Does the Pathologic Fracture Predict Severe Paralysis in Patients with Metastatic Epidural Spinal Cord Compression (MESCC)?—A Retrospective, Single-Center Cohort Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Patient Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics and Primary Tumors
3.2. Symptoms
3.3. Metastatic Profile
3.4. Sensorimotor Impairments
3.5. Surgical Approach, Early Neurological Outcome and Complications
4. Discussion
4.1. Epidemiology
4.2. Symptoms
4.3. Metastatic Profile
4.4. Pathogenesis of Sensorimotor Impairments
4.5. Surgical Approach, Complications, and Early Postoperative Outcome
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herget, G.; Saravi, B.; Schwarzkopf, E.; Wigand, M.; Südkamp, N.; Schmal, H.; Uhl, M.; Lang, G. Clinicopathologic characteristics, metastasis-free survival, and skeletal-related events in 628 patients with skeletal metastases in a tertiary orthopedic and trauma center. World J. Surg. Oncol. 2021, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.S.; Patchell, R.A. Metastatic epidural spinal cord compression. Lancet Neurol. 2008, 7, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Schiff, D. Malignant spinal-cord compression. Lancet Oncol. 2005, 6, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, P.; Connock, M.; Shyangdan, D.; Court, R.; Kandala, N.-B.; Clarke, A. A systematic review of evidence on malignant spinal metastases: Natural history and technologies for identifying patients at high risk of vertebral fracture and spinal cord compression. Health Technol. Assess. 2013, 17, 1–274. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Payne, R.; Saris, S.; Kryscio, R.J.; Mohiuddin, M.; Young, B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005, 366, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Park, S.H.; Eber, M.R.; Peters, C.M.; Shiozawa, Y. Skeletal complications in cancer patients with bone metastases. Int. J. Urol. 2016, 23, 825–832. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Pendleton, C.; Wolinsky, J.-P.; Gokaslan, Z.L.; Sciubba, D.M. Vertebral Compression Fractures in Patients Presenting with Metastatic Epidural Spinal Cord Compression. Neurosurgery 2009, 65, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Grant, K.; Hussien, A.; Kawakyu-O’Connor, D. Imaging of metastatic epidural spinal cord compression. Front. Radiol. 2022, 2, 962797. [Google Scholar] [CrossRef]
- Klimo, P.; Thompson, C.J.; Kestle, J.R.W.; Schmidt, M.H. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro-Oncology 2005, 7, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Witham, T.F.; Khavkin, Y.A.; Gallia, G.L.; Wolinsky, J.-P.; Gokaslan, Z.L. Surgery Insight: Current management of epidural spinal cord compression from metastatic spine disease. Nat. Clin. Pract. Neurol. 2006, 2, 87–94. [Google Scholar] [CrossRef]
- Delegates AH of ASA Physical Status Classification System. 2015. Available online: https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system (accessed on 1 December 2022).
