The Impact of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Patients with CPFE
2.3. Diagnosis of Lung Cancer
2.4. Definition of AE
2.5. Data Collection
3. Statistical Analysis
4. Results
4.1. Baseline Clinical Characteristics and Tumor Features in CPFE Patients with Lung Cancer
4.2. Comparison between CPFE Patients with LC and without LC
4.3. Independent Factors for Lung Cancer in Patients Combined with CPFE
4.4. Comparison between the Low C3 and High C3 Groups of CPFE Patients with Lung Cancer
4.5. Comparison between AE and without AE Patients with Lung Cancer
4.6. Risk Factors for Natural-Course-Related AE in Patients Combined with CPFE
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cottin, V. Combined pulmonary fibrosis and emphysema: A distinct underrecognised entity. Eur. Respir. J. 2005, 26, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Bolaki, M.; Antoniou, K.M. Combined Pulmonary Fibrosis and Emphysema. Semin. Respir. Crit. Care Med. 2020, 41, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Kitaguchi, Y.; Fujimoto, K.; Hanaoka, M.; Kawakami, S.; Honda, T.; Kubo, K. Clinical characteristics of combined pulmonary fibrosis and emphysema. Respirology 2010, 15, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Alsumrain, M.; De Giacomi, F.; Nasim, F.; Koo, C.W.; Bartholmai, B.J.; Levin, D.L.; Moua, T. Combined pulmonary fibrosis and emphysema as a clinicoradiologic entity: Characterization of presenting lung fibrosis and implications for survival. Respir. Med. 2019, 146, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Cottin, V. The impact of emphysema in pulmonary fibrosis. Eur. Respir. Rev. 2013, 22, 153–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.D.; Das, J.P.; Murphy, D.J.; Keane, M.P.; Donnelly, S.C.; Dodd, J.D.; Butler, M.W. Idiopathic Pulmonary Fibrosis With Emphysema: Evidence of Synergy Among Emphysema and Idiopathic Pulmonary Fibrosis in Smokers. Respir. Care 2015, 60, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Cottin, V.; Cordier, J.-F. Combined pulmonary fibrosis and emphysema in connective tissue disease. Curr. Opin. Pulm. Med. 2012, 18, 418–427. [Google Scholar] [CrossRef]
- Sugino, K.; Nakamura, Y.; Ito, T.; Isshiki, T.; Sakamoto, S.; Homma, S. Comparison of clinical characteristics and outcomes between combined pulmonary fibrosis and emphysema associated with usual interstitial pneumonia pattern and non-usual interstitial pneumonia. Sarcoidosis Vasc. Diffus. Lung Dis. 2015, 32, 129–137. [Google Scholar]
- Kumagai, S.; Marumo, S.; Yamanashi, K.; Tokuno, J.; Ueda, Y.; Shoji, T.; Nishimura, T.; Huang, C.-l.; Fukui, M. Prognostic significance of combined pulmonary fibrosis and emphysema in patients with resected non-small-cell lung cancer: A retrospective cohort study. Eur. J. Cardiothorac. Surg. 2014, 46, e113–e119. