Med. Imaging 2023, 20, e150523216892. [Google Scholar] [CrossRef]
  257. Nasief, H.; Hall, W.; Zheng, C.; Tsai, S.; Wang, L.; Erickson, B.; Li, X.A. Improving Treatment Response Prediction for Chemoradiation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and the Clinical Biomarker CA19-9. Front. Oncol. 2019, 9, 1464. [Google Scholar] [CrossRef] [PubMed]
  258. Rigiroli, F.; Hoye, J.; Lerebours, R.; Lafata, K.J.; Li, C.; Meyer, M.; Lyu, P.; Ding, Y.; Schwartz, F.R.; Mettu, N.B.; et al. CT Radiomic Features of Superior Mesenteric Artery Involvement in Pancreatic Ductal Adenocarcinoma: A Pilot Study. Radiology 2021, 301, 610–622. [Google Scholar] [CrossRef]
  259. Zhou, Y.; Wang, J.; Zhang, S.L.; Wang, H.; Yan, Y.; Qi, X.; Chen, S.; Chen, F.M. A CT Radiomics-Based Risk Score for Preoperative Estimation of Intraoperative Superior Mesenteric-Portal Vein Involvement in Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2023, 30, 1206–1216. [Google Scholar] [CrossRef]
  260. Kim, H.; Park, T.; Jang, J.; Lee, S. Comparison of survival prediction models for pancreatic cancer: Cox model versus machine learning models. Genomics Inform. 2022, 20, e23. [Google Scholar] [CrossRef]
  261. Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef]
  262. Yao, L.; Zhang, Z.; Keles, E.; Yazici, C.; Tirkes, T.; Bagci, U. A review of deep learning and radiomics approaches for pancreatic cancer diagnosis from medical imaging. Curr. Opin. Gastroenterol. 2023, 39, 436–447. [Google Scholar] [CrossRef] [PubMed]
  263. Kim, J.H.; Park, S.H.; Yu, E.S.; Kim, M.H.; Kim, J.; Byun, J.H.; Lee, S.S.; Hwang, H.J.; Hwang, J.Y.; Lee, M.G. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: Frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology 2010, 257, 87–96. [Google Scholar] [CrossRef] [PubMed]
  264. Strobel, O.; Hank, T.; Hinz, U.; Bergmann, F.; Schneider, L.; Springfeld, C.; Jäger, D.; Schirmacher, P.; Hackert, T.; Büchler, M.W. Pancreatic Cancer Surgery: The New R-status Counts. Ann. Surg. 2017, 265, 565–573. [Google Scholar] [CrossRef] [PubMed]
  265. Qureshi, T.A.; Javed, S.; Sarmadi, T.; Pandol, S.J.; Li, D. Artificial intelligence and imaging for risk prediction of pancreatic cancer: A narrative review. Chin. Clin. Oncol. 2022, 11, 1. [Google Scholar] [CrossRef] [PubMed]
  266. Soyer, P.; Fishman, E.K.; Rowe, S.P.; Patlas, M.N.; Chassagnon, G. Does artificial intelligence surpass the radiologist? Diagn. Interv. Imaging 2022, 103, 445–447. [Google Scholar] [CrossRef]
  267. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
  268. Loi, S.; Mori, M.; Benedetti, G.; Partelli, S.; Broggi, S.; Cattaneo, G.M.; Palumbo, D.; Muffatti, F.; Falconi, M.; De Cobelli, F.; et al. Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys. Med. 2020, 76, 125–133. [Google Scholar] [CrossRef]
Figure 1. Computed Tomography images of patients who underwent pancreatic surgery. (A) Post-Operative Pancreatic Fistula Grade A according to International Study Group of Pancreatic Fistula (ISGPF); (B) Post-Operative Pancreatic Fistula Grade B according to International Study Group of Pancreatic Fistula (ISGPF). The blue arrow indicates the distal pancreas; the orange arrow indicates the peripancreatic fluid in (A) and the organized fluid collection in (B).
Figure 1. Computed Tomography images of patients who underwent pancreatic surgery. (A) Post-Operative Pancreatic Fistula Grade A according to International Study Group of Pancreatic Fistula (ISGPF); (B) Post-Operative Pancreatic Fistula Grade B according to International Study Group of Pancreatic Fistula (ISGPF). The blue arrow indicates the distal pancreas; the orange arrow indicates the peripancreatic fluid in (A) and the organized fluid collection in (B).
Jcm 12 07380 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pacella, G.; Brunese, M.C.; D’Imperio, E.; Rotondo, M.; Scacchi, A.; Carbone, M.; Guerra, G. Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis. J. Clin. Med. 2023, 12, 7380. https://doi.org/10.3390/jcm12237380

AMA Style

Pacella G, Brunese MC, D’Imperio E, Rotondo M, Scacchi A, Carbone M, Guerra G. Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis. Journal of Clinical Medicine. 2023; 12(23):7380. https://doi.org/10.3390/jcm12237380

Chicago/Turabian Style

Pacella, Giulia, Maria Chiara Brunese, Eleonora D’Imperio, Marco Rotondo, Andrea Scacchi, Mattia Carbone, and Germano Guerra. 2023. "Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis" Journal of Clinical Medicine 12, no. 23: 7380. https://doi.org/10.3390/jcm12237380

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop