The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Molecular Tests
2.2.1. Haematological and Haematochemical Parameters
2.2.2. Oxidative and Inflammatory Tests
2.2.3. ARIP Indicators
2.2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Browder, K.C.; Reddy, P.; Yamamoto, M.; Haghani, A.; Guillen, I.G.; Sahu, S.; Wang, C.; Luque, Y.; Prieto, J.; Shi, L.; et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2022, 2, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-H.; Petty, C.A.; Dixon-McDougall, T.; Lopez, M.V.; Tyshkovskiy, A.; Maybury-Lewis, S.; Tian, X.; Ibrahim, N.; Chen, Z.; Griffin, P.T.; et al. Chemically induced reprogramming to reverse cellular aging. Aging 2023, 15, 5966–5989. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Passarino, G.; Puca, A.; Scapagnini, G. “Positive biology”: The centenarian lesson. Immun. Ageing 2012, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Ligotti, M.E.; Cossarizza, A. Centenarian Offspring as a Model of Successful Ageing. In Centenarians; Caruso, C., Ed.; Springer: Cham, Swizterland, 2019. [Google Scholar]
- Accardi, G.; Aiello, A.; Aprile, S.; Caldarella, R.; Cammarata, G.; Carru, C.; Caruso, C.; Ciaccio, M.; Colomba, P.; Galimberti, D.; et al. The Phenotypic Characterization of the Cammalleri Sisters, an Example of Exceptional Longevity. Rejuvenation Res. 2020, 23, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Marcon, G.; Accardi, G.; Aiello, A.; Calabrò, A.; Ligotti, M.E.; Tettamanti, M.; Franceschi, C.; Candore, G. Role of Sex and Age in Fatal Outcomes of COVID-19: Women and Older Centenarians Are More Resilient. Int. J. Mol. Sci. 2023, 24, 2638. [Google Scholar] [CrossRef]
- Poulain, M.; Chambre, D.; Pes, G.M. Centenarians exposed to the Spanish flu in their early life better survived to COVID-19. Aging 2021, 13, 21855–21865. [Google Scholar] [CrossRef]
- Aoki, Y. The number of centenarians continues to increase during the COVID-19 pandemic in Japan. Geriatr. Gerontol. Int. 2023, 23, 395–396. [Google Scholar] [CrossRef]
- de Castro, M.V.; Silva, M.V.R.; Naslavsky, M.S.; Scliar, M.O.; Nunes, K.; Passos-Bueno, M.R.; Castelli, E.C.; Magawa, J.Y.; Adami, F.L.; Moretti, A.I.S.; et al. The oldest unvaccinated COVID-19 survivors in South America. Immun. Ageing 2022, 19, 57. [Google Scholar] [CrossRef]
- Ligotti, M.E.; Accardi, G.; Aiello, A.; Aprile, S.; Calabrò, A.; Caldarella, R.; Caruso, C.; Ciaccio, M.; Corsale, A.M.; Dieli, F.; et al. Sicilian semi- and supercentenarians: Identification of age-related T-cell immunophenotype to define longevity trait. Clin. Exp. Immunol. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Pounis, G.; Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Sieri, S.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; et al. Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani study. Thromb Haemost. 2016, 115, 344–352. [Google Scholar] [CrossRef]
- Ramasubramanian, R.; Meier, H.C.S.; Vivek, S.; Klopack, E.; Crimmins, E.M.; Faul, J.; Nikolich-Žugich, J.; Thyagarajan, B. Evaluation of T-cell aging-related immune phenotypes in the context of biological aging and multimorbidity in the Health and Retirement Study. Immun. Ageing 2022, 19, 33. [Google Scholar] [CrossRef]
- Aiello, A.; Accardi, G.; Aprile, S.; Caldarella, R.; Carru, C.; Ciaccio, M.; De Vivo, I.; Gambino, C.M.; Ligotti, M.E.; Vasto, S.; et al. Age and Gender-related Variations of Molecular and Phenotypic Parameters in A Cohort of Sicilian Population: From Young to Centenarians. Aging Dis. 2021, 12, 1773–1793. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Zheng, Y.; Jia, H.; Zheng, X.; Gao, R.; Li, W. Neutrophil-lymphocyte ratio as a predictive marker for postoperative infectious complications: A systematic review and meta-analysis. Heliyon 2023, 9, e15586. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Mangoni, A.A. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio and disease activity in rheumatoid arthritis: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2023, 53, e13877. [Google Scholar] [CrossRef]