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Liu, P.; Zhou, H.; Kong, H.; Xie, W. An increased risk of lung cancer in combined pulmonary fibrosis and emphysema patients with usual interstitial pneumonia compared with patients with idiopathic pulmonary fibrosis alone: A systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2021, 15, 17534666211017050. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lee, Y.S.; Min, K.H.; Hur, G.Y.; Lee, S.Y.; Kang, K.H.; Shim, J.J. Impact and prognosis of lung cancer in patients with combined pulmonary fibrosis and emphysema. Sarcoidosis Vasc. Diffus. Lung Dis. 2020, 37, e2020020. [Google Scholar] [CrossRef]
- Li, C.; Wu, W.; Chen, N.; Song, H.; Lu, T.; Yang, Z.; Wang, Z.; Zhou, J.; Liu, L. Clinical characteristics and outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema: A systematic review and meta-analysis of 13 studies. J. Thorac. Dis. 2017, 9, 5322–5334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.J.; Do, K.-H.; Lee, J.B.; Alblushi, S.; Lee, S.M. Lung Cancer in Combined Pulmonary Fibrosis and Emphysema: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0161437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishaba, T. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Medicina 2019, 55, 70. [Google Scholar] [CrossRef] [Green Version]
- Cottin, V.; Selman, M.; Inoue, Y.; Wong, A.W.; Corte, T.J.; Flaherty, K.R.; Han, M.K.; Jacob, J.; Johannson, K.A.; Kitaichi, M.; et al. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am. J. Respir. Crit. Care Med. 2022, 206, e7–e41. [Google Scholar] [CrossRef]
- Kishaba, T.; Shimaoka, Y.; Fukuyama, H.; Yoshida, K.; Tanaka, M.; Yamashiro, S.; Tamaki, H. A cohort study of mortality predictors and characteristics of patients with combined pulmonary fibrosis and emphysema. BMJ Open 2012, 2, e000988. [Google Scholar] [CrossRef]
- Qiu, M.; Chen, Y.; Ye, Q. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Clin. Respir. J. 2018, 12, 1084–1092. [Google Scholar] [CrossRef]
- Kondoh, Y.; Taniguchi, H.; Ebina, M.; Azuma, A.; Ogura, T.; Taguchi, Y.; Suga, M.; Takahashi, H.; Nakata, K.; Sugiyama, Y.; et al. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis—Extended analysis of pirfenidone trial in Japan. Respir. Investig. 2015, 53, 271–278. [Google Scholar] [CrossRef]
- Song, M.-A.; Benowitz, N.L.; Berman, M.; Brasky, T.M.; Cummings, K.M.; Hatsukami, D.K.; Marian, C.; O’Connor, R.; Rees, V.W.; Woroszylo, C.; et al. Cigarette Filter Ventilation and its Relationship to Increasing Rates of Lung Adenocarcinoma. JNCI J. Natl. Cancer Inst. 2017, 109, djx075. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, T.; Koh, Y.; Ando, M.; Ito, N.; Takeo, S.; Adachi, H.; Tagawa, T.; Kakegawa, S.; Yamashita, M.; Kataoka, K.; et al. Prospective Analysis of Oncogenic Driver Mutations and Environmental Factors: Japan Molecular Epidemiology for Lung Cancer Study. J. Clin. Oncol. 2016, 34, 2247–2257. [Google Scholar] [CrossRef]
