Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Strain
2.2. Isolation and Identification of Strains
2.3. Antimicrobial Susceptibility Testing
2.4. Statistical Analysis
3. Results
3.1. Characteristics of P. aeruginosa Isolates from GDPH
3.2. Population Distribution of Strain Source
3.3. Temporal Changes in P. aeruginosa Isolates
3.4. Department Distribution of Strains Source
3.5. Resistance Rate of P. aeruginosa to Antibiotics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Pereira, S.G.; Marques, M.; Pereira, J.; Cardoso, O. Multidrug and extensive drug resistance in Pseudomonas aeruginosa clinical isolates from a Portuguese central hospital: 10-year survey. Microb. Drug Resist. 2015, 21, 194–200. [Google Scholar] [CrossRef]
- Kang, C.I.; Kim, S.H.; Kim, H.B.; Park, S.W.; Choe, Y.J.; Oh, M.D.; Kim, E.; Choe, K. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin. Infect. Dis. 2003, 37, 745–751. [Google Scholar] [CrossRef]
- Suárez, C.; Peña, C.; Tubau, F.; Gavaldà, L.; Manzur, A.; Dominguez, M.A.; Pujol, M.; Gudiol, F.; Ariza, J. Clinical impact of imipenem resistant Pseudomonas aeruginosa bloodstream infections. J. Infect. 2009, 58, 285–290. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html#pse (accessed on 18 October 2022).
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar]
- China Antimicrobial Resistance Surveillance System (CARSS). The Report on Bacterial Resistance Surveillance in China. 2020. Available online: http://www.carss.cn/Sys/res/file/202111/20211117103425_1578_7c04391d1e1d4ff284978ede17639ce5_2020%E7%AE%80%E8%A6%81%E7%89%88.pdf (accessed on 18 October 2022).
- Shang, H.; Wang, Y.; Shen, Z. National Guidelines for Clinical Laboratory Practice; People’s Medical Publishing House: Beijing, China, 2014; pp. 717–720. (In Chinese) [Google Scholar]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar]
- Litwin, A.; Fedorowicz, O.; Duszynska, W. Characteristics of Microbial Factors of Healthcare-Associated Infections Including Multidrug-Resistant Pathogens and Antibiotic Consumption at the University Intensive Care Unit in Poland in the Years 2011–2018. Int. J. Environ. Res. Public Health 2020, 17, 6943. [Google Scholar] [CrossRef]
- Ning, W.; Yang, J.; Cheng, J.; Lin, J. Research hotspots and trends of Pseudomonas aeruginosa drug resistance: A study based on CiteSpace. Microbiol. China 2022, 49, 4942–4956. (In Chinese) [Google Scholar]
- Wang, C.Y.; Jerng, J.S.; Chen, K.Y.; Lee, L.N.; Yu, C.J.; Hsueh, P.R.; Yang, P.C. Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: Clinical features, risk-factors and outcomes. Clin. Microbiol. Infect. 2006, 12, 63–68. [Google Scholar] [CrossRef]
- Su, T.Y.; Ye, J.J.; Hsu, P.C.; Wu, H.F.; Chia, J.H.; Lee, M.H. Clinical characteristics and risk factors for mortality in cefepime-resistant Pseudomonas aeruginosa bacteremia. J. Microbiol. Immunol. Infect. 2015, 48, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Wang, S. Prevalence and related factors of carbapenem-resistant Pseudomonas aeruginosa in hospitals. Chin. Remedies Clin. 2019, 19, 1709–1711. (In Chinese) [Google Scholar]
- Zhang, Y.; Sun, J.; Ni, Y.; Yu, Y.; Lin, J.; Yang, Q.; Xu, Y.; Zhang, X.; Sun, Z.; Chen, Z.; et al. Resistance profile of Pseudomonas aeruginosa in hospitals across China: The results from the CHINET Antimicrobial Resistance Surveillance Program, 2005–2014. Chin. J. Infect. Chemother. 2016, 16, 141–145. (In Chinese) [Google Scholar]
