Relationship between Anterior Cruciate Ligament Injury and Subtalar Pronation in Female Basketball Players: Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size
2.3. Participants
2.4. Assessment
2.4.1. Test de Desplazamiento del Navicular (NDT)
2.4.2. Test Drop Vertical Jump (DVJ)
2.5. Statistical Analysis
3. Results
3.1. Participation Flow and Sample Characteristics
3.2. Results Subtalar Pronation Outcomes
3.3. Relationships between Subtalar Pronation Outcomes and Injured ACL Participants
3.4. Adverse Events
4. Discussion
Limitations and New Lines of Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bram, J.T.; Magee, L.C.; Mehta, N.N.; Patel, N.M.; Ganley, T.J. Anterior Cruciate Ligament Injury Incidence in Adolescent Athletes: A Systematic Review and Meta-Analysis. Am. J. Sport. Med. 2020, 49, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Nagano, Y.; Ito, W.; Kido, Y.; Okuwaki, T. A Retrospective Study of Mechanisms of Anterior Cruciate Ligament Injuries in High School Basketball, Handball, Judo, Soccer, and Volleyball. Medicine 2019, 98, e16030. [Google Scholar] [CrossRef] [PubMed]
- Beynnon, B.D.; Vacek, P.M.; Newell, M.K.; Tourville, T.W.; Smith, H.C.; Shultz, S.J.; Slauterbeck, J.R.; Johnson, R.J. The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. Am. J. Sport. Med. 2014, 42, 1806–1812. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Voos, J.E.; Nguyen, J.T.; Callahan, L.; Hannafin, J.A. Injury Profile in Elite Female Basketball Athletes at the Women’s National Basketball Association Combine. Am. J. Sport. Med. 2013, 41, 645–651. [Google Scholar] [CrossRef]
- Quatman, C.E.; Quatman-Yates, C.C.; Hewett, T.E. A “plane” Explanation of Anterior Cruciate Ligament Injury Mechanisms: A Systematic Review. Sport. Med. 2010, 40, 729–746. [Google Scholar] [CrossRef] [PubMed]
- Raymond-Pope, C.J.; Dengel, D.R.; Fitzgerald, J.S.; Nelson, B.J.; Bosch, T.A. Correction: Anterior Cruciate Ligament Reconstructed Female Athletes Exhibit Relative Muscle Dysfunction after Return to Sport. Int. J. Sport. Med. 2020, 41, e19. [Google Scholar] [CrossRef]
- Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. [Google Scholar] [CrossRef]
- Webster, K.E.; Hewett, T.E. Anterior Cruciate Ligament Injury and Knee Osteoarthritis: An Umbrella Systematic Review and Meta-Analysis. Clin. J. Sport Med. 2022, 32, 145–152. [Google Scholar] [CrossRef]
- Ramos-Mucci, L.; Elsheikh, A.; Keenan, C.; Eliasy, A.; D’Aout, K.; Bou-Gharios, G.; Comerford, E.; Poulet, B. The Anterior Cruciate Ligament in Murine Post-Traumatic Osteoarthritis: Markers and Mechanics. Arthritis Res. Ther. 2022, 24, 128. [Google Scholar] [CrossRef]
- Rajput, V.; Haddad, F.S. Is the Die Cast? Anterior Cruciate Ligament Injury and Osteoarthritis. Bone Joint J. 2022, 104, 529–531. [Google Scholar] [CrossRef]
- Zou, J.; Yang, W.; Cui, W.; Li, C.; Ma, C.; Ji, X.; Hong, J.; Qu, Z.; Chen, J.; Liu, A.; et al. Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell-Derived Exosomes as Bioactive Materials in Tendon-Bone Healing. J. Nanobiotechnol. 2023, 21, 14. [Google Scholar] [CrossRef]
- Hassebrock, J.D.; Gulbrandsen, M.T.; Asprey, W.L.; Makovicka, J.L.; Chhabra, A. Knee Ligament Anatomy and Biomechanics. Sports Med. Arthrosc. Rev. 2020, 28, 80–86. [Google Scholar] [CrossRef]
- Zhang, Q.; Adam, N.C.; Hosseini Nasab, S.H.; Taylor, W.R.; Smith, C.R. Techniques for In Vivo Measurement of Ligament and Tendon Strain: A Review. Ann. Biomed. Eng. 2021, 49, 7–28. [Google Scholar] [CrossRef]