- Moon, S.W.; Park, M.S.; Kim, Y.S.; Jang, J.; Lee, J.H.; Lee, C.-T.; Chung, J.-H.; Shim, H.S.; Lee, K.W.; Kim, S.-S.; et al. Combined pulmonary fibrosis and emphysema and idiopathic pulmonary fibrosis in non-small cell lung cancer: Impact on survival and acute exacerbation. BMC Pulm. Med. 2019, 19, 177. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Collard, H.R.; Ryerson, C.J.; Corte, T.J.; Jenkins, G.; Kondoh, Y.; Lederer, D.J.; Lee, J.S.; Maher, T.M.; Wells, A.U.; Antoniou, K.M.; et al. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am. J. Respir. Crit. Care Med. 2016, 194, 265–275. [Google Scholar] [CrossRef]
- Menju, T. Lung cancer and epithelial-mesenchymal transition. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 781–789. [Google Scholar] [CrossRef]
- Zhang, M.; Yoshizawa, A.; Kawakami, S.; Asaka, S.; Yamamoto, H.; Yasuo, M.; Agatsuma, H.; Shiina, T.; Yoshida, K.; Honda, T.; et al. The histological characteristics and clinical outcomes of lung cancer in patients with combined pulmonary fibrosis and emphysema. Cancer Med. 2016, 5, 2721–2730. [Google Scholar] [CrossRef] [Green Version]
- Palucka, A.K.; Coussens, L.M. The Basis of Oncoimmunology. Cell 2016, 164, 1233–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Lo, C.-H.; Wang, K.; Polychronidis, G.; Wang, L.; Zhong, R.; Knudsen, M.D.; Fang, Z.; Song, M. Immune-Mediated Diseases Associated with Cancer Risks. JAMA Oncol. 2022, 8, 209–219. [Google Scholar] [CrossRef]
- Narendra, B.L.; Reddy, K.E.; Shantikumar, S.; Ramakrishna, S. Immune system: A double-edged sword in cancer. Inflamm. Res. 2013, 62, 823–834. [Google Scholar] [CrossRef]
- Toyama, A.; Nakagawa, H.; Matsuda, K.; Ishikawa, N.; Kohno, N.; Daigo, Y.; Sato, T.-A.; Nakamura, Y.; Ueda, K. Deglycosylation and label-free quantitative LC-MALDI MS applied to efficient serum biomarker discovery of lung cancer. Proteome Sci. 2011, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Okano, T.; Kondo, T.; Kakisaka, T.; Fujii, K.; Yamada, M.; Kato, H.; Nishimura, T.; Gemma, A.; Kudoh, S.; Hirohashi, S. Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis. Proteomics 2006, 6, 3938–3948. [Google Scholar] [CrossRef]
- Mehan, M.R.; Williams, S.A.; Siegfried, J.M.; Bigbee, W.L.; Weissfeld, J.L.; Wilson, D.O.; Pass, H.I.; Rom, W.N.; Muley, T.; Meister, M.; et al. Validation of a blood protein signature for non-small cell lung cancer. Clin. Proteomics 2014, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Boire, A.; Zou, Y.; Shieh, J.; Macalinao, D.G.; Pentsova, E.; Massagué, J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017, 168, P1101–P1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawish, E.; Sauter, M.; Sauter, R.; Nording, H.; Langer, H.F. Complement, inflammation and thrombosis. Br. J. Pharmacol. 2021, 178, 2892–2904. [Google Scholar] [CrossRef] [PubMed]
- Ikuyama, Y.; Ushiki, A.; Kosaka, M.; Akahane, J.; Mukai, Y.; Araki, T.; Kitaguchi, Y.; Tateishi, K.; Urushihata, K.; Yasuo, M.; et al. Prognosis of patients with acute exacerbation of combined pulmonary fibrosis and emphysema: A retrospective single-centre study. BMC Pulm. Med. 2020, 20, 144. [Google Scholar] [CrossRef] [PubMed]
