Ticagrelor Resistance in Cardiovascular Disease and Ischemic Stroke
Abstract
:1. Introduction
2. Clinical Application of Ticagrelor
2.1. Application of Ticagrelor for CVD
2.2. Application of Ticagrelor for IS
Study | Subjects | Experimental/Control | Conclusions |
---|---|---|---|
SOCRATES (2017) [16] | Patients with AIS or TIA | Ticagrelor/aspirin | Ticagrelor monotherapy was not significantly better than aspirin monotherapy (both initiated within 24 h of symptom onset). |
PRINCE (2019) [19] | Patients with acute mild stroke or TIA | Ticagrelor plus aspirin/clopidogrel plus aspirin | Patients in the ticagrelor plus aspirin group had a lower proportion of high platelet reactivity than those in the clopidogrel plus aspirin group, particularly those who were carriers of the CYP2C19 loss-of-function allele. |
CHANCE 2 (2021) [7] | patients with mild ischemic stroke or TIA | Ticagrelor plus aspirin/clopidogrel plus aspirin | The risk of a 90-day stroke after ticagrelor was slightly lower than that of clopidogrel, and there was no difference in the risk of severe or moderate bleeding between the two groups, but the total number of bleeding events in the ticagrelor group exceeded that of the clopidogrel group. |
TALES (2020) [5] | Patients with AIS or TIA | Ticagrelor plus aspirin/aspirin | The combination of ticagrelor and aspirin reduced the possibility of the primary outcome of stroke and death at the cost of more bleeding events compared with aspirin alone by 30 days. |
3. Current Status of Ticagrelor Resistance
3.1. Criteria for Ticagrelor Resistance
3.1.1. Methods and Instruments for Evaluating Ticagrelor Resistance
Assays | Suit for | Mechanism | Definition Cut-Offs | Advantages | Disadvantages |
---|---|---|---|---|---|
LTA | All situations involving platelet aggregation | Detecting the optical density decrease after stimulation of the platelets. | Controversial (the reported optimal cut-offs ranged from 46–57% maximal aggregation [28,32]) ≥the cut-off: ticagrelor-resistant <the cut-off: ticagrelor-sensitive | Gold standard to measure platelet function. | Cumbersome steps, difficult to prepare samples of platelet rich plasma, trained operators required, and time-consuming. |
VASP-P | P2Y12R inhibitors | Whether P2Y12R is inhibited regulates the level of VASP-P. | Controversial (the reported optimal cut-offs range from 48–61% PRI * [24]) ≥the cut-off: ticagrelor-resistant <the cut-off: ticagrelor-sensitive | Specifically reflecting the inhibition of P2Y12R pathway, whole-blood samples. | Indirect test, cumbersome steps, trained operators required, and time-consuming. |
VerifyNow | COX-1 inhibitors, P2Y12R inhibitors | Detecting the aggregation of fibrinogen-coated polystyrene beads mediated by platelets. | ≥208 PRU *: ticagrelor-resistant <208 PRU: ticagrelor-sensitive [33] | User-friendly (standard cartridge), fast (5min), fully automated, reproducible, and whole-blood samples. | Expensive. |
PFA P2Y | COX-1inhibitors, P2Y12R inhibitors | Detecting the time for blood to block a membrane coated with collagen and epinephrine or ADP. | CT * < 106 s: ticagrelor resistant CT ≥ 106 s: ticagrelor sensitive [25,26,27] | User-friendly (standard cartridge), fast (5 min), whole-blood samples. | Limited experience with detecting ticagrelor resistance. |
Multiplate | COX-1 inhibitors, P2Y12R inhibitors | Detecting the platelet aggregation on the surface of two pairs of electrodes. | ≥468 AU *: ticagrelor resistant <468 AU: ticagrelor sensitive [33] | User-friendly, reproducible, and whole-blood samples. | Semi-automated. |
3.1.2. Thresholds for Defining Ticagrelor Resistance
3.2. Current Status of Ticagrelor Resistance