- Accardi, G.; Aprile, S.; Candore, G.; Caruso, C.; Cusimano, R.; Cristaldi, L.; Di Bona, D.; Duro, G.; Galimberti, D.; Gambino, C.M.; et al. Genotypic and Phenotypic Aspects of Longevity: Results from a Sicilian Survey and Implication for the Prevention and Treatment of Age-related Diseases. Curr. Pharm. Des. 2019, 25, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Boyce, W.T.; Sokolowski, M.B.; Robinson, G.E. Genes and environments, development and time. Proc. Natl. Acad. Sci. USA 2020, 117, 23235–23241. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Olivieri, F.; Salvioli, S.; Giuliani, C. The Contextualized Genetics of Human Longevity: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 968–979. [Google Scholar] [CrossRef]
- Caruso, C.; Ligotti, M.E.; Accardi, G.; Aiello, A.; Duro, G.; Galimberti, D.; Candore, G. How Important Are Genes to Achieve Longevity? Int. J. Mol. Sci. 2022, 23, 5635. [Google Scholar] [CrossRef]
- Poulain, M.; Pes, G.M.; Grasland, C.; Carru, C.; Ferrucci, L.; Baggio, G.; Franceschi, C.; Deiana, L. Identification of a geographic area characterized by extreme longevity in the Sardinia island: The AKEA study. Exp. Gerontol. 2004, 39, 1423–1429. [Google Scholar] [CrossRef]
- Caruso, C.; Ligotti, M.E.; Accardi, G.; Aiello, A.; Candore, G. An immunologist’s guide to immunosenescence and its treatment. Expert Rev. Clin. Immunol. 2022, 18, 961–981. [Google Scholar] [CrossRef]
- Rea, J.N.M.; Broczek, K.M.; Cevenini, E.; Celani, L.; Rea, S.A.J.; Sikora, E.; Franceschi, C.; Fortunati, V.; Rea, I.M. Insights Into Sibling Relationships and Longevity From Genetics of Healthy Ageing Nonagenarians: The Importance of Optimisation, Resilience and Social Networks. Front. Psychol. 2022, 13, 722286. [Google Scholar] [CrossRef]
- Govindaraju, D.; Atzmon, G.; Barzilai, N. Genetics, lifestyle and longevity: Lessons from centenarians. Appl. Transl. Genom. 2015, 4, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Scognamiglio, M.; Fiorito, C.; Benincasa, G.; Napoli, C. Genetic background, epigenetic factors and dietary interventions which influence human longevity. Biogerontology 2019, 20, 605–626. [Google Scholar] [CrossRef] [PubMed]
- Gurinovich, A.; Andersen, S.L.; Puca, A.; Atzmon, G.; Barzilai, N.; Sebastiani, P. Varying Effects of APOE Alleles on Extreme Longevity in European Ethnicities. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74 (Suppl. S1), S45–S51. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Aiello, A.; Accardi, G.; Ciaglia, E.; Cattaneo, M.; Puca, A. Genetic Signatures of Centenarians: Implications for Achieving Successful Aging. Curr. Pharm. Des. 2019, 25, 4133–4138. [Google Scholar] [CrossRef]
- Brooks-Wilson, A.R. Genetics of healthy aging and longevity. Hum. Genet. 2013, 132, 1323–1338. [Google Scholar] [CrossRef]
- Revelas, M.; Thalamuthu, A.; Oldmeadow, C.; Evans, T.J.; Armstrong, N.J.; Kwok, J.B.; Brodaty, H.; Schofield, P.R.; Scott, R.J.; Sachdev, P.S.; et al. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity. Mech. Ageing Dev. 2018, 175, 24–34. [Google Scholar] [CrossRef]
