A Randomized Clinical Trial of Inhaled Nitric Oxide Treatment in Premature Infants Reveals the Effect of Maternal Racial Identity on Efficacy
Abstract
:1. Introduction
2. Methods
2.1. Outcomes
2.2. Criteria for Eligibility
2.3. Study Design and Randomization
2.4. Study Protocol
2.5. Safety Monitoring
2.6. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Primary Outcome
3.3. Birth Weight-Specific Effects on the Primary Outcome
3.4. Components of the Primary Outcome in Infants Weighing <1000 g at Birth
3.5. Association of the Primary Outcome and Its Components with Racial Identity
3.6. Birth Weight-Specific Effects within Racial Identity Groups
3.7. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeMauro, S.B. Neurodevelopmental outcomes of infants with bronchopulmonary dysplasia. Pediatr. Pulmonol. 2021, 56, 3509–3517. [Google Scholar] [CrossRef] [PubMed]
- Laughon, M.M.; Langer, J.C.; Bose, C.L.; Smith, P.B.; Ambalavanan, N.; Kennedy, K.A.; Stoll, B.J.; Buchter, S.; Laptook, A.R.; Ehrenkranz, R.A.; et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am. J. Respir. Crit. Care Med. 2011, 183, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Shaul, P.W.; Afshar, S.; Gibson, L.L.; Sherman, T.S.; Kerecman, J.D.; Grubb, P.H.; Yoder, B.A.; McCurnin, D.C. Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L1192–L1199. [Google Scholar] [CrossRef] [PubMed]
- Hascoet, J.M.; Fresson, J.; Claris, O.; Hamon, I.; Lombet, J.; Liska, A.; Cantagrel, S.; Al Hosri, J.; Thiriez, G.; Valdes, V.; et al. The safety and efficacy of nitric oxide therapy in premature infants. J. Pediatr. 2005, 146, 318–323. [Google Scholar] [CrossRef]
- Kinsella, J.P.; Cutter, G.R.; Walsh, W.F.; Gerstmann, D.R.; Bose, C.L.; Hart, C.; Sekar, K.C.; Auten, R.L.; Bhutani, V.K.; Gerdes, J.S.; et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N. Engl. J. Med. 2006, 355, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Van Meurs, K.P.; Wright, L.L.; Ehrenkranz, R.A.; Lemons, J.A.; Ball, M.B.; Poole, W.K.; Perritt, R.; Higgins, R.D.; Oh, W.; Hudak, M.L.; et al. Inhaled nitric oxide for premature infants with severe respiratory failure. N. Engl. J. Med. 2005, 353, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ballard, R.A.; Truog, W.E.; Cnaan, A.; Martin, R.J.; Ballard, P.L.; Merrill, J.D.; Walsh, M.C.; Durand, D.J.; Mayock, D.E.; Eichenwald, E.C.; et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N. Engl. J. Med. 2006, 355, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, M.D.; Gin-Mestan, K.; Marks, J.D.; Huo, D.; Lee, G.; Srisuparp, P. Inhaled nitric oxide in premature infants with the respiratory distress syndrome. N. Engl. J. Med. 2003, 349, 2099–2107. [Google Scholar] [CrossRef]
- Hasan, S.U.; Potenziano, J.; Konduri, G.G.; Perez, J.A.; Van Meurs, K.P.; Walker, M.W.; Yoder, B.A.; Newborns Treated with Nitric Oxide Trial, G. Effect of Inhaled Nitric Oxide on Survival without Bronchopulmonary Dysplasia in Preterm Infants: A Randomized Clinical Trial. JAMA Pediatr. 2017, 171, 1081–1089. [Google Scholar] [CrossRef]