4. Pharmacokinetics and Pharmacodynamics of Ticagrelor
4.1. Absorption
4.2. Metabolism and Action
5. Possible Mechanisms and Solutions for Ticagrelor Resistance
5.1. Absorption
5.2. Metabolism
5.3. Action
6. Discussion and Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Heron, M. Deaths: Leading Causes for 2018. Natl. Vital. Stat. Rep. 2021, 70, 1–115. [Google Scholar]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 61, e78–e140. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef]
- Johnston, S.C.; Amarenco, P.; Denison, H.; Evans, S.R.; Himmelmann, A.; James, S.; Knutsson, M.; Ladenvall, P.; Molina, C.A.; Wang, Y.; et al. Ticagrelor and Aspirin or Aspirin Alone in Acute Ischemic Stroke or TIA. N. Engl. J. Med. 2020, 383, 207–217. [Google Scholar] [CrossRef]
- Warlo, E.M.K.; Arnesen, H.; Seljeflot, I. A brief review on resistance to P2Y12 receptor antagonism in coronary artery disease. Thromb. J. 2019, 17, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.; Wang, A.; Xie, X.; Pan, Y.; Johnston, S.C.; Li, H.; Bath, P.M.; Dong, Q.; Xu, A.; et al. Ticagrelor versus Clopidogrel in CYP2C19 Loss-of-Function Carriers with Stroke or TIA. N. Engl. J. Med. 2021, 385, 2520–2530. [Google Scholar] [CrossRef]
- Coccheri, S. Antiplatelet therapy: Controversial aspects. Thromb. Res. 2012, 129, 225–229. [Google Scholar] [CrossRef]
- Gurbel, P.A.; Tantry, U.S. Aspirin and clopidogrel resistance: Consideration and management. J. Interv. Cardiol. 2006, 19, 439–448. [Google Scholar] [CrossRef]
- Levine, G.N.; Bates, E.R.; Bittl, J.A.; Brindis, R.G.; Fihn, S.D.; Fleisher, L.A.; Granger, C.B.; Lange, R.A.; Mack, M.J.; Mauri, L.; et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients with Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2016, 68, 1082–1115. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Alexopoulos, D.; Galati, A.; Xanthopoulou, I.; Mavronasiou, E.; Kassimis, G.; Theodoropoulos, K.C.; Makris, G.; Damelou, A.; Tsigkas, G.; Hahalis, G.; et al. Ticagrelor versus prasugrel in acute coronary syndrome patients with high on-clopidogrel platelet reactivity following percutaneous coronary intervention: A pharmacodynamic study. J. Am. Coll. Cardiol. 2012, 60, 193–199. [Google Scholar] [CrossRef]
- Schupke, S.; Neumann, F.J.; Menichelli, M.; Mayer, K.; Bernlochner, I.; Wohrle, J.; Richardt, G.; Liebetrau, C.; Witzenbichler, B.; Antoniucci, D.; et al. Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2019, 381, 1524–1534. [Google Scholar] [CrossRef]
- Navarese, E.P.; Khan, S.U.; Kolodziejczak, M.; Kubica, J.; Buccheri, S.; Cannon, C.P.; Gurbel, P.A.; De Servi, S.; Budaj, A.; Bartorelli, A.; et al. Comparative Efficacy and Safety of Oral P2Y(12) Inhibitors in Acute Coronary Syndrome: Network Meta-Analysis of 52 816 Patients From 12 Randomized Trials. Circulation 2020, 142, 150–160. [Google Scholar] [CrossRef]
- Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N. Engl. J. Med. 2018, 379, 215–225. [Google Scholar] [CrossRef]
- Johnston, S.C.; Amarenco, P.; Albers, G.W.; Denison, H.; Easton, J.D.; Evans, S.R.; Held, P.; Jonasson, J.; Minematsu, K.; Molina, C.A.; et al. Ticagrelor versus Aspirin in Acute Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2016, 375, 35–43. [Google Scholar] [CrossRef]
- Amarenco, P.; Albers, G.W.; Denison, H.; Easton, J.D.; Evans, S.R.; Held, P.; Hill, M.D.; Jonasson, J.; Kasner, S.E.; Ladenvall, P.; et al. Efficacy and safety of ticagrelor versus aspirin in acute stroke or transient ischaemic attack of atherosclerotic origin: A subgroup analysis of SOCRATES, a randomised, double-blind, controlled trial. Lancet Neurol. 2017, 16, 301–310. [Google Scholar] [CrossRef]