- Nie, Y.H.; Tian, K.G.; Sun, Y.J.; Mou, X.F. Clinical characteristics and risk factors of Pseudomonas aeruginosa in hospitals. Chin. J. Antibiot. 2021, 46, 611–615. (In Chinese) [Google Scholar]
- Rostami, S.; Farajzadeh Sheikh, A.; Shoja, S.; Farahani, A.; Tabatabaiefar, M.A.; Jolodar, A.; Sheikhi, R. Investigating of four main carbapenem-resistance mechanisms in high-level carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. J. Chin. Med. Assoc. 2018, 81, 127–132. [Google Scholar] [CrossRef]
- Hu, F.; Guo, Y.; Zhu, D.; Wang, F.; Jang, X.; Xu, Y.; Zhang, X.; Zhang, Z.; Ji, P.; Xie, Y.; et al. CHINET Surveillance of bacterial resistance: Results of 2020. Chin. J. Infect. Chemother. 2021, 21, 377–387. (In Chinese) [Google Scholar]
- Feng, W.; Huang, Q.; Wang, Y.; Yuan, Q.; Li, X.; Xia, P.; Sun, F. Changes in the resistance and epi-demiological characteristics of Pseudomonas aeruginosa during a ten-year period. J. Micro-Biol. Immunol. Infect. 2021, 54, 261–266. [Google Scholar] [CrossRef]
- Memar, M.Y.; Adibkia, K.; Farajnia, S.; Samadi Kafil, H.; Khalili, Y.; Azargun, R.; Ghotaslou, R. In-vitro Effect of Imipenem, Fosfomycin, Colistin, and Gentamicin Combination against Carbapenem-resistant and Biofilm-forming Pseudomonas aeruginosa Isolated from Burn Patients. Iran J. Pharm. Res. 2021, 20, 286–296. [Google Scholar]
- Kim, J.Y.; Park, Y.J.; Kwon, H.J.; Han, K.; Kang, M.W.; Woo, G.J. Occurrence and mechanisms of amikacin resistance and its association with β-lactamases in Pseudomonas aeruginosa: A Korean nationwide study. J. Antimicrob. Chemother. 2008, 62, 479–483. [Google Scholar] [CrossRef]
- Infection Diseases Group; Respiratory Branch; Chinese Medical Association. Expert con-sensus on diagnosis and treatment of Pseudomonas aeruginosa lower respiratory tract infec-tion. Chin. J. Tuberc. Respir. 2014, 37, 9–15. (In Chinese) [Google Scholar]
- Infectious Diseases Group; Respiratory Society; Chinese Medical Association. Chinese guidelines for the diagnosis and treatment of hospital-acquired pneumonia and ventila-tor-associated pneumonia in adults (2018 edition). Chin. J. Tuberc. Respir. 2018, 41, 255–280. (In Chinese) [Google Scholar]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of america and the american thoracic society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, H.J.; Moon, S.M.; Park, K.H.; Chong, Y.P.; Kim, M.N.; Kim, S.H.; Lee, S.O.; Kim, Y.S.; Woo, J.H.; et al. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect. Dis. 2012, 12, 308. [Google Scholar] [CrossRef]
- Kumar, A.; Zarychanski, R.; Light, B.; Parrillo, J.; Maki, D.; Simon, D.; Laporta, D.; Lapinsky, S.; Ellis, P.; Mirzanejad, Y.; et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis. Crit. Care Med. 2010, 38, 1773–1785. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the european respiratory society (ERS), european society of intensive care medicine (ESICM), european society of clinical microbiology and infectious diseases (ESCMID) and asociación latinoamericana del tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar]
- Valenza, G. Multidrug-resistant gram-negative rods in the intensive care unit: Epidemiology, prevention and treatment options. Med. Klin. Intensiv. Notfmed. 2019, 114, 263–275. (In German) [Google Scholar] [CrossRef]