- Fisher, C.G.; Di Paola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A Novel Classification System for Spinal Instability in Neoplastic Disease. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [PubMed]
- Taneichi, H.; Kaneda, K.; Takeda, N.; Abumi, K.; Satoh, S. Risk Factors and Probability of Vertebral Body Collapse in Metastases of the Thoracic and Lumbar Spine. Spine 1997, 22, 239–245. [Google Scholar] [CrossRef]
- Bilsky, M.H.; Laufer, I.; Fourney, D.R.; Groff, M.; Schmidt, M.H.; Varga, P.P.; Vrionis, F.D.; Yamada, Y.; Gerszten, P.C.; Kuklo, T.R. Reliability analysis of the epidural spinal cord compression scale. J. Neurosurg. Spine 2010, 13, 324–328. [Google Scholar] [CrossRef]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clinical Orthopaedics and Related Research; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Svensson, E.; Christiansen, C.F.; Ulrichsen, S.P.; Rørth, M.R.; Sørensen, H.T. Survival after bone metastasis by primary cancer type: A Danish population-based cohort study. BMJ Open 2017, 7, e016022. [Google Scholar] [CrossRef]
- Institut, R.K. Krebs in Deutschland für 2015/2016; RKI: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Hernandez, R.K.; Wade, S.W.; Reich, A.; Pirolli, M.; Liede, A.; Lyman, G.H. Incidence of bone metastases in patients with solid tumors: Analysis of oncology electronic medical records in the United States. BMC Cancer 2018, 18, 44. [Google Scholar] [CrossRef]
- Schiff, D.; O’Neill, B.P.; Suman, V.J. Spinal epidural metastasis as the initial manifestation of malignancy: Clinical features and diagnostic approach. Neurology 1997, 49, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Bach, F.; Larsen, B.H.; Rohde, K.; Børgesen, S.E.; Gjerris, F.; Bøge-Rasmussen, T.; Agerlin, N.; Rasmusson, B.; Stjernholm, P.; Sørensen, P.S. Metastatic spinal cord compression. Acta Neurochir. 1990, 107, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Herget, G.W.; Kälberer, F.; Ihorst, G.; Graziani, G.; Klein, L.; Rassner, M.; Gehler, C.; Jung, J.; Schmal, H.; Wäsch, R.; et al. Interdisciplinary approach to multiple myeloma—Time to diagnosis and warning signs. Leuk. Lymphoma 2020, 62, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Uei, H.; Tokuhashi, Y.; Maseda, M. Analysis of the Relationship Between the Epidural Spinal Cord Compression (ESCC) Scale and Paralysis Caused by Metastatic Spine Tumors. Spine 2018, 43, E448–E455. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.R.; Huddart, R. Spinal Cord Compression—What are the Treatment Standards? Clin. Oncol. 2002, 14, 132–134. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Sundararaj, J.J.; Govindaraj, R.; Chacko, A.G.; Tharyan, P. Interventions for the treatment of metastatic extradural spinal cord compression in adults. Cochrane Database Syst. Rev. 2015, 2018, CD006716. [Google Scholar] [CrossRef] [PubMed]
- Chaichana, K.L.; Woodworth, G.F.; Sciubba, D.M.; McGirt, M.J.; Witham, T.J.; Bydon, A.; Wolinsky, J.P.; Gokaslan, Z. Predictors of Ambulatory Function After Decompressive Surgery for Metastatic Epidural Spinal Cord Compression. Neurosurgery 2008, 62, 683–692. [Google Scholar] [CrossRef]
