Wavelength Characteristics and Visual Function of Photochromic Contact Lenses in Indoor and Outdoor Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visual Acuity
2.2. Contrast Sensitivity
3. Results
4. Discussion
Author | Age | Eyes | Refractive Power (D) | Evaluation Item | Significant Differences |
---|---|---|---|---|---|
Buch, et al. (2022) [14] | 32.4 ± 7.9 | 458 | −3.26 ± 1.24 | subjective satisfaction (Low Lighting, Bright Outdoor, General Performance) | Yes |
Hammond, et al. (2020) [17] | 34.9 ± 11.2 | 34 | — | photostress recovery glare disability glare discomfort chromatic contrast | Yes Yes Yes Yes |
Kamiya, et al. (2022) [18] | 21.7 ± 0.7 | 82 | −2.13 ± 0.92 | indoor visual function (visual acuity, kinetic visual acuity, functional visual acuity, ocular higher-order aberrations, contrast sensitivity, satisfaction score) | No Yes Yes No No Yes |
Hammond, et al. (2020) [20] | 27.1 ± 6.4 51.9 ± 6.9 | 58 | — | photostress recovery, glare disability, glare discomfort, chromatic contrast, vernier acuity | Yes Yes Yes Yes No |
Current study | 21.3 ± 1.2 | 33 | −1.80 ± 2.82 | visual acuity (indoor, outdoor) contrast sensitivity | No No No |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hiller, R.; Giacometti, L.; Yuen, K. Sunlight and cataract: An epidemiologic investigation. Am. J. Epidemiol. 1977, 105, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.J.; Hollows, F.C. Pterygium and ultraviolet radiation: A positive correlation. Br. J. Ophthalmol. 1984, 68, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Hiller, R.; Sperduto, R.D.; Ederer, F. Epidemiologic associations with cataract in the 1971–1972 National Health and Nutrition Examination Survey. Am. J. Epidemiol. 1983, 118, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.R.; West, S.K.; Rosenthal, F.S. Effect of ultlaviolet radiation on cataract formation. N. Engl. J. Med. 1988, 319, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
- Main, A.; Vlachonikolis, I.; Dowson, A. The Wavelength of Light Causing Photophobia in Migraine and Tension-Type Headache Between Attacks. Headache 2000, 40, 194–199. [Google Scholar] [CrossRef] [PubMed]
- CIE. Discomfort Grare in the Interior Working Environment; CIE: Vienna, Austria, 1983. [Google Scholar]
- Huang, L.; Seiple, W.; Park, R.I.; Greenstein, V.C.; Holopigian, K.; Naidu, S.S.; Stenson, S.M. Variable tinted spectacle lenses: A comparison of aesthetics and visual preference. CLAO J. 2001, 27, 121–124. [Google Scholar] [PubMed]
- Dürr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems; Elsevier: Hoboken, NJ, USA, 2003. [Google Scholar]
- Nakatsuka, S.; Handa, T.; Ito, H.; Iizuka, T.; Mokuno, K. Three wavelength cut lenses with improved contrast sensitivity and reduced lens color. Opt. Rev. 2023, 30, 590–593. [Google Scholar] [CrossRef]
- Alabi, E.B.; Simpson, T.L.; Harris, T.; Whitten, K. Determining the spectral transmittance of photochromic contact lenses. Contact Lens Anterior Eye 2021, 44, 101406. [Google Scholar] [CrossRef] [PubMed]
- ISO 8980-3; Ophthalmic Optics Uncut Finished Spectacle Lenses Part 3: Transmittance Specifications and Test Methods. International Standardization Organisation: Geneva, Switzerland, 2022.