- Yadav, R.; Bulitta, J.B.; Wang, J.; Nation, R.L.; Landersdorfer, C.B. Evaluation of Pharmacokinet-ic/Pharmacodynamic Model-Based Optimized Combination Regimens against Multi-drug-Resistant Pseudomonas aeruginosa in a Murine Thigh Infection Model by Using Hu-manized Dosing Schemes. Antimicrob. Agents Chemother. 2017, 61, e01268-17. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guan, X.; He, L.; Hu, B.; Hu, J.; Hu, X.; Lai, G.; Li, Y.; Liu, Y.; Ni, Y.; et al. Laboratory diagnosis, antimicrobial therapy and nosocomial infection control of extensively drug-resistant Gram-negative bacteria infection: Chinese expert consensus. Chin. J. Infect. Chemother. 2017, 17, 82–92. (In Chinese) [Google Scholar]
- Committee of Critical Care Medicine and Committee of Evidence-Based and Transformation of Infectious Diseases; Chinese Association of Research Hospitals. Consensus of Chinese experts on clinical application of polycolistin. Chin. Crit. Care Med. 2019, 31, 1194–1198. (In Chinese) [Google Scholar]
- Nørgaard, S.M.; Jensen, C.S.; Aalestrup, J.; Vandenbroucke-Grauls, C.M.J.E.; de Boer, M.G.J.; Peder-sen, A.B. Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 170. [Google Scholar] [CrossRef]
- Lu, Q.; Luo, R.; Bodin, L.; Yang, J.; Zahr, N.; Aubry, A.; Golmard, J.L.; Rouby, J.J.; on behalf of the Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012, 117, 1335–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanj, S.S.; Bassetti, M.; Kiratisin, P.; Rodrigues, C.; Villegas, M.V.; Yu, Y.; van Duin, D. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 2022, 60, 106633. [Google Scholar] [CrossRef] [PubMed]
- Haidar, G.; Philips, N.J.; Shields, R.K.; Snyder, D.; Cheng, S.; Potoski, B.A.; Doi, Y.; Hao, B.; Press, E.G.; Cooper, V.S.; et al. Ceftolozane-Tazobactam for the Treatment of Multi-drug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 2017, 65, 110–120. [Google Scholar] [CrossRef]
- Craig, W.A.; Andes, D.R. In vivo activities of ceftolozane, a new cephalosporin, with and with-out tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum β-lactamases, in the thighs of neutropenic mice. Antimicrob. Agents Chemother. 2013, 57, 1577–1582. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Dale, G.E.; Torres, A. Murepavadin: A new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther. 2018, 16, 259–268. [Google Scholar] [CrossRef]
- Sader, H.S.; Dale, G.E.; Rhomberg, P.R.; Flamm, R.K. Antimicrobial Activity of Murepavadin Tested against Clinical Isolates of Pseudomonas aeruginosa from the United States, Europe, and China. Antimicrob. Agents Chemother. 2018, 62, e00311-18. [Google Scholar] [CrossRef]
- Portsmouth, S.; Echols, R.; Den Nagata, T. Cefiderocol for treatment of complicated urinary tract infections. Lancet Infect. Dis. 2019, 19, 23–24. [Google Scholar] [CrossRef]
- Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.L.; et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01963-19. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, M.; García-Castillo, M.; Ruiz-Garbajosa, P.; Bou, G.; Siller-Ruiz, M.; Pitart, C.; Gracia-Ahufinger, I.; Mulet, X.; Pascual, Á.; Tormo, N.; et al. In Vitro Activity of Cefepime-Taniborbactam against Carbapenemase-Producing Enterobacterales and Pseudo-monas aeruginosa Isolates Recovered in Spain. Antimicrob. Agents Chemother. 2022, 66, e0216121. [Google Scholar] [CrossRef]