- Zantah, M.; Dotan, Y.; Dass, C.; Zhao, H.; Marchetti, N.; Criner, G.J. Acute exacerbations of COPD versus IPF in patients with combined pulmonary fibrosis and emphysema. Respir. Res. 2020, 21, 164. [Google Scholar] [CrossRef]
- Otsuka, H.; Sugino, K.; Hata, Y.; Makino, T.; Koezuka, S.; Isobe, K.; Tochigi, N.; Shibuya, K.; Homma, S.; Iyoda, A. Clinical features and outcomes of patients with lung cancer as well as combined pulmonary fibrosis and emphysema. Mol. Clin. Oncol. 2016, 5, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Emami Ardestani, M.; Alavi Naeini, N. Evaluation of the prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in acute exacerbation of chronic obstructive pulmonary disease. J. Res. Med. Sci. 2022, 27, 50. [Google Scholar] [CrossRef]
- Nathan, S.D.; Mehta, J.; Stauffer, J.; Morgenthien, E.; Yang, M.; Limb, S.L.; Bhorade, S. Changes in Neutrophil-Lymphocyte or Platelet-Lymphocyte Ratios and Their Associations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2021, 10, 1427. [Google Scholar] [CrossRef]
- Ruta, V.M.; Man, A.M.; Alexescu, T.G.; Motoc, N.S.; Tarmure, S.; Ungur, R.A.; Todea, D.A.; Coste, S.C.; Valean, D.; Pop, M.C. Neutrophil-to-Lymphocyte Ratio and Systemic Immune-Inflammation Index—Biomarkers in Interstitial Lung Disease. Medicina 2020, 56, 381. [Google Scholar] [CrossRef]
- Phan, T.; Brailovsky, Y.; Fareed, J.; Hoppensteadt, D.; Iqbal, O.; Darki, A. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict All-Cause Mortality in Acute Pulmonary Embolism. Clin. Appl. Thromb. 2020, 26, 1076029619900549. [Google Scholar] [CrossRef] [Green Version]
- Sia, C.-H.; Leow, A.S.-T.; Tan, B.Y.-Q.; Low, C.J.; Kaur, R.; Yeo, T.-C.; Chan, M.Y.-Y.; Tay, E.L.-W.; Yeo, L.L.-L.; Yap, E.-S.; et al. The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predict left ventricular thrombus resolution in acute myocardial infarction without percutaneous coronary intervention. Thromb. Res. 2020, 194, 16–20. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Zhang, W.; Ying, H.; Xu, Y.; Zhang, J.; Min, Q.; Chen, J. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio are 2 new inflammatory markers associated with pulmonary involvement and disease activity in patients with dermatomyositis. Clin. Chim. Acta 2017, 465, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xu, Y.; Zhang, K.; Jiang, S.; Zhou, Y.; Zhao, Y. A Clinical Model for the Prediction of Acute Exacerbation Risk in Patients with Idiopathic Pulmonary Fibrosis. BioMed Res. Int. 2020, 2020, 8848919. [Google Scholar] [CrossRef] [PubMed]
- Collard, H.R.; Yow, E.; Richeldi, L.; Anstrom, K.J.; Glazer, C.; IPFnet Investigators. Suspected acute exacerbation of idiopathic pulmonary fibrosis as an outcome measure in clinical trials. Respir. Res. 2013, 14, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.W.; Hong, S.-B.; Lim, C.-M.; Koh, Y.; Kim, D.S. Acute exacerbation of idiopathic pulmonary fibrosis: Incidence, risk factors and outcome. Eur. Respir. J. 2011, 37, 356–363. [Google Scholar] [CrossRef]