- Laurent, D.; Dodd, W.S.; Small, C.; Gooch, M.R.; Ghosh, R.; Goutnik, M.; Blatt, T.; Porche, K.; Geh, N.; Adamczak, S.; et al. Ticagrelor resistance: A case series and algorithm for management of non-responders. J. Neurointerv. Surg. 2022, 14, 179–183. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Lin, Y.; Meng, X.; Chen, G.; Wang, Z.; Wu, J.; Wang, D.; Li, J.; Cao, Y.; et al. Ticagrelor plus aspirin versus clopidogrel plus aspirin for platelet reactivity in patients with minor stroke or transient ischaemic attack: Open label, blinded endpoint, randomised controlled phase II trial. BMJ 2019, 365, l2211. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Pan, Y.; Yan, H.; Meng, X.; Liu, L.; Wang, Y.; Wang, Y. Ticagrelor Is Superior to Clopidogrel in Inhibiting Platelet Reactivity in Patients With Minor Stroke or TIA. Front. Neurol. 2020, 11, 534. [Google Scholar] [CrossRef]
- Born, G.V.; Cross, M.J. Effect of adenosine diphosphate on the concentration of platelets in circulating blood. Nature 1963, 197, 974–976. [Google Scholar] [CrossRef]
- Barragan, P.; Bouvier, J.L.; Roquebert, P.O.; Macaluso, G.; Commeau, P.; Comet, B.; Lafont, A.; Camoin, L.; Walter, U.; Eigenthaler, M. Resistance to thienopyridines: Clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter. Cardiovasc. Interv. 2003, 59, 295–302. [Google Scholar] [CrossRef]
- Cattaneo, M.; Hayward, C.P.; Moffat, K.A.; Pugliano, M.T.; Liu, Y.; Michelson, A.D. Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: A report from the platelet physiology subcommittee of the SSC of the ISTH. J. Thromb. Haemost. 2009, 7, 1029. [Google Scholar] [CrossRef]
- Freynhofer, M.K.; Bruno, V.; Willheim, M.; Hubl, W.; Wojta, J.; Huber, K. Vasodilator-stimulated phosphoprotein-phosphorylation assay in patients on clopidogrel: Does standardisation matter? Thromb. Haemost. 2012, 107, 538–544. [Google Scholar] [CrossRef]
- Tsantes, A.; Ikonomidis, I.; Papadakis, I.; Kottaridi, C.; Tsante, A.; Kalamara, E.; Kardoulaki, A.; Kopterides, P.; Kapsimali, V.; Karakitsos, P.; et al. Evaluation of the role of the new INNOVANCE PFA P2Y test cartridge in detection of clopidogrel resistance. Platelets 2012, 23, 481–489. [Google Scholar] [CrossRef]
- Lim, H.H.; Li, S.; An, G.D.; Woo, K.S.; Kim, K.H.; Kim, J.M.; Kim, M.H.; Han, J.Y. Platelet Function Analyzer-200 P2Y Results Are Predictive of the Risk of Major Adverse Cardiac Events in Korean Patients Receiving Clopidogrel Therapy Following Acute Coronary Syndrome. Ann. Lab. Med. 2018, 38, 413–419. [Google Scholar] [CrossRef]
- Jang, J.; Lim, J.; Chang, K.; Kim, Y.; Kim, M.; Park, H.I.; Kim, J.; Shin, S. A comparison of INNOVANCE(R) PFA P2Y and VerifyNow P2Y12 assay for the assessment of clopidogrel resistance in patients undergoing percutaneous coronary intervention. J. Clin. Lab. Anal. 2012, 26, 262–266. [Google Scholar] [CrossRef]
- Sibbing, D.; Byrne, R.A.; Kastrati, A. Role of platelet function testing in clinical practice: Current concepts and future perspectives. Curr. Drug Targets 2011, 12, 1836–1847. [Google Scholar] [CrossRef]
- Sibbing, D.; Braun, S.; Jawansky, S.; Vogt, W.; Mehilli, J.; Schomig, A.; Kastrati, A.; von Beckerath, N. Assessment of ADP-induced platelet aggregation with light transmission aggregometry and multiple electrode platelet aggregometry before and after clopidogrel treatment. Thromb. Haemost. 2008, 99, 121–126. [Google Scholar] [CrossRef]
- Siess, W.; Losonczy, H.; Penz, S.; Calatzis, A.; Tóth, O. Multiple electrode aggregometry: A new device to measure platelet aggregation in whole blood. Thromb. Haemost. 2017, 96, 781–788. [Google Scholar] [CrossRef]