- Askie, L.M.; Davies, L.C.; Schreiber, M.D.; Hibbs, A.M.; Ballard, P.L.; Ballard, R.A. Race Effects of Inhaled Nitric Oxide in Preterm Infants: An Individual Participant Data Meta-Analysis. J. Pediatr. 2018, 193, 34–39. [Google Scholar] [CrossRef]
- Van Meurs, K.P.; Rhine, W.D.; Asselin, J.M.; Durand, D.J. Response of premature infants with severe respiratory failure to inhaled nitric oxide. Preemie NO Collaborative Group. Pediatr. Pulmonol. 1997, 24, 319–323. [Google Scholar] [CrossRef]
- Kinsella, J.P.; Parker, T.A.; Ivy, D.D.; Abman, S.H. Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia. J. Pediatr. 2003, 142, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Yao, Q.; Gettner, P.; Hale, E.; Collins, M.; Hensman, A.; Everette, R.; Peters, N.; Miller, N.; Muran, G.; et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 2004, 114, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- William, S. The probable error of a mean. Biometrika 1908, 6, 1–25. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Cochran, W.G. The χ2 Test of Goodness of Fit. Ann. Math. Stat. 1952, 23, 315–345. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Gray, R.J. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. Ann. Stat. 1998, 16, 1141–1154. [Google Scholar] [CrossRef]
- Aalen, O.O.; Johansen, S. An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scand. Stat. Theory Appl. 1978, 5, 141–150. [Google Scholar]
- Brock, G.N.; Barnes, C.; Ramirez, J.A.; Myers, J. How to handle mortality when investigating length of hospital stay and time to clinical stability. BMC Med. Res. Methodol. 2011, 11, 144. [Google Scholar] [CrossRef]
- Mestan, K.L.; Marks, J.D.; Hecox, K.; Huo, D.; Schreiber, M.D. Neurodevelopmental outcomes of premature infants treated with inhaled nitric oxide. N. Engl. J. Med. 2005, 353, 23–32. [Google Scholar] [CrossRef]
- Sahni, R.; Ameer, X.; Ohira-Kist, K.; Wung, J.T. Non-invasive inhaled nitric oxide in the treatment of hypoxemic respiratory failure in term and preterm infants. J. Perinatol. 2017, 37, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Steinhorn, R.; Davis, J.M.; Gopel, W.; Jobe, A.; Abman, S.; Laughon, M.; Bancalari, E.; Aschner, J.; Ballard, R.; Greenough, A.; et al. Chronic Pulmonary Insufficiency of Prematurity: Developing Optimal Endpoints for Drug Development. J. Pediatr. 2017, 191, 15–21.e1. [Google Scholar] [CrossRef] [PubMed]
- Isayama, T.; Lee, S.K.; Yang, J.; Lee, D.; Daspal, S.; Dunn, M.; Shah, P.S.; Canadian Neonatal, N.; Canadian Neonatal Follow-Up Network, I. Revisiting the Definition of Bronchopulmonary Dysplasia: Effect of Changing Panoply of Respiratory Support for Preterm Neonates. JAMA Pediatr. 2017, 171, 271–279. [Google Scholar] [CrossRef]