CPFE-LC Group | n | |
---|---|---|
Sex (men) | 59/59 (100.0%) | 59 |
Age, years | 66 (62, 71) | 59 |
Ex- or current smokers | 50/59 (84.7%) | 59 |
Pack-years | 40 (20, 45) | 59 |
Localization | 59 | |
Upper lobe | 25/59 (42.4%) | |
Lower lobe | 34/59 (57.6%) | |
Cancer in emphysema areas | 26/59 (44.1%) | 59 |
Cancer in fibrosis areas | 33/59 (55.9%) | |
Central lung cancer | 13/59 (22.0%) | 59 |
Peripheral lung cancer | 46/59 (78.0%) | |
Pathological type | 59 | |
Adenocarcinoma | 24/59 (40.7%) | |
Squamous carcinoma | 18/59 (30.5%) | |
NOS | 7/59 (11.9%) | |
Small cell carcinoma | 6/59 (10.2%) | |
Large cell carcinoma | 4/59 (6.8%) | |
T 1/2/3/4 | 7/14/15/23 | 59 |
N 0/1/2/3 | 5/5/19/30 | 59 |
M 0/1 | 29/30 | 59 |
Staging I/II/III/IV | 3/7/18/31 | 59 |
Degree of differentiation | 50 | |
Poorly differentiated | 27/50 (54.0%) | |
Moderately differentiated | 15/50 (30.0%) | |
Highly differentiated | 8/50 (16.0%) |
CPFE-LC Group | CPFE Group | p Value | |
---|---|---|---|
n = 59 | n = 68 | ||
Patient characteristics, number (%) or median (Q1,Q3) | |||
Sex (men) | 59/59 (100.0%) | 59/68 (86.8%) | 0.003 |
Age, years | 66 (62, 71) | 71 (65, 76) | 0.156 |
BMI, kg/m2 | 22.66 (20.40, 24.81) | 21.30 (19.93, 23.90) | 0.149 |
Ex- or current smokers | 50/59 (84.7%) | 46/68 (67.6%) | 0.038 |
Pack-years | 40 (20, 45) | 20 (0, 45) | 0.015 |
Dust exposure | 1/59 (1.7%) | 0/68 (0.0%) | 0.465 |
Coronary heart disease | 10/59 (16.9%) | 14/68 (20.6%) | 0.189 |
Diabetes mellitus | 13/59 (22.0%) | 16/68 (23.5%) | 0.841 |
Previous pulmonary tuberculosis | 13/59 (22.0%) | 7/68 (10.3%) | 0.039 |
Family history of cancer | 11/59 (18.6%) | 6/68 (8.8%) | 0.042 |
Laboratory examinations, median (Q1,Q3) | |||
ANC, ×109/L | 5.67 (4.23, 8.61) | 5.94 (3.77, 9.54) | 0.755 |
WBC, ×109/L | 7.99 (6.78, 11.11) | 8.27 (5.77, 11.17) | 0.182 |
ALC, ×109/L | 1.36 (0.99, 2.01) | 1.13 (0.80, 1.63) | 0.018 |
PLT, ×109/L | 197.0 (121.0,248.0) | 194.5 (133.5,245.5) | 0.667 |
NLR | 3.88 (2.85,6.87) | 5.17 (2.59,10.18) | 0.173 |
PLR | 128.76 (89.23,198.43) | 146.5 (88.08,223.46) | 0.124 |
CRP, mg/L | 57.30 (9.80, 90.30) | 35.40 (8.51, 80.42) | 0.046 |
IL-6, ug/L | 70.30 (11.57, 101.99) | 42.53 (12.93, 64.47) | 0.043 |
PCT, ng/mL | 0.06 (0.03, 0.15) | 0.07 (0.04, 0.16) | 0.322 |
Bilirubin, umol/L | 10.40 (7.75, 14.60) | 10.85 (6.75, 14.87) | 0.985 |
Cystatin C, mg/L | 1.11 (0.93, 1.25) | 1.11 (0.91, 1.30) | 0.924 |
Fibrinogen, g/L | 4.95 (3.66, 5.66) | 3.97 (3.07, 4.98) | 0.009 |
D-dimer, mg/L FEU | 1.17 (0.49, 2.86) | 1.19 (0.60, 2.79) | 0.978 |
BNP, ng/L | 337 (129, 958) | 563 (129, 1350) | 0.139 |
C3, g/L | 0.969 (0.852, 1.100) | 0.895 (0.765, 0.975) | 0.017 |
C4, g/L | 0.235 (0.191, 0.279) | 0.204 (0.163, 0.246) | 0.022 |
CD4+ T cells, cell/µL | 438.0 (238.5, 570.5) | 414.5 (164.5, 574.7) | 0.803 |