- Yang, X.; Domalaon, R.; Lyu, Y.; Zhanel, G.G.; Schweizer, F. Tobramycin-Linked Efflux Pump Inhibitor Conjugates Synergize Fluoroquinolones, Rifampicin and Fosfomycin against Mul-tidrug-Resistant Pseudomonas aeruginosa. J. Clin. Med. 2018, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteri-ophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Law, N.; Logan, C.; Yung, G.; Furr, C.L.; Lehman, S.M.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P.; et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis pa-tient. Infection 2019, 47, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Plaut, S. Regulatory considerations for bacteriophage products. In Phage Therapy: A Practical Approach; Gorski, A.M.R., Borysowski, J., Eds.; Springer: Berlin, Germany, 2019; p. 342. [Google Scholar]
- Liu, D.; Van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
Characteristics | 2017 | 2018 | 2019 | 2020 | 2021 | Total | p |
---|---|---|---|---|---|---|---|
Imipenem | 25.9 (151/583) | 19.1 (114/596) | 21.4 (133/621) | 23.1 (127/548) | 22.7 (155/682) | 22.4 (680/3030) | 0.980 |
Meropenem | 22.5 (80/355) | 15.8 (92/582) | 18.5 (112/607) | 20.0 (109/544) | 20.8 (140/673) | 19.3 (533/2761) | 0.402 |
Aztreonam | 17.0 (35/206) | 19.3 (107/555) | 26.7 (98/367) | 22.5 (92/408) | 21.2 (112/529) | 21.5 (444/2065) | 0.210 |
Ciprofloxacin | 14.7 (83/565) | 13.5 (80/594) | 15.2 (94/620) | 11.3 (62/548) | 12.2 (83/681) | 13.4 (402/3008) | 0.120 |
Levofloxacin | 11.4 (66/578) | 12.2 (73/596) | 12.6 (78/621) | 10.2 (56/547) | 11.4 (78/682) | 11.6 (351/3024) | 0.624 |
Ceftazidime | 10.4 (61/587) | 11.3 (67/594) | 5.4 (32/590) | 11.3 (62/547) | 12.0 (82/682) | 10.1 (304/3000) | 0.351 |
Piperacillin | 11.6 (41/352) | 10.2 (57/560) | 10.3 (62/600) | 10.8 (58/538) | 11.2 (74/658) | 10.8 (292/2708) | 0.985 |
Cefepime | 9.4 (55/585) | 8.9 (53/594) | 7.4 (46/618) | 7.3 (40/548) | 4.8 (31/648) | 7.5 (225/2993) | 0.001 |
Piperacillin/Tazobactam | 7.7 (45/582) | 7.8 (46/592) | 6.6 (41/617) | 5.8 (32/548) | 8.0 (54/676) | 7.2 (218/3015) | 0.668 |
Gentamicin | 3.8 (22/579) | 4.9 (29/587) | 5.2 (32/620) | 3.7 (20/547) | 4.4 (30/680) | 4.4 (133/3013) | 0.974 |
Tobramycin | 3.4 (20/586/) | 4.0 (24/596) | 5.5 (34/620) | 3.6 (20/548) | 4.6 (31/681) | 4.3 (129/3031) | 0.534 |
Amikacin | 1.9 (11/585) | 1.7 (10/597) | 1.5 (9/619) | 1.5 (8/546) | 2.2 (15/680) | 1.8 (53/3027) | 0.730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, J.; Chen, H.; Bao, J.; Liu, S.; Chen, Y.; Cui, X.; Guo, C.; Gu, B.; Li, L. Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021. J. Clin. Med. 2023, 12, 1189. https://doi.org/10.3390/jcm12031189
Lyu J, Chen H, Bao J, Liu S, Chen Y, Cui X, Guo C, Gu B, Li L. Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021. Journal of Clinical Medicine. 2023; 12(3):1189. https://doi.org/10.3390/jcm12031189
Chicago/Turabian StyleLyu, Jingwen, Huimin Chen, Jinwei Bao, Suling Liu, Yiling Chen, Xuxia Cui, Caixia Guo, Bing Gu, and Lu Li. 2023. "Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021" Journal of Clinical Medicine 12, no. 3: 1189. https://doi.org/10.3390/jcm12031189
APA StyleLyu, J., Chen, H., Bao, J., Liu, S., Chen, Y., Cui, X., Guo, C., Gu, B., & Li, L. (2023). Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021. Journal of Clinical Medicine, 12(3), 1189. https://doi.org/10.3390/jcm12031189