- Larsen, P.D.; Holley, A.S.; Sasse, A.; Al-Sinan, A.; Fairley, S.; Harding, S.A. Comparison of Multiplate and VerifyNow platelet function tests in predicting clinical outcome in patients with acute coronary syndromes. Thromb. Res. 2017, 152, 14–19. [Google Scholar] [CrossRef]
- Dunne, E.; Egan, K.; McFadden, S.; Foley, D.; Kenny, D. Platelet aggregation in response to ADP is highly variable in normal donors and patients on anti-platelet medication. Clin. Chem. Lab. Med. 2016, 54, 1269–1273. [Google Scholar] [CrossRef]
- Tantry, U.S.; Bonello, L.; Aradi, D.; Price, M.J.; Jeong, Y.H.; Angiolillo, D.J.; Stone, G.W.; Curzen, N.; Geisler, T.; Ten Berg, J.; et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J. Am. Coll. Cardiol. 2013, 62, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Aradi, D.; Storey, R.F.; Komocsi, A.; Trenk, D.; Gulba, D.; Kiss, R.G.; Husted, S.; Bonello, L.; Sibbing, D.; Collet, J.P.; et al. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. Eur. Heart J. 2014, 35, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhao, X.Y.; Cui, J.G.; Huang, X.H. Evaluation of the Anti-Platelet Responsiveness to Ticagrelor in Patients with High On-Treatment Platelet Reactivity Following Percutaneous Coronary Intervention. Mol. Cardiol. China 2015, 43, 3. [Google Scholar]
- Musallam, A.; Lev, E.I.; Roguin, A. Stent thrombosis in a patient with high on-treatment platelet reactivity despite ticagrelor treatment. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 85–87. [Google Scholar] [CrossRef]
- Tobin, W.O.; Kinsella, J.A.; Coughlan, T.; Collins, D.R.; O’Neill, D.; Murphy, R.P.; Egan, B.; Tierney, S.; Feeley, T.M.; McCabe, D.J. High on-treatment platelet reactivity on commonly prescribed antiplatelet agents following transient ischaemic attack or ischaemic stroke: Results from the Trinity Antiplatelet Responsiveness (TRAP) study. Eur. J. Neurol. 2013, 20, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, B.; Chen, L.; Wang, Y.; Tian, L.; Wang, Z.; Zhang, X.; Chen, Q.; Wu, X. Influencing factors of residual high platelet reactivity in patients with acute coronary syndrome after ticagrelor treatment. China Med. 2021, 16, 161–165. [Google Scholar] [CrossRef]
- Choi, W.G.; Kim, G.C.; Lee, C.H.; Kim, H.Y.; Kim, D.W. The effect of antiplatelet drug on coronary endothelial and microvascular function: Comparison with ticagrelor and clopidogrel. Korean J. Intern. Med. 2021, 36, 352–361. [Google Scholar] [CrossRef]
- Malik, J. A Case of Ticagrelor Resistance. Eur. J. Case Rep. Intern. Med. 2021, 8, 002719. [Google Scholar] [CrossRef]
- Kim, M.J.; Patel, P.; Vyas, N.; Leveque, C.; Diaz, O.; Salazar, E. A 70-Year-Old Female with Unexpected Platelet Function Testing Results. Lab. Med. 2020, 51, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Parodi, G.; Valenti, R.; Bellandi, B.; Migliorini, A.; Marcucci, R.; Comito, V.; Carrabba, N.; Santini, A.; Gensini, G.F.; Abbate, R.; et al. Comparison of prasugrel and ticagrelor loading doses in ST-segment elevation myocardial infarction patients: RAPID (Rapid Activity of Platelet Inhibitor Drugs) primary PCI study. J. Am. Coll. Cardiol. 2013, 61, 1601–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, A.T.; Watkins, E.B. Chapter Seven—Recent Advances in the Development of P2Y12 Receptor Antagonists as Antiplatelet Agents. In Annual Reports in Medicinal Chemistry; Desai, M.C., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 49, pp. 87–99. [Google Scholar]
- Pereira, N.L.; Rihal, C.S.; So, D.Y.F.; Rosenberg, Y.; Lennon, R.J.; Mathew, V.; Goodman, S.G.; Weinshilboum, R.M.; Wang, L.; Baudhuin, L.M.; et al. Clopidogrel Pharmacogenetics. Circ. Cardiovasc. Interv. 2019, 12, e007811. [Google Scholar] [CrossRef] [PubMed]