- Mulligan, C.J. Systemic racism can get under our skin and into our genes. Am. J. Phys. Anthropol. 2021, 175, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Salihu, H.M.; Das, R.; Morton, L.; Huang, H.; Paothong, A.; Wilson, R.E.; Aliyu, M.H.; Salemi, J.L.; Marty, P.J. Racial Differences in DNA-Methylation of CpG Sites within Preterm-Promoting Genes and Gene Variants. Matern. Child Health J. 2016, 20, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Manuck, T.A.; Eaves, L.A.; Rager, J.E.; Sheffield-Abdullah, K.; Fry, R.C. Nitric oxide-related gene and microRNA expression in peripheral blood in pregnancy vary by self-reported race. Epigenetics 2021, 17, 731–745. [Google Scholar] [CrossRef]
Short iNO (N = 138) | Long iNO (N = 135) | p | |
---|---|---|---|
Birthweight, mean (SD) | 921.1 (267.5) | 913.0 (265.4) | 0.80 |
Gestational Age, mean (SD) | 27.2 (2.2) | 26.8 (2.1) | 0.11 |
Male (%) | 75 (54.3) | 72 (53.3) | 0.90 |
Black (%) | 99 (65.9) | 91 (67.4) | 0.51 |
Chorioamnionitis | 15 (10.9) | 21 (15.5) | 0.29 |
Birthweight Group (%) | |||
<750 g | 41 (29.7) | 41 (30.4) | 0.99 |
750–999 g | 43 (31.2) | 44 (32.6) | 0.89 |
1000–1249 g | 34 (24.6) | 33 (24.4) | 0.99 |
>1250 g | 20 (14.5) | 17 (12.6) | 0.72 |
Birthweight < 10% percentile | 12 (8.7) | 10 (7.4) | 0.70 |
Inborn (%) | 119 (86.2) | 119 (88.1) | 0.72 |
Cesarean Section (%) | 95 (68.8) | 87 (64.4) | 0.44 |
Apgar Score 1 min | 5.0 (2.3) | 4.7 (2.2) | 0.27 |
Apgar Score 5 min | 6.8 (1.8) | 7.0 (1.6) | 0.51 |
Antenatal Steroids (%) | 116 (84.1) | 109 (81.3) | 0.54 |
Respiratory Illness Severity | 0.99 | ||
Mechanical Ventilation | 84 (60.9) | 83 (61.5) | |
CPAP | 31 (22.5) | 30 (22.2) | |
Nasal Cannula | 23 (16.7) | 22 (16.3) | |
Postnatal Infection | 39 (28.3) | 46 (34.1) | 0.36 |
Short iNO (N = 138) | Long iNO (N = 135) | p | Relative Risk (95% CI) | |
---|---|---|---|---|
BPD or Death (%) | 65 (47.1) | 83 (61.5) | 0.017 | 1.37 (1.06–1.79) |
Death | 19 (13.8) | 13 (9.6) | 0.288 | 0.95 (0.87–1.04) |
BPD | 51 (37.0) | 71 (52.6) | 0.009 | 1.33 (1.07–1.66) |
Supplemental O2 at 40 weeks PMA 1 | 30 (22.4) | 28 (22.2) | 0.97 | 1.00 (0.87–1.14) |
Birthweight | Short iNO | Long iNO | p | Relative Risk (95% CI) |
---|---|---|---|---|
<750 g | 36 (87.8) (N = 41) | 37 (90.2) (N = 41) | 0.72 | 1.25 (0.39–4.06) |
750–999 g | 20 (46.5) (N = 43) | 36 (81.8) (N = 44) | <0.001 | 2.94 (1.54–5.90) |
1000–1249 g | 7 (20.6) (N = 34) | 7 (21.2) (N = 33) | 0.95 | 1.01 (0.77–1.32) |
>1249 g | 2 (10.0) (N = 20) | 3 (17.6) (N = 17) | 0.50 | 1.09 (0.82–1.55) |
Short iNO (N = 43) | Long iNO (N = 44) | p | Relative Risk (95% CI) | |
---|---|---|---|---|
BPD or Death (%) | 20 (46.5) | 36 (81.8) | <0.001 | 2.94 (1.54–5.90) |
Death | 4 (9.3) | 6 (13.6) | 0.52 | 1.05 (0.89–1.26) |
BPD | 17 (39.5) | 30 (68.2) | 0.007 | 1.90 (1.18–3.17) |
Supplemental O2 at 40 weeks PMA 1 | 9 (21.4) | 13 (34.2) | 0.20 | 1.19 (0.91–1.62) |
Short iNO (N = 41) | Long iNO (N = 41) | p | Relative Risk (95% CI) | |
---|---|---|---|---|
BPD or Death (%) | 36 (87.8) | 37 (90.2) | 0.72 | 1.25 (0.39–4.06) |
Death | 14 (34.1) | 7 (17.1) | 0.08 | 0.79 (0.59–1.03) |
BPD | 26 (63.4) | 31 (75.6) | 0.23 | 1.50 (0.78–2.95) |
Supplemental O2 at 40 weeks PMA 1 | 17 (41.5) | 15 (38.5) | 0.78 | 0.95 (0.66–2.27) |
Non-Black (N = 83) | Black (N = 190) | p | Relative Risk (95% CI) | |
---|---|---|---|---|