- Elsamadicy, A.A.; Koo, A.B.; David, W.B.; Zogg, C.K.; Kundishora, A.J.; Hong, C.; Kuzmik, G.A.; Gorrepati, R.; Coutinho, P.O.; Kolb, L.; et al. Thirty- and 90-day Readmissions After Spinal Surgery for Spine Metastases: A National Trend Analysis of 4423 Patients. Spine 2020, 46, 828–835. [Google Scholar] [CrossRef]
- Tokuhashi, Y.; Uei, H.; Oshima, M.; Ajiro, Y. Scoring system for prediction of metastatic spine tumor prognosis. World J. Orthop. 2014, 5, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Kawahara, N.; Kobayashi, T.; Yoshida, A.; Murakami, H.; Akamaru, T. Surgical Strategy for Spinal Metastases. Spine 2001, 26, 298–306. [Google Scholar] [CrossRef]
- Bauer, H.C.F.; Wedin, R. Survival after surgery for spinal and extremity metastases: Prognostication in 241 patients. Acta Orthop. Scand. 2009, 66, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Linden, Y.M.; van der Dijkstra, S.P.D.S.; Vonk, E.J.A.; Marijnen, C.A.M.; Leer, J.W.H. Prediction of survival in patients with metastases in the spinal column. Cancer 2005, 103, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Rades, D.; Dunst, J.; Schild, S.E. The first score predicting overall survival in patients with metastatic spinal cord compression. Cancer 2008, 112, 157–161. [Google Scholar] [CrossRef]
- Katagiri, H.; Takahashi, M.; Wakai, K.; Sugiura, H.; Kataoka, T.; Nakanishi, K. Prognostic factors and a scoring system for patients with skeletal metastasis. Bone Jt. J. 2005, 87, 698–703. [Google Scholar] [CrossRef]
Total n = 136 | Minor Impairments (AIS D) n = 86 | Severe Impairments (AIS A-C) n = 50 | |
---|---|---|---|
Sex | |||
male | 90 (66.2%) | 53 (61.6%) | 37 (74.0%) |
female | 46 (33.8%) | 33 (38.4%) | 13 (26.0%) |
Age at surgery, y | |||
median (range) | 67.2 (21–89) | 66.7 (21–68) | 68.0 (30–84) |
ASA | |||
ASA 1 | 0 (0%) | 0 (0%) | 0 (0%) |
ASA 2 | |||
ASA 3 | 17 (12.5%) | 12 (14.0%) | 5 (10.0%) |
ASA 4 | 85 (62.5%) | 55 (64.0%) | 30 (60.0%) |
missing | 23 (16.9%) | 13 (15.1%) | 10 (20.0%) |
11 (8.1%) | 6 (7.0%) | 5 (10.0%) | |
Duration of impairments, d | |||
median (range) | 7.38 (0–42) | 8.57 (0–42) | 5.46 (0–42) |
Cancer Type | n = 136 (100%) |
---|---|
Prostate cancer | 33 (24.3%) |
Breast cancer | 15 (11.0%) |
Cancer of unknown primary (CUP) | 14 (10.3%) |
Lung cancer | 14 (10.3%) |
| 11 (8.1%) |
| 3 (2.2%) |
Multiple myeloma | 8 (5.9%) |
Renal cell cancer | 8 (5.9%) |
Skin cancer | 5 (3.7%) |
Lymphomas | 5 (3.7%) |
Colorectal cancer | 5 (3.7%) |
Hepatocellular carcinoma (HCC) | 4 (2.9%) |
Esophageal cancer | 4 (2.9%) |
Cancer of the female reproductive system | 4 (2.9%) |
Primary bone cancer | 3 (2.2%) |
Oropharyngeal cancer | 3 (2.2%) |
Bladder cancer | 2 (1.5%) |
Thyroid carcinoma | 2 (1.5%) |
Others | 7 (5.1%) |
All Metastases | Fracture | No Fracture | |
---|---|---|---|
Localization | n = 136 | n = 86 | n = 50 |
cervical | |||
thoracic | 13 (9.6%) | 11 (12.8%) | 2 (4%) |
lumbar | 105 (77.2%) | 63 (73.3%) | 42 (84%) |
18 (13.2%) | 12 (14.0%) | 6 (12%) | |
Metastatic growth | n = 135 (100%) * | n = 86 (63.7) | n = 49 (36.3%) |
osteolytic | 91 (67.4%) | 70 (76.9%) | 21 (23.1%) |
osteoplastic | 24 (17.8%) | 5 (20.8%) | 19 (79.2%) |