- Adamski, P.; Sikora, J.; Laskowska, E.; Buszko, K.; Ostrowska, M.; Uminska, J.M.; Sikora, A.; Skibinska, N.; Sobczak, P.; Adamska, U.; et al. Comparison of bioavailability and antiplatelet action of ticagrelor in patients with ST-elevation myocardial infarction and non-ST-elevation myocardial infarction: A prospective, observational, single-centre study. PLoS ONE 2017, 12, e0186013. [Google Scholar] [CrossRef]
- Teng, R. Ticagrelor: Pharmacokinetic, Pharmacodynamic and Pharmacogenetic Profile: An Update. Clin. Pharmacokinet. 2015, 54, 1125–1138. [Google Scholar] [CrossRef]
- Teng, R.; Oliver, S.; Hayes, M.A.; Butler, K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab. Dispos. 2010, 38, 1514–1521. [Google Scholar] [CrossRef]
- Nardin, M.; Verdoia, M.; Pergolini, P.; Rolla, R.; Barbieri, L.; Marino, P.; Bellomo, G.; Kedhi, E.; Suryapranata, H.; Carriero, A.; et al. Impact of adenosine A2a receptor polymorphism rs5751876 on platelet reactivity in ticagrelor treated patients. Pharmacol. Res. 2018, 129, 27–33. [Google Scholar] [CrossRef]
- Dobesh, P.P.; Oestreich, J.H. Ticagrelor: Pharmacokinetics, pharmacodynamics, clinical efficacy, and safety. Pharmacotherapy 2014, 34, 1077–1090. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.K.; Na, Y.G.; Bang, K.H.; Lee, H.J.; Wang, M.; Huh, H.W.; Cho, C.W. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int. J. Pharm. 2019, 555, 11–18. [Google Scholar] [CrossRef]
- Varma, M.V.; Ashokraj, Y.; Dey, C.S.; Panchagnula, R. P-glycoprotein inhibitors and their screening: A perspective from bioavailability enhancement. Pharmacol. Res. 2003, 48, 347–359. [Google Scholar] [CrossRef]
- Ueda, K.; Yoshida, A.; Amachi, T. Recent progress in P-glycoprotein research. Anticancer Drug Des. 1999, 14, 115–121. [Google Scholar]
- Cascorbi, I. P-glycoprotein: Tissue distribution, substrates, and functional consequences of genetic variations. Handb. Exp. Pharmacol. 2011, 201, 261–283. [Google Scholar] [CrossRef]
- Scheiner, M.A.; da Cunha Vasconcelos, F.; da Matta, R.R.; Dal Bello Figueira, R., Jr.; Maia, R.C. ABCB1 genetic variation and P-glycoprotein expression/activity in a cohort of Brazilian acute myeloid leukemia patients. J. Cancer Res. Clin. Oncol. 2012, 138, 959–969. [Google Scholar] [CrossRef]
- Hemauer, S.J.; Nanovskaya, T.N.; Abdel-Rahman, S.Z.; Patrikeeva, S.L.; Hankins, G.D.; Ahmed, M.S. Modulation of human placental P-glycoprotein expression and activity by MDR1 gene polymorphisms. Biochem. Pharmacol. 2010, 79, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Tong, F.; Cai, Y.; Zhang, Y.; Song, H.; Tian, X.; Yan, C.; Han, Y. Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment. Elife 2022, 11, e70240. [Google Scholar] [CrossRef] [PubMed]
- Marsousi, N.; Doffey-Lazeyras, F.; Rudaz, S.; Desmeules, J.A.; Daali, Y. Intestinal permeability and P-glycoprotein-mediated efflux transport of ticagrelor in Caco-2 monolayer cells. Fundam. Clin. Pharmacol. 2016, 30, 577–584. [Google Scholar] [CrossRef]
- Foley, S.E.; Tuohy, C.; Dunford, M.; Grey, M.J.; De Luca, H.; Cawley, C.; Szabady, R.L.; Maldonado-Contreras, A.; Houghton, J.M.; Ward, D.V.; et al. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 2021, 9, 183. [Google Scholar] [CrossRef] [PubMed]
- Teng, R.; Carlson, G.; Hsia, J. An open-label, randomized bioavailability study with alternative methods of administration of crushed ticagrelor tablets in healthy volunteers. Int. J. Clin. Pharmacol. Ther. 2015, 53, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Machal, J.; Hlinomaz, O. Efficacy of P2Y12 Receptor Blockers After Myocardial Infarction and Genetic Variability of their Metabolic Pathways. Curr. Vasc. Pharmacol. 2019, 17, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Falker, K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 2011, 22, 433–441. [Google Scholar] [CrossRef]