- Yu, B.; Lin, C.-F.; Garrett, W.E. Lower Extremity Biomechanics during the Landing of a Stop-Jump Task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef]
- Ghanati, H.A.; Letafatkar, A.; Shojaedin, S.; Hadadnezhad, M.; Schöllhorn, W.I. Comparing the Effects of Differential Learning, Self-Controlled Feedback, and External Focus of Attention Training on Biomechanical Risk Factors of Anterior Cruciate Ligament (ACL) in Athletes: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 10052. [Google Scholar] [CrossRef] [PubMed]
- Ferri-Caruana, A.; Prades-Insa, B.; Serra-AÑÓ, P. Effects of Pelvic and Core Strength Training on Biomechanical Risk Factors for Anterior Cruciate Ligament Injuries. J. Sports Med. Phys. Fitness 2020, 60, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Choi, D.H.; Shin, C.S. Core Strength Training Can Alter Neuromuscular and Biomechanical Risk Factors for Anterior Cruciate Ligament Injury. Am. J. Sport. Med. 2021, 49, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Alahmri, F.; Alsaadi, S.; Ahsan, M.; Alqhtani, S. Determining the Knee Joint Laxity between the Pronated Foot and Normal Arched Foot in Adult Participants. Acta Biomed. 2022, 93, e2022092. [Google Scholar] [CrossRef]
- Söderman, K.; Alfredson, H.; Pietilä, T.; Werner, S. Risk Factors for Leg Injuries in Female Soccer Players: A Prospective Investigation during One out-Door Season. Knee Surg. Sport. Traumatol. Arthrosc. 2001, 9, 313–321. [Google Scholar] [CrossRef]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of Noncontact Anterior Cruciate Ligament Injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef]
- Mafi, M.; Sheikhalizade, H.; Jafarnezhadgero, A.A.; Asheghan, M. Investigating the Effect of Sand Training on Running Mechanics in Individuals with Anterior Cruciate Ligament Reconstruction and Pronated Feet. Gait Posture 2023, 104, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hodel, S.; Torrez, C.; Flury, A.; Fritz, B.; Steinwachs, M.R.; Vlachopoulos, L.; Fucentese, S.F. Tibial Internal Rotation in Combined Anterior Cruciate Ligament and High-Grade Anterolateral Ligament Injury and Its Influence on ACL Length. BMC Musculoskelet. Disord. 2022, 23, 1–10. [Google Scholar] [CrossRef]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.M. Techniques in the Evaluation and Treatment of the Injured Runner. Orthop. Clin. North Am. 1982, 13, 541–558. [Google Scholar] [CrossRef]
- Beckett, M.E.; Massie, D.L.; Bowers, K.D.; Stoll, D.A. Incidence of Hyperpronation in the ACL Injured Knee: A Clinical Perspective. J. Athl. Train. 1992, 27, 58. [Google Scholar]
- Gould, N. Evaluation of Hyperpronation and Pes Planus in Adults. Clin. Orthop. Relat. Res. 1983, 37–45. [Google Scholar] [CrossRef]
- Hutchinson, M.R.; Ireland, M.L. Knee Injuries in Female Athletes. Sports Med. 1995, 19, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sport. Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus Knee Motion during Landing in High School Female and Male Basketball Players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players. Am. J. Sport. Med. 2016, 44, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Herrington, L. Knee Valgus Angle during Landing Tasks in Female Volleyball and Basketball Players. J. Strength Cond. Res. 2011, 25, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Puig-Diví, A.; Escalona-Marfil, C.; Padullés-Riu, J.M.; Busquets, A.; Padullés-Chando, X.; Marcos-Ruiz, D. Validity and Reliability of the Kinovea Program in Obtaining Angles and Distances Using Coordinates in 4 Perspectives. PLoS ONE 2019, 14, e0216448. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Vij, N.; Tummala, S.; Vaughn, J.; Chhabra, A.; Salehi, H.; Winters, J.; Browne, A.; Glattke, K.; Brinkman, J.C.; Menzer, H.; et al. Biomechanical Gender Differences in the Uninjured Extremity after Anterior Cruciate Ligament Reconstruction in Adolescent Athletes: A Retrospective Motion Analysis Study. Cureus 2023, 15, e35596. [Google Scholar] [CrossRef] [PubMed]
- Nilstad, A.; Andersen, T.E.; Bahr, R.; Holme, I.; Steffen, K. Risk Factors for Lower Extremity Injuries in Elite Female Soccer Players. Am. J. Sport. Med. 2014, 42, 940–948. [Google Scholar] [CrossRef]
- Allen, M.K.; Glasoe, W.M. Metrecom Measurement of Navicular Drop in Subjects with Anterior Cruciate Ligament Injury. J. Athl. Train. 2000, 35, 403. [Google Scholar]
- Rabe, K.G.; Segal, N.A.; Waheed, S.; Anderson, D.D. The Effect of Arch Drop on Tibial Rotation and Tibiofemoral Contact Stress in Postpartum Women. PM&R 2018, 10, 1137–1144. [Google Scholar] [CrossRef]
- Hetsroni, I.; Finestone, A.; Milgrom, C.; Ben Sira, D.; Nyska, M.; Radeva-Petrova, D.; Ayalon, M. A Prospective Biomechanical Study of the Association between Foot Pronation and the Incidence of Anterior Knee Pain among Military Recruits. J. Bone Jt. Surg. -Ser. B 2006, 88, 905–908. [Google Scholar] [CrossRef]
- Woodford-Rogers, B.; Cyphert, L.; Denegar, C.R. Risk Factors for Anterior Cruciate Ligament Injury in High School and College Athletes. J. Athl. Train. 1994, 29, 343. [Google Scholar]
- Åström, M.; Arvidson, T. Alignment and Joint Motion in the Normal Foot. J. Orthop. Sport. Phys. Ther. 1995, 22, 216–222. [Google Scholar] [CrossRef] [PubMed]
- LeLiévre, J. Current Concepts and Correction in the Valgus Foot. Clin. Orthop. Relat. Res. 1970, 70, 43–55. [Google Scholar]
- Myers, C.A.; Hawkins, D. Alterations to Movement Mechanics Can Greatly Reduce Anterior Cruciate Ligament Loading without Reducing Performance. J. Biomech. 2010, 43, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Faunø, P.; Jakobsen, B.W. Mechanism of Anterior Cruciate Ligament Injuries in Soccer. Int. J. Sports Med. 2006, 27, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, C.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Siegel, L.; Vandenakker-Albanese, C.; Siegel, D. Anterior Cruciate Ligament Injuries: Anatomy, Physiology, Biomechanics, and Management. Clin. J. Sport Med. 2012, 22, 349–355. [Google Scholar] [CrossRef]
- Gabriel, M.T.; Wong, E.K.; Woo, S.L.-Y.; Yagi, M.; Debski, R.E. Distribution of in Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads. J. Orthop. Res. 2004, 22, 85–89. [Google Scholar] [CrossRef]
- Kızılgöz, V.; Sivrioğlu, A.K.; Ulusoy, G.R.; Aydın, H.; Karayol, S.S.; Menderes, U. Analysis of the Risk Factors for Anterior Cruciate Ligament Injury: An Investigation of Structural Tendencies. Clin. Imaging 2018, 50, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Todor, A.; Stetson, W.B.; Felu´s, J.F.; Genç, A.S.; Güzel, N. Patellofemoral Angle, Pelvis Diameter, Foot Posture Index, and Single Leg Hop in Post-Operative ACL Reconstruction. Medicina 2023, 59, 426. [Google Scholar] [CrossRef]