CD8+ T cells, cell/µL | 243.0 (215.0, 325.0) | 312.5 (190.0, 479.7) | 0.293 |
CD4/CD8 | 1.49 (0.99, 2.16) | 1.31 (0.77, 2.00) | 0.168 |
Pulmonary function test, median (Q1,Q3) | |||
CPI | 39.6 (27.1, 50.2) | 41.7 (26.4, 55.8) | 0.427 |
FEV1, %pred | 86.3 (77.1, 93.5) | 79.0 (61.5, 87.5) | 0.067 |
FEV1/FVC, % | 77.4 (72.8, 81.4) | 82.0 (72.3, 93.7) | 0.047 |
VC, %pred | 86.2 (76.9, 99.0) | 79.2 (61.8, 87.4) | 0.089 |
DLCO, %pred | 42.5 (32.0, 56.1) | 45.9 (38.5, 57.8) | 0.209 |
Radiological examinations and occurrence of AE, number (%) or median (Q1,Q3) | |||
Morphology of pulmonary fibrosis | |||
Typical honeycombing | 29/59 (49.2%) | 37/68 (54.4%) | 0.258 |
Reticular pattern | 22/59 (37.3%) | 21/68 (30.9%) | 0.693 |
Reticular pattern with mild GGO | 8/59 (13.5%) | 10/68 (14.7%) | 0.506 |
Peripheral traction bronchiectasis or bronchiolectasis | 42/59 (71.2%) | 43/68 (63.2%) | 0.168 |
Emphysema phenotype | 0.256 | ||
Paraseptal emphysema | 32/59 (54.2%) | 37/68 (54.4%) | |
Panlobular emphysema | 4/59 (6.8%) | 2/68 (2.9%) | |
Centrilobular emphysema | 23/59 (39.0%) | 29/68 (42.6%) | |
PA/A > 1 | 26/59 (44.1%) | 38/68 (55.9%) | 0.211 |
MPA, mm | 23.0 (22.0, 24.0) | 26.5 (21.0, 29.0) | 0.071 |
AE | 6/59 (10.2%) | 11/68 (16.2%) | 0.139 |
Variable | Univariate Analyses | Multivariate Analyses | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Sex (men) | 1.182 (0.911–2.798) | 0.498 | ||
Ex- or current smokers | 1.259 (1.012–2.538) | 0.045 | 1.085 (0.261–4.508) | 0.911 |
Pack-years ≥ 20 | 3.991 (1.893–8.416) | 0.000 | 3.672 (1.165–11.579) | 0.026 |
Previous pulmonary tuberculosis | 3.565 (1.103–11.519) | 0.034 | 4.615 (0.714–11.354) | 0.375 |
Family history of cancer | 3.149 (1.128–8.817) | 0.028 | 8.353 (2.368–10.417) | 0.002 |
ALC > 1.87 × 109/L | 3.362 (1.388–8.142) | 0.047 | 3.439 (0.080–10.951) | 0.157 |
CRP > 75.3 mg/L | 1.004 (0.994–1.019) | 0.301 | ||
IL-6 > 123.1 ug/L | 1.000 (0.988–1.011) | 0.892 | ||
Fibrinogen > 4.81 g/L | 2.743 (1.441–8.257) | 0.049 | 3.628 (1.403–9.385) | 0.008 |
C3 > 1.00 g/L | 2.283 (1.011–6.617) | 0.031 | 5.299 (1.727–16.263) | 0.004 |
C4 > 0.24 g/L | 2.315 (1.122–4.779) | 0.023 | 0.690 (0.244–1.954) | 0.485 |
FEV1/FVC < 70% | 1.051 (0.984–2.797) | 0.055 |
Low C3 Group (C3 < 1.00 g/L) n = 30 | High C3 Group (C3 ≥ 1.00 g/L) n = 29 | p Value | |
---|---|---|---|
Age, years | 69 (61, 78) | 65 (58, 73) | 0.094 |
Sex (men) | 30/30 (100.0%) | 29/29 (100.0%) | 1.000 |
Ex- or current smokers | 29/30 (96.7%) | 21/29 (72.4%) | 0.092 |
Pack-years | 35 (19, 51) | 30 (18, 46) | 0.063 |
WBC, ×109/L | 8.44 (6.17, 10.37) | 9.12 (6.01, 12.07) | 0.150 |
ANC, ×109/L | 6.15 (3.85, 8.34) | 6.56 (4.02, 8.94) | 0.340 |
ALC, ×109/L | 1.22 (0.78–1.81) | 1.62 (1.17–2.46) | 0.070 |
PLT, ×109/L | 174.5 (126.5–228.5) | 214.0 (114.5–261.5) | 0.347 |
NLR | 4.17 (2.87–6.99) | 3.67 (2.19–5.80) | 0.243 |
PLR | 143.53 (98.46–208.94) | 108.41 (191.17) | 0.182 |
CRP, mg/L | 51.90 (43.19, 60.21) | 82.37 (61.89, 90.91) | 0.039 |