- Sebastiani, P.; Gurinovich, A.; Bae, H.; Andersen, S.; Malovini, A.; Atzmon, G.; Villa, F.; Kraja, A.T.; Ben-Avraham, D.; Barzilai, N.; et al. Four Genome-Wide Association Studies Identify New Extreme Longevity Variants. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1453–1464. [Google Scholar] [CrossRef]
- vB Hjelmborg, J.; Iachine, I.; Skytthe, A.; Vaupel, J.W.; McGue, M.; Koskenvuo, M.; Kaprio, J.; Pedersen, N.L.; Christensen, K. Genetic influence on human lifespan and longevity. Hum. Genet. 2006, 119, 312–321. [Google Scholar] [CrossRef]
- Sebastiani, P.; Solovieff, N.; DeWan, A.T.; Walsh, K.M.; Puca, A.; Hartley, S.W.; Melista, E.; Andersen, S.; Dworkis, D.A.; Wilk, J.B.; et al. Genetic Signatures of Exceptional Longevity in Humans. PLoS ONE 2012, 7, e29848. [Google Scholar] [CrossRef]
- Wojczynski, M.K.; Lin, S.J.; Sebastiani, P.; Perls, T.T.; Lee, J.; Kulminski, A.; Newman, A.; Zmuda, J.M.; Christensen, K.; Province, M.A. NIA Long Life Family Study: Objectives, Design, and Heritability of Cross-Sectional and Longitudinal Phenotypes. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 77, 717–727. [Google Scholar] [CrossRef]
- Listì, F.; Candore, G.; Modica, M.A.; Russo, M.; Di Lorenzo, G.; Esposito-Pellitteri, M.; Colonna-Romano, G.; Aquino, A.; Bulati, M.; Lio, D.; et al. A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann. New York Acad. Sci. 2006, 1089, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Hansen, I.S.; Baeten, D.L.P.; Den Dunnen, J. The inflammatory function of human IgA. Cell. Mol. Life Sci. 2019, 76, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Horáková, D.; Štěpánek, L.; Janout, V.; Janoutová, J.; Pastucha, D.; Kollárová, H.; Petráková, A.; Štěpánek, L.; Husár, R.; Martiník, K. Optimal Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Cut-Offs: A Cross-Sectional Study in the Czech Population. Medicina 2019, 55, 158. [Google Scholar] [CrossRef]
- Hausman, D.B.; Fischer, J.G.; Johnson, M.A. Protein, lipid, and hematological biomarkers in centenarians: Definitions, interpretation and relationships with health. Maturitas 2012, 71, 205–212. [Google Scholar] [CrossRef]
- Wawer, A.A.; Jennings, A.; Fairweather-Tait, S.J. Iron status in the elderly: A review of recent evidence. Mech. Ageing Dev. 2018, 175, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Passeri, G.; Vescovini, R.; Sansoni, P.; Galli, C.; Franceschi, C.; Passeri, M. Italian Multicentric Study on Centenarians (IMUSCE) Calcium metabolism and vitamin D in the extreme longevity. Exp. Gerontol. 2008, 43, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.-R.; Chen, C.-H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark. Res. 2017, 5, 18. [Google Scholar] [CrossRef]
- Lio, D.; Malaguarnera, M.; Maugeri, D.; Ferlito, L.; Bennati, E.; Scola, L.; Motta, M.; Caruso, C. Laboratory parameters in centenarians of Italian ancestry. Exp. Gerontol. 2008, 43, 119–122. [Google Scholar] [CrossRef]
- Yu, M.-A.; Sánchez-Lozada, L.G.; Johnson, R.J.; Kang, D.-H. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens. 2010, 28, 1234–1242. [Google Scholar] [CrossRef]
- El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017, 8, 487–493. [Google Scholar] [CrossRef]
- Siino, V.; Ali, A.; Accardi, G.; Aiello, A.; Ligotti, M.E.; Mosquim, S.J.; Candore, G.; Caruso, C.; Levander, F.; Vasto, S. Plasma proteome profiling of healthy individuals across the life span in a Sicilian cohort with long-lived individuals. Aging Cell 2022, 21, e13684. [Google Scholar] [CrossRef] [PubMed]
- Accardi, G.; Ligotti, M.E.; Candore, G. Phenotypic Aspects of Longevity. In Centenarians; Caruso, C., Ed.; Springer: Cham, Swizterland, 2019. [Google Scholar]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2018, 8, 1960. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: The Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2023, 64, 109–122. [Google Scholar] [CrossRef]