mixed | 20 (14.8%) | 11 (55.0%) | 9 (45.0%) |
SINS | n = 132 (100%) * | n = 84 (63.6%) | n = 48 (36.4%) |
median SINS (range) | 10.25 (3–17) | 11.92 (5–17) | 7.33 (3–14) |
Taneichi Score | n = 87 (100%) | n = 60 (69.0%) | n = 27 (31.0%) |
thoracic A | 8 (9.2%) | 3 (5.0%) | 5 (18.5%) |
lumbar A | 0 (0%) | 0 (0%) | 0 (0%) |
thoracic B | 7 (8.0%) | 5 (8.3%) | 2 (7.4%) |
lumbar B | 0 (0%) | 0 (0%) | 0 (0%) |
thoracic C | 2 (2.3%) | 2 (3.3%) | 0 (0%) |
lumbar C | 4 (4.6%) | 2 (3.3%) | 2 (7.4%) |
thoracic D | 7 (8.0%) | 7 (11.7%) | 0 (0%) |
lumbar D | 4 (4.6%) | 3 (5.0%) | 1 (3.7%) |
thoracic E | 4 (4.6%) | 1 (1.7%) | 3 (11.1%) |
lumbar E | 6 (6.9%) | 6 (10.0%) | 0 (0%) |
thoracic F | 43 (49.4%) | 30 (50.0%) | 13 (48.1%) |
lumbar F | 2 (2.3%) | 1 (1.7%) | 1 (3.7%) |
lumbar G | 0 (0%) | 0 (0%) | 0 (0%) |
ESCC grade | n = 135 (100%) * | n = 85 (63.0%) | n = 50 (37.0%) |
1b | 2 (1.5%) | 1 (1.2%) | 1 (2.0%) |
2 | 57 (42.2%) | 39 (45.9%) | 18 (36.0%) |
3 | 76 (56.3%) | 45 (52.9%) | 31 (62.0%) |
Moderate Impairments AIS D (n = 86) | Severe Impairments | p-Value | |
---|---|---|---|
AIS A, B, C (n = 50) | |||
ESCC 1b and 2 (n = 59) | 50.6% (n = 43) | 32.0% (n = 16) | |
ESCC 3 (n = 76) | 49.4% (n = 42) | 68.0% (n = 34) | 0.0479 |
No fracture (n = 50) | 34.9% (n = 30) | 40.0% (n = 20) | |
Fracture (n = 86) | 65.1% (n = 56) | 60.0% (n = 30) | 0.5835 |
Odds Ratio | 95% CI | p-Value | |
---|---|---|---|
Duration of paralysis, d | |||
continuous (range 0–42) | 0.95 | 0.899–1.006 | 0.07 |
Age, y | 2.201 | 0.648–7.469 | |
61–67 vs. <61 | 4.408 | 1.319–14.737 | 0.12 |
68–76 vs. <61 | 2.624 | 0.786–8.759 | |
>76 vs. <61 | |||
ESCC | 2.582 | 1.104–6.038 | 0.02 |
3 vs. 1b and 2 | |||
SINS | |||
8–9 vs. <8 | 2.422 | 0.752–7.803 | |
10–12 vs. <8 | 1.892 | 0.613–5.833 | 0.12 |
13–18 vs. <8 | 0.661 | 0.199–2.196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, L.; Herget, G.W.; Ihorst, G.; Lang, G.; Schmal, H.; Hubbe, U. Does the Pathologic Fracture Predict Severe Paralysis in Patients with Metastatic Epidural Spinal Cord Compression (MESCC)?—A Retrospective, Single-Center Cohort Analysis. J. Clin. Med. 2023, 12, 1167. https://doi.org/10.3390/jcm12031167
Klein L, Herget GW, Ihorst G, Lang G, Schmal H, Hubbe U. Does the Pathologic Fracture Predict Severe Paralysis in Patients with Metastatic Epidural Spinal Cord Compression (MESCC)?—A Retrospective, Single-Center Cohort Analysis. Journal of Clinical Medicine. 2023; 12(3):1167. https://doi.org/10.3390/jcm12031167
Chicago/Turabian StyleKlein, Lukas, Georg W. Herget, Gabriele Ihorst, Gernot Lang, Hagen Schmal, and Ulrich Hubbe. 2023. "Does the Pathologic Fracture Predict Severe Paralysis in Patients with Metastatic Epidural Spinal Cord Compression (MESCC)?—A Retrospective, Single-Center Cohort Analysis" Journal of Clinical Medicine 12, no. 3: 1167. https://doi.org/10.3390/jcm12031167
APA StyleKlein, L., Herget, G. W., Ihorst, G., Lang, G., Schmal, H., & Hubbe, U. (2023). Does the Pathologic Fracture Predict Severe Paralysis in Patients with Metastatic Epidural Spinal Cord Compression (MESCC)?—A Retrospective, Single-Center Cohort Analysis. Journal of Clinical Medicine, 12(3), 1167. https://doi.org/10.3390/jcm12031167