IL-6, ug/L | 53.69 (31.61, 57.68) | 89.80 (66.57, 127.13) | 0.035 |
Pathological type of tumor | 0.441 | ||
Adenocarcinoma | 13/30 (43.3%) | 11/29 (37.9%) | |
Squamous carcinoma | 11/30 (36.7%) | 7/29 (24.1%) | |
Small cell lung cancer | 2/30 (6.7%) | 5/29 (17.2%) | |
Others | 5/30 (16.7%) | 6/29 (20.7%) | |
Location | 0.749 | ||
Cancer in fibrotic areas | 16/30 (58.3%) | 17/29 (53.8%) | |
Cancer in emphysema areas | 14/30 (41.7%) | 12/29 (46.2%) | |
Staging (III/IV) | 24/30 (80.0%) | 25/29 (86.2%) | 0.922 |
Distant metastasis | 15/30 (50.0%) | 17/29 (58.6%) | 0.089 |
Contralateral lung | 4/15 (33.3%) | 6/17 (35.3%) | 0.728 |
Pleura | 6/15 (50.0%) | 5/17 (29.4%) | 0.623 |
Bone | 4/15 (33.3%) | 7/17 (41.2%) | 0.382 |
Liver | 2/15 (16.7%) | 1/17 (5.9%) | 0.602 |
Brain | 0/15 (0.0%) | 2/17 (11.8%) | 0.059 |
Adrenal gland | 1/15 (8.3%) | 1/17 (5.9%) | 0.735 |
Emphysema phenotype | 0.084 | ||
Centrilobular emphysema | 19/30 (37.5%) | 15/29 (30.8%) | |
Panlobular emphysema | 0/30 (0.0%) | 2/29 (0.0%) | |
Paraspinal emphysema | 11/30 (62.5%) | 12/29 (69.2%) | |
PA/A > 1 | 13/30 (43.3%) | 13/29 (44.8%) | 0.908 |
AE Group n = 17 | Without AE Group n = 110 | p Value | |
---|---|---|---|
Sex (men) | 17/17 (100.0%) | 101/110 (91.8%) | 0.607 |
Age, years | 65 (56, 72) | 69 (64, 75) | 0.057 |
BMI, kg/m2 | 20.88 (19.63, 24.98) | 22.23 (20.03, 24.61) | 0.685 |
Ex- or current smokers | 14/17 (82.4%) | 82/110 (74.5%) | 0.761 |
Pack-years | 30 (10, 45) | 30 (0, 45) | 0.765 |
Dust exposure | 0/17 (0.0%) | 1/110 (0.9%) | 0.866 |
Coronary heart disease | 4/17 (23.5%) | 16/110 (14.5%) | 0.471 |
Diabetes mellitus | 7/17 (41.2%) | 22/110 (20.0%) | 0.066 |
Previous pulmonary tuberculosis | 3/17 (17.6%) | 15/110 (13.6%) | 0.709 |
Underlying disease | 0.092 | ||
Without underlying disease | 8/17 (47.1%) | 63/110 (57.3%) | 0.184 |
One type of disease | 4/17 (23.5%) | 37/110 (33.6%) | 0.081 |
≥2 types of underlying disease | 5/17 (29.4%) | 10/110 (9.1%) | 0.003 |
ANC, ×109/L | 6.09 (4.21, 9.06) | 5.12 (3.54, 6.58) | 0.139 |
WBC, ×109/L | 7.54 (5.74, 9.38) | 8.37 (6.25, 11.35) | 0.116 |
ALC, ×109/L | 1.20 (0.85, 1.86) | 1.25 (0.85, 1.80) | 0.942 |
PLT, ×109/L | 198.0 (129.6–248.0) | 168.0 (108.5–249.0) | 0.296 |
NLR | 4.66 (2.80–8.63) | 4.07 (2.99–9.19) | 0.290 |
PLR | 157.4 (102.2–223.4) | 103.4 (75.6–222.9) | 0.030 |
CRP, mg/L | 78.00 (13.20, 121.50) | 25.10 (8.51, 80.43) | 0.046 |
IL-6, ug/L | 39.38 (10.67, 103.75) | 25.64 (11.72, 58.17) | 0.926 |
PCT, ng/mL | 0.07 (0.02–0.25) | 0.07 (0.03–0.15) | 0.824 |
BNP, ng/L | 304 (105, 1723) | 431 (139, 1170) | 0.902 |
Fibrinogen, g/L | 4.95 (3.75, 5.31) | 4.21 (3.27, 5.58) | 0.679 |
D-dimer, mg/L FEU | 2.33 (0.85–6.31) | 1.16 (0.48–2.59) | 0.041 |
C3, g/L | 0.91 (0.86, 1.08) | 0.93 (0.79, 1.08) | 0.668 |
C4, g/L | 0.21 (0.17, 0.24) | 0.21 (0.17, 0.27) | 0.440 |
CD4+ T cells, cell/uL | 263 (224–680) | 443 (260–568) | 0.714 |
CD8+ T cells, cell/uL | 216 (132–288) | 284 (220–395) | 0.113 |