- Landry, P.; Plante, I.; Ouellet, D.L.; Perron, M.P.; Rousseau, G.; Provost, P. Existence of a microRNA pathway in anucleate platelets. Nat. Struct. Mol. Biol. 2009, 16, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Kaudewitz, D.; Skroblin, P.; Bender, L.H.; Barwari, T.; Willeit, P.; Pechlaner, R.; Sunderland, N.P.; Willeit, K.; Morton, A.C.; Armstrong, P.C.; et al. Association of MicroRNAs and YRNAs With Platelet Function. Circ. Res. 2016, 118, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Lin, F.Y.; Lin, Y.W.; Cheng, S.M.; Chang, C.C.; Lin, R.H.; Chuang, C.L.; Sheu, J.S.; Chen, S.M.; Tsai, C.S. Platelet MicroRNA 365-3p Expression Correlates with High On-treatment Platelet Reactivity in Coronary Artery Disease Patients. Cardiovasc. Drugs Ther. 2019, 33, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Chyrchel, B.; Toton-Zuranska, J.; Kruszelnicka, O.; Chyrchel, M.; Mielecki, W.; Kolton-Wroz, M.; Wolkow, P.; Surdacki, A. Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets 2015, 26, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Seto, A.H. 3—Interventional Pharmacology. In The Interventional Cardiac Catheterization Handbook, 4th ed.; Kern, M.J., Sorajja, P., Lim, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 88–106. [Google Scholar]
Study | Design | Drug and Dose | Sample Size | Method and Definition | Detection Timing | Incidence of Ticagrelor Resistance (HTPR *) |
---|---|---|---|---|---|---|
Wang Y. et al. (2019) [19] | RCT | Aspirin (100 mg qd *) plus ticagrelor (180 mg loading dose on day 1, followed by 90 mg bid until day 90). | n = 280 | VerifyNow; HTPR was defined as ≥208 PRU. | 3 months after treatment. | 13% |
Yang Y. et al. (2020) [20] | RCT | Aspirin (100 mg qd *) plus ticagrelor (180 mg loading dose on day 1, followed by 90 mg bid until day 90). | n = 197 | Aggrestar (PL) platelet function analyzer; HTPR was defined as MAR ≥ 35%. | 3 months after treatment. | 20% |
Yue W. et al. (2021) [38] | Prospective cohort | Aspirin (100 mg qd) plus ticagrelor (90 mg bid). | n = 446 | Optical heterometric method; HTPR was defined as aplatelet aggregation rate of ≥ 46%. | 1 month before and after Treatment. | 10% |
Choi WG. et al. (2021) [39] | RCT | Aspirin plus ① ticagrelor (45mg bid) and ② ticagrelor (90 mg bid). | ① n = 22 ② n = 19 | VerifyNow; HTPR was defined as ≥ 208 PRU. | 1 week after treatment. | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Lin, Y.; Tan, Q.; Mao, F.; Chen, K.; Hao, J.; Le, W.; Yang, J. Ticagrelor Resistance in Cardiovascular Disease and Ischemic Stroke. J. Clin. Med. 2023, 12, 1149. https://doi.org/10.3390/jcm12031149
He S, Lin Y, Tan Q, Mao F, Chen K, Hao J, Le W, Yang J. Ticagrelor Resistance in Cardiovascular Disease and Ischemic Stroke. Journal of Clinical Medicine. 2023; 12(3):1149. https://doi.org/10.3390/jcm12031149
Chicago/Turabian StyleHe, Song, Yapeng Lin, Quandan Tan, Fengkai Mao, Kejie Chen, Junli Hao, Weidong Le, and Jie Yang. 2023. "Ticagrelor Resistance in Cardiovascular Disease and Ischemic Stroke" Journal of Clinical Medicine 12, no. 3: 1149. https://doi.org/10.3390/jcm12031149
APA StyleHe, S., Lin, Y., Tan, Q., Mao, F., Chen, K., Hao, J., Le, W., & Yang, J. (2023). Ticagrelor Resistance in Cardiovascular Disease and Ischemic Stroke. Journal of Clinical Medicine, 12(3), 1149. https://doi.org/10.3390/jcm12031149