- Boxer Wachler, B.S.; Durrie, D.S.; Assil, K.K.; Krueger, R.R. Role of clearance and treatment zones in contrast sensitivity. J. Cataract. Refract. Surg. 1999, 25, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Applegate, R.A.; Howland, H.C.; Sharp, R.P.; Cottingham, A.J.; Yee, R.W. Corneal Aberrations and Visual Performance after Radial Keratotomy. J. Refract. Surg. 1998, 14, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Buch, J.; Sonoda, L.; Cannon, J. Unexpected vision performance with photochromic contact lenses in normal and low light conditions: An analysis of two randomized trials. J. Optom. 2022, 16, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hu, J.; Wang, R.; Qu, S.; Liu, L.; Li, Z. Study on the influence of sun glare on driving safety. Build. Environ. 2023, 228, 109902. [Google Scholar] [CrossRef]
- Hirata, F. Changes in the Color Tone of the Photochromic Contact Lens in Cars. J. Jpn. Contact Lens Soc. 2020, 62, 15–21. [Google Scholar]
- Renzi-Hammond, L.M.; Buch, J.R.O.; Hacker, L.O.; Cannon, J.M.; Hammond, B.R.J. The effect of a photochromic contact lens on visual function indoors: A randomized. Controlled Trial Optom. Vis. Sci. 2020, 97, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Suzuki, S.; Fujimura, F. Effect of Photochromic Contact Lens Wear on Indoor Visual Performance and Patient Satisfaction. Ophthalmol. Ther. 2022, 11, 1847–1855. [Google Scholar] [CrossRef]
- Renzi-Hammond, L.; Buch, J.R.; Cannon, J.; Hacker, L.; Toubouti, Y.; Hammond, B.R. A contra-lateral comparison of the visual effects of a photochromic vs. non-photochromic contact lens. Cont. Lens Anterior Eye 2019, 43, 250–255. [Google Scholar] [CrossRef]
- Hammond, B.R.; Buch, J.; Hacker, L.; Cannon, J.; Toubouti, Y.; Renzi-Hammond, L.M. The effects of light scatter when using a photochromic vs. non-photochromic contactlens. J. Optom. 2020, 13, 227–234. [Google Scholar] [CrossRef]
Average ± SD | |
---|---|
Eyes | 33 |
Age | 21.3 ± 1.2 |
Gender (Male:Female) | 13:20 |
Manifest spherical power (D) | −1.80 ± 2.82 |
Manifest cylindrical power (D) | 0.64 ± 0.59 |
No-Lens | Non-Activated | Activated | p Value | No-Lens- Non-Activated | No-Lens- Activated | Non-Activated- Activated | |
---|---|---|---|---|---|---|---|
Indoor visual acuity (logMAR) | −0.27 ± 0.05 | −0.27 ± 0.06 | −0.27 ± 0.06 | 0.949 | — | — | — |
Outdoor visual acuity (logMAR) | −0.25 ± 0.07 | −0.26 ± 0.06 | −0.25 ± 0.07 | 0.540 | — | — | — |
Indoor AULCSF | 1.48 ± 0.10 | 1.51 ± 0.08 | 1.51 ± 0.08 | 0.355 | — | — | — |
Outdoor AULCSF | 1.53 ± 0.04 | 1.54 ± 0.05 | 1.58 ± 0.04 | <0.001 | 0.233 | <0.001 | 0.014 |
glare AULCSF | 1.39 ± 0.08 | 1.40 ± 0.09 | 1.42 ± 0.09 | 0.281 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, S.; Kamiya, K.; Iizuka, T.; Handa, T. Wavelength Characteristics and Visual Function of Photochromic Contact Lenses in Indoor and Outdoor Conditions. J. Clin. Med. 2023, 12, 7417. https://doi.org/10.3390/jcm12237417
Suzuki S, Kamiya K, Iizuka T, Handa T. Wavelength Characteristics and Visual Function of Photochromic Contact Lenses in Indoor and Outdoor Conditions. Journal of Clinical Medicine. 2023; 12(23):7417. https://doi.org/10.3390/jcm12237417
Chicago/Turabian StyleSuzuki, Shuya, Kazutaka Kamiya, Tatsuya Iizuka, and Tomoya Handa. 2023. "Wavelength Characteristics and Visual Function of Photochromic Contact Lenses in Indoor and Outdoor Conditions" Journal of Clinical Medicine 12, no. 23: 7417. https://doi.org/10.3390/jcm12237417
APA StyleSuzuki, S., Kamiya, K., Iizuka, T., & Handa, T. (2023). Wavelength Characteristics and Visual Function of Photochromic Contact Lenses in Indoor and Outdoor Conditions. Journal of Clinical Medicine, 12(23), 7417. https://doi.org/10.3390/jcm12237417