CD4/CD8 | 1.85 (1.10–3.05) | 1.33 (0.79–1.89) | 0.044 |
CPI | 41.8 (27.1, 57.8) | 32.6 (21.1, 45.2) | 0.427 |
FEV1, %pred | 80.1 (62.7, 87.8) | 85.4 (73.6, 92.9) | 0.215 |
FEV1/FVC, % | 79.5 (76.1, 95.5) | 78.5 (69.7, 83.1) | 0.519 |
VC, %pred | 75.2 (52.5, 85.9) | 85.8 (76.9, 100.8) | 0.011 |
DLCO, %pred | 39.2 (29.0, 46.0) | 53.9 (45.8, 69.8) | 0.000 |
Morphology of pulmonary fibrosis | 0.178 | ||
Typical honeycombing | 9/17 (52.9%) | 52/110 (47.3%) | |
Reticular pattern | 5/17 (29.4%) | 46/110 (41.8%) | |
Reticular pattern with mild GGO | 3/17 (17.6%) | 12/110 (10.9%) | |
Peripheral traction bronchiectasis or bronchiolectasis | 14/17 (82.4%) | 64/110 (58.2%) | 0.057 |
Emphysema phenotype | 0.082 | ||
Paraseptal emphysema | 13/17 (76.5%) | 56/110 (50.9%) | 0.058 |
Panlobular emphysema | 1/17 (5.9%) | 5/110 (4.5%) | 0.877 |
Centrilobular emphysema | 3/17 (17.6%) | 49/110 (44.5%) | 0.021 |
PA/A > 1 | 10/17 (58.8%) | 55/110 (50.0%) | 0.604 |
MPA, mm | 26.5 (21.3–27.3) | 23.0 (21.5–27.0) | 0.596 |
Lung cancer diagnosis | 6/17 (35.3%) | 53/110 (48.2%) | 0.183 |
Variable | Univariate Analyses | Multivariate Analyses | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age, years | 1.040 (0.918–1.178) | 0.535 | ||
Diabetes mellitus | 2.800 (0.958–8.187) | 0.060 | ||
Underlying disease: without | Re | |||
One type of disease | 0.851 (0.240–3.023) | 0.803 | ||
≥2 types of underlying disease | 3.580 (0.987–12.976) | 0.052 | ||
PLR | 1.619 (1.011–2.593) | 0.045 | 3.731 (1.288–10.813) | 0.015 |
CRP, mg/L | 1.004 (0.999–1.023) | 0.083 | ||
D-dimer, mg/L FEU | 1.034 (0.947–1.128) | 0.459 | ||
CD4/CD8 | 1.001 (0.998–1.004) | 0.426 | ||
VC, %pred | 0.283 (0.011–0.617) | 0.031 | 0.577 (0.137–0.918) | 0.027 |
DLCO, %pred | 0.783 (0.221–0.861) | 0.057 | 0.919 (0.863–0.979) | 0.009 |
Peripheral traction bronchiectasis or bronchiolectasis | 3.354 (0.911–12.347) | 0.069 | ||
Emphysema phenotype: other type | Re | |||
Paraseptal emphysema | 3.714 (0.999–13.811) | 0.050 | ||
Lung cancer diagnosis | 3.981 (0.435–5.440) | 0.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Duan, Y.; Lv, X.; Li, Q.; Liang, B.; Ou, X. The Impact of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE). J. Clin. Med. 2023, 12, 1100. https://doi.org/10.3390/jcm12031100
Feng X, Duan Y, Lv X, Li Q, Liang B, Ou X. The Impact of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE). Journal of Clinical Medicine. 2023; 12(3):1100. https://doi.org/10.3390/jcm12031100
Chicago/Turabian StyleFeng, Xiaoyi, Yishan Duan, Xiafei Lv, Qinxue Li, Binmiao Liang, and Xuemei Ou. 2023. "The Impact of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE)" Journal of Clinical Medicine 12, no. 3: 1100. https://doi.org/10.3390/jcm12031100
APA StyleFeng, X., Duan, Y., Lv, X., Li, Q., Liang, B., & Ou, X. (2023). The Impact of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE). Journal of Clinical Medicine, 12(3), 1100. https://doi.org/10.3390/jcm12031100