BPD or Death (%) | 45 (54.2) | 103 (54.2) | 0.99 | 0.99 (0.75–1.31) |
Death | 8 (9.6) | 24 (12.6) | 0.48 | 1.03 (0.93–1.12) |
BPD | 38 (45.8) | 84 (44.2) | 0.81 | 0.97 (0.76–1.21) |
Supplemental O2 at 40 weeks PMA 1 | 13 (16.5) | 45 (24.9) | 0.13 | 1.11 (0.96–1.26) |
Non-Black | Short iNO (N = 39) | Long iNO (N = 44) | p | Relative Risk (95% CI) |
---|---|---|---|---|
BPD or Death (%) | 15 (38.5) | 30 (68.2) | 0.007 | 1.93 (1.20–3.24) |
Death | 4 (10.3) | 4 (9.1) | 0.86 | 0.98 (0.83–1.16) |
BPD | 12 (30.8) | 26 (59.1) | 0.01 | 1.69 (1.14–2.61) |
Supplemental O2 at 40 weeks PMA 1 | 5 (13.2) | 8 (19.5) | 0.44 | 1.08 (0.87–1.34) |
Black | (N = 99) | (N = 91) | ||
BPD or Death (%) | 50 (50.5) | 53 (58.2) | 0.28 | 1.18 (0.87–1.63) |
Death | 15 (15.2) | 9 (9.9) | 0.28 | 0.94 (0.84–1.05) |
BPD | 39 (39.4) | 45 (49.5) | 0.16 | 1.20 (0.93–1.56) |
Supplemental O2 at 40 weeks PMA 2 | 25 (26.0) | 20 (23.5) | 0.67 | 0.96 (0.81–1.15) |
Non-Black (<750 g) | Short iNO (N = 8) | Long iNO (N = 11) | p | Relative Risk (95% CI) |
---|---|---|---|---|
BPD or Death (%) | 6 (75.0) | 11 (100) | 0.16 | 2.83 (0.86–5.78) |
Death | 2 (25.0) | 2 (18.2) | 0.72 | 0.92 (0.48–1.5) |
BPD | 5 (62.5) | 9 (81.8) | 0.35 | 2.06 (0.50–8.8) |
Supplemental O2 at 40 weeks PMA 1 | 3 (37.5) | 2 (20.0) | 0.41 | 0.78 (0.37–1.44) |
Black (<750 g) | (N = 33) | (N = 30) | ||
BPD or Death (%) | 30 (90.9) | 26 (86.7) | 0.59 | 0.68 (0.18–2.54) |
Death | 12 (36.3) | 5 (16.7) | 0.08 | 0.76 (0.55–1.03) |
BPD | 21 (63.6) | 22 (73.3) | 0.41 | 1.57 (0.56–4.4) |
Supplemental O2 at 40 weeks PMA 2 | 14 (42.4) | 13 (44.8) | 0.85 | 1.10 (0.41–2.91) |
Short iNO (N = 138) | Long iNO (N = 135) | p | |
---|---|---|---|
Severe IVH/PVL (%) | 13 (9.4) | 16 (11.9) | 0.56 |
Pulmonary hemorrhage | 2 (1.4) | 5 (3.8) | 0.28 |
Pneumothorax, n (%) | 13 (9.4) | 10 (7.4) | 0.66 |
PIE (%) | 19 (13.8) | 26 (19.2) | 0.26 |
Symptomatic PDA (%) | 45 (32.6) | 41 (30.4) | 0.80 |
NEC, Bell’s stage ≥ 2 (%) | 14 (10.1) | 19 (14.1) | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marks, J.D.; Schreiber, M.D. A Randomized Clinical Trial of Inhaled Nitric Oxide Treatment in Premature Infants Reveals the Effect of Maternal Racial Identity on Efficacy. J. Clin. Med. 2023, 12, 7567. https://doi.org/10.3390/jcm12247567
Marks JD, Schreiber MD. A Randomized Clinical Trial of Inhaled Nitric Oxide Treatment in Premature Infants Reveals the Effect of Maternal Racial Identity on Efficacy. Journal of Clinical Medicine. 2023; 12(24):7567. https://doi.org/10.3390/jcm12247567
Chicago/Turabian StyleMarks, Jeremy D., and Michael D. Schreiber. 2023. "A Randomized Clinical Trial of Inhaled Nitric Oxide Treatment in Premature Infants Reveals the Effect of Maternal Racial Identity on Efficacy" Journal of Clinical Medicine 12, no. 24: 7567. https://doi.org/10.3390/jcm12247567
APA StyleMarks, J. D., & Schreiber, M. D. (2023). A Randomized Clinical Trial of Inhaled Nitric Oxide Treatment in Premature Infants Reveals the Effect of Maternal Racial Identity on Efficacy. Journal of Clinical Medicine, 12(24), 7567. https://doi.org/10.3390/jcm12247567