- Mantovani, A.; Garlanda, C. Humoral Innate Immunity and Acute-Phase Proteins. New Engl. J. Med. 2023, 388, 439–452. [Google Scholar] [CrossRef]
- Accardi, G.; Bono, F.; Cammarata, G.; Aiello, A.; Herrero, M.T.; Alessandro, R.; Augello, G.; Carru, C.; Colomba, P.; Costa, M.A.; et al. miR-126-3p and miR-21-5p as Hallmarks of Bio-Positive Ageing; Correlation Analysis and Machine Learning Prediction in Young to Ultra-Centenarian Sicilian Population. Cells 2022, 11, 1505. [Google Scholar] [CrossRef]
- Pinti, M.; Gibellini, L.; Lo Tartaro, D.L.; De Biasi, S.; Nasi, M.; Borella, R.; Fidanza, L.; Neroni, A.; Troiano, L.; Franceschi, C.; et al. A Comprehensive Analysis of Cytokine Network in Centenarians. Int. J. Mol. Sci. 2023, 24, 2719. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ge, M.; Zhang, Y.; Wu, X.; Leng, M.; Gan, C.; Mou, Y.; Zhou, J.; Valencia, C.A.; Hao, Q.; et al. Centenarians Alleviate Inflammaging by Changing the Ratio and Secretory Phenotypes of T Helper 17 and Regulatory T Cells. Front. Pharmacol. 2022, 13, 877709. [Google Scholar] [CrossRef] [PubMed]
- Sutin, A.R.; Luchetti, M.; Aschwanden, D.; Terracciano, A. Personality and aging-related immune phenotype. Psychoneuroendocrinology 2023, 153, 106113. [Google Scholar] [CrossRef]
- Ligotti, M.E.; Aiello, A.; Accardi, G.; Aprile, S.; Bonura, F.; Bulati, M.; Gervasi, F.; Giammanco, G.M.; Pojero, F.; Zareian, N.; et al. Analysis of T and NK cell subsets in the Sicilian population from young to supercentenarian: The role of age and gender. Clin. Exp. Immunol. 2021, 205, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Kouno, T.; Ikawa, T.; Hayatsu, N.; Miyajima, Y.; Yabukami, H.; Terooatea, T.; Sasaki, T.; Suzuki, T.; Valentine, M.; et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc. Natl. Acad. Sci. USA 2019, 116, 24242–24251. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, T.T.; Dowrey, T.W.; Villacorta-Martin, C.; Montano, M.; Reed, E.; Belkina, A.C.; Andersen, S.L.; Perls, T.T.; Monti, S.; Murphy, G.J.; et al. Multi-modal profiling of peripheral blood cells across the human lifespan reveals distinct immune cell signatures of aging and longevity. EBioMedicine 2023, 90, 104514. [Google Scholar] [CrossRef] [PubMed]
- Ligotti, M.E.; Accardi, G.; Aiello, A.; Calabrò, A.; Caruso, C.; Corsale, A.M.; Dieli, F.; Di Simone, M.; Meraviglia, S.; Candore, G. Sicilian semi- and supercentenarians: Age-related NK cell immunophenotype and longevity trait definition. Transl. Med. UniSa 2023, 25, 2. [Google Scholar] [CrossRef]
- Ligotti, M.E.; Accardi, G.; Aiello, A.; Calabrò, A.; Caruso, C.; Corsale, A.M.; Dieli, F.; Di Simone, M.; Meraviglia, S.; Candore, G. Sicilian semi- and supercentenarians: Age-related Tγδ cell immunophenotype contributes to longevity trait definition. Clin. Exp. Immunol. 2023; in press. [Google Scholar] [CrossRef]
- Arai, Y.; Inagaki, H.; Takayama, M.; Abe, Y.; Saito, Y.; Takebayashi, T.; Gondo, Y.; Hirose, N. Physical Independence and Mortality at the Extreme Limit of Life Span: Supercentenarians Study in Japan. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 486–494. [Google Scholar] [CrossRef]
- Andersen, S.L.; Sebastiani, P.; Dworkis, D.A.; Feldman, L.; Perls, T.T. Health Span Approximates Life Span Among Many Supercentenarians: Compression of Morbidity at the Approximate Limit of Life Span. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 395–405. [Google Scholar] [CrossRef]
Variable | A.T. | Young Adults N = 29 | Centenarians N = 22 |
---|---|---|---|