- Aiyegbusi, A.; Tella, B.; Okeke, C. Variáveis Biomecânicas Dos Membros Inferiores São Indicadores Do Padrão de Apresentação Da Tendinopatia Patelar Em Atletas de Elite Africanos de Basquetebol e Voleibol. Rev. Bras. Ortop. 2019, 54, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Cuellar, W.; Galván-Villamarín, F.; Ortiz-Morales, J. Complications Associated with the Techniques for Anterior Cruciate Ligament Reconstruction in Patients under 18 Years Old: A Systematic Review. Rev. Española De Cirugía Ortopédica Y Traumatol. (Engl. Ed.) 2018, 62, 55–64. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Decrease in Neuromuscular Control About the Knee with Maturation in Female Athletes. J. Bone Jt. Surg. 2004, 86, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, Prediction, and Prevention of ACL Injuries: Cut Risk with Three Sharpened and Validated Tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Carcia, C.R.; Drouin, J.M.; Houglum, P.A. The Influence of a Foot Orthotic on Lower Extremity Transverse Plane Kinematics in Collegiate Female Athletes with Pes Planus. J. Sports Sci. Med. 2006, 5, 646. [Google Scholar]
Outcome | All Participants (n = 30) | Injured (n = 15) | Uninjured (n = 15) | p-Value |
---|---|---|---|---|
Age | 23.067 ± 4.24 | 23.80 ± 3.97 | 22.33 ± 4.51 | 0.353 |
Height cm | 167.77 ± 5.23 | 167.33 ± 5.91 | 168.20 ± 4.61 | 0.658 |
Weight Kg | 61.7 ± 8.74 | 62.53 ± 9.00 | 60.87 ± 8.70 | 0.610 |
Body mass index, kg/m2 | 21.87 ± 2.41 | 22.29 ± 2.49 | 21.45 ± 2.32 | 0.348 |
Outcome | All Participants (n = 30) | Injured (n = 15) | Uninjured (n = 15) |
---|---|---|---|
NDT | 6.173 ± 1.94 | 6.93 ± 1.64 | 5.41 ± 1.96 |
Dynamic Knee Valgus | 159.00 ± 12.83 | 152.73 ± 15.00 | 165.26 ± 5.628 |
Knee Flexion | 88.31 ± 10.81 | 93.70 ± 7.47 | 82.92 ± 11.14 |
Dorsiflexion Ankle | 113.05 ± 7.07 | 113.33 ± 7.69 | 112.76 ± 6.67 |
Heel Tilt | 8.12 ± 4.31 | 10.94 ± 3.22 | 5.30 ± 3.33 |
Outcome | Dynamic Knee Valgus | Knee Flexion | Dorsiflexion Ankle | Heel Tilt |
---|---|---|---|---|
NDT | −0.513; 0.004 ** | 0.142; 0.454 | 0.213; 0.259 | 0.268; 0.152 |
Dynamic Knee Valgus | - | −0.299; 0.109 | 0.145; 0.446 | −0.375; 0.041 ** |
Knee Flexion | 0.142; 0.454 | - | 0.254; 0.176 | 0.136; 0.473 |
Dorsiflexion Ankle | 0.213; 0.259 | 0.254; 0.176 | - | −0.122; 0.522 |
Heel Tilt | 0.268; 0.152 | 0.136; 0.437 | −1.122; 0.522 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carabasa García, L.; Lorca-Gutiérrez, R.; Vicente-Mampel, J.; Part-Ferrer, R.; Fernández-Ehrling, N.; Ferrer-Torregrosa, J. Relationship between Anterior Cruciate Ligament Injury and Subtalar Pronation in Female Basketball Players: Case-Control Study. J. Clin. Med. 2023, 12, 7539. https://doi.org/10.3390/jcm12247539
Carabasa García L, Lorca-Gutiérrez R, Vicente-Mampel J, Part-Ferrer R, Fernández-Ehrling N, Ferrer-Torregrosa J. Relationship between Anterior Cruciate Ligament Injury and Subtalar Pronation in Female Basketball Players: Case-Control Study. Journal of Clinical Medicine. 2023; 12(24):7539. https://doi.org/10.3390/jcm12247539
Chicago/Turabian StyleCarabasa García, Laura, Rubén Lorca-Gutiérrez, Juan Vicente-Mampel, Roser Part-Ferrer, Nadia Fernández-Ehrling, and Javier Ferrer-Torregrosa. 2023. "Relationship between Anterior Cruciate Ligament Injury and Subtalar Pronation in Female Basketball Players: Case-Control Study" Journal of Clinical Medicine 12, no. 24: 7539. https://doi.org/10.3390/jcm12247539