APOE | N alleles | N alleles | N alleles |
ε3 | 2 | 5 | 4 |
ε2 | 49 | 39 | |
ε4 | 4 | 1 | |
FOXO3A rs2802292 | N alleles | N alleles | N alleles |
G | 25 | 17 | |
T | 2 | 33 | 27 |
Variable (Unit) | Values | Laboratory Reference Range Value |
---|---|---|
Red Blood Cells (106 µL) | 4.39 | 4.20–5.50 |
Haemoglobin (g/dL) | 13.70 | 12.00–18.00 |
Platelets (103 µL) | 230 | 150–450 |
Leukocytes (103 µL) | 7.61 | 4.00–11.00 |
Neutrophils (103 µL) | 4.12 | 2.00–8.00 |
Eosinophils (103 µL) | 0.37 | 0.00–0.80 |
Basophils (103 µL) | 0.05 | 0.00–0.20 |
Monocytes (103 µL) | 0.94 | 0.16–1.00 |
Lymphocytes (103 µL) | 2.12 | 1.00–5.00 |
CD3 (103/μL) | 1.25 | 0.81–2.13 |
CD4 (103/μL) | 0.70 | 0.02–1.88 |
CD8 (103/μL) | 0.51 | 0.06–0.74 |
IgG (mg/dL) | 1145 | 700–1600 |
IgA(mg/dL) | 551 | 70–400 |
IgM (mg/dL) | 94.2 | 40–230 |
Variable (Unit) | Values | Laboratory Reference Range Value |
---|---|---|
Endocrine Markers | ||
TSH (µIU/mL) | 0.56 | 0.27–4.20 |
FT3 (pg/mL) | 2.65 | 2.00–4.40 |
FT4 (ng/dL) | 1.31 | 0.93–1.70 |
Insulin (µU/mL) | 3.28 | 2.60–24.90 |
HOMA Index | 0.56 | 0.47–3.19 |
Glycaemia (mg/dL) | 69 | 70–100 |
Liver Markers | ||
ALT (U/L) | 13 | <41 |
AST (U/L) | 23 | <40 |
GGT (U/L) | 53 | 8–61 |
Bilirubin (mg/dL) | 0.85 | <1.20 |
Albumin (g/L) | 33.4 | 38–48 |
Proteins (g/L) | 58.6 | 66–87 |
Iron Markers | ||
Iron (µg/dL) | 85 | 37–145 |
Ferritin (ng/mL) | 91 | 15–400 |
Transferrin (mg/dL) | 266 | 200–360 |
Lipid Markers | ||
Total Cholesterol (mg/dL) | 133 | <200 |
LDL (mg/dL) | 64.4 | >65 |
HDL (mg/dL) | 56 | >50 |
Triglycerides (mg/dL) | 63 | <200 |
Bone Markers | ||
Osteocalcin ng/mL | 33.4 | 14.00–46.00 |
ALP (U/L) | 175 | 40–129 |
Calcium (mg/dL) | 8.61 | 8.40–10.20 |
Magnesium (mg/dL) | 2.13 | 1.60–2.60 |
Vitamin D (ng/mL) | 3.75 | (>30) |
Catabolic Parameters | ||
Creatinine (mg/dL) | 1.01 | 0.5–1.2 |
Urea (mg/dL) | 33.5 | 16.8–48.5 |
Variable (unit) | Values | Laboratory Reference Range Values |
---|---|---|
LDL Ox (mIU/mL) | 47 | 44.6–87.3 |
Uric Acid (mg/dL) | 6.0 | 2.4–7.0 |
CRP (mg/dL) | 3.37 | <5 mg/dL |
IL-6 (pg/mL) | 17.8 | <7 pg/ml |
NLR | 1.95 | 0.92–2.84 |
PLR | 108.02 | 074.71–193.34 |
INFLA score | 8 | −1.25 * |
Variable (Unit) | Values | Laboratory Reference Range Values |
---|---|---|
CD4+ Naive (CD45RA + CD27+) (%) | 24.0 | 4–57 |
CD8+ Naive (CD45RA + CD27+) (%) | 9 | 10–78 |
CD4/CD8 | 1.37 | 0.85–5.04 |
TN/TM (CD4) | 0.32 | 0.05–1.35 |
TN/TM (CD8) | 0.10 | 0.11–3.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Accardi, G.; Aiello, A.; Aprile, S.; Calabrò, A.; Caldarella, R.; Caruso, C.; Ciaccio, M.; Dieli, F.; Ligotti, M.E.; Meraviglia, S.; et al. The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity. J. Clin. Med. 2023, 12, 7591. https://doi.org/10.3390/jcm12247591
Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Dieli F, Ligotti ME, Meraviglia S, et al. The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity. Journal of Clinical Medicine. 2023; 12(24):7591. https://doi.org/10.3390/jcm12247591
Chicago/Turabian StyleAccardi, Giulia, Anna Aiello, Stefano Aprile, Anna Calabrò, Rosalia Caldarella, Calogero Caruso, Marcello Ciaccio, Francesco Dieli, Mattia Emanuela Ligotti, Serena Meraviglia, and et al. 2023. "The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity" Journal of Clinical Medicine 12, no. 24: 7591. https://doi.org/10.3390/jcm12247591
APA StyleAccardi, G., Aiello, A., Aprile, S., Calabrò, A., Caldarella, R., Caruso, C., Ciaccio, M., Dieli, F., Ligotti, M. E., Meraviglia, S., & Candore, G. (2023). The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity. Journal of Clinical Medicine, 12(24), 7591. https://doi.org/10.3390/jcm12247591