Heart Rate Asymmetry in Healthy Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. 24-Hour ECG Holter Monitoring
2.3. Heart Rate Asymmetry Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Asymmetry of Cardiovascular Time Series
4.2. Heart Rate Asymmetry in Children and Fetuses
4.3. Heart Rate Asymmetry in Clinical Conditions
4.4. Potential Mechanisms Involved in Heart Rate Asymmetry
4.5. The Novelty of the Study
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mangoni, M.E.; Nargeot, J. Genesis and Regulation of the Heart Automaticity. Physiol. Rev. 2008, 88, 919–982. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence Diagram of Physiological and Environmental Factors Affecting Heart Rate Variability: An Extended Literature Overview. Heart Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef]
- Muslin, A.J. Chapter 37—The Pathophysiology of Heart Failure. In Muscle; Hill, J.A., Olson, E.N., Eds.; Academic Press: Boston, MA, USA, 2012; pp. 523–535. ISBN 978-0-12-381510-1. [Google Scholar]
- Parmley, W.W. Pathophysiology of Congestive Heart Failure. Am. J. Cardiol. 1985, 56, 7A–11A. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Thompson, L.; Reid-Chung, A. Chapter 8—Combining LORETA Z-Score Neurofeedback with Heart Rate Variability Training. In Z Score Neurofeedback; Thatcher, R.W., Lubar, J.F., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 159–188. ISBN 978-0-12-801291-8. [Google Scholar]
- Weiss, J.N.; Qu, Z.; Shivkumar, K. The Electrophysiology of Hypo- and Hyperkalemia. Circ. Arrhythm. Electrophysiol. 2017, 10, 21. [Google Scholar] [CrossRef]
- Severi, S.; Cavalcanti, S.; Mancini, E.; Santoro, A. Effect of Electrolyte and PH Changes on the Sinus Node Pacemaking in Humans. J. Electrocardiol. 2002, 35, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Q.; Finlay, M.; Montaigne, D.; Ojake, L.; Li, Y.; Anderson, N.; Ludwig, A.; Tinker, A. ATP-Sensitive Potassium Channels in the Sinoatrial Node Contribute to Heart Rate Control and Adaptation to Hypoxia. J. Biol. Chem. 2018, 293, 8912–8921. [Google Scholar] [CrossRef]
- Bogusławski, W.; Solarz-Bogusławska, J. Heart rate variability. Med. Rodz. 2017, 4, 265–272. [Google Scholar]
- Sun, Z.-Q.; Ojamaa, K.; Nakamura, T.Y.; Artman, M.; Klein, I.; Coetzee, W.A. Thyroid Hormone Increases Pacemaker Activity in Rat Neonatal Atrial Myocytes. J. Mol. Cell. Cardiol. 2001, 33, 811–824. [Google Scholar] [CrossRef] [PubMed]
- von Olshausen, K.; Bischoff, S.; Kahaly, G.; Mohr-Kahaly, S.; Erbel, R.; Beyer, J.; Meyer, J. Cardiac Arrhythmias and Heart Rate in Hyperthyroidism. Am. J. Cardiol. 1989, 63, 930–933. [Google Scholar] [CrossRef]
- Dai, R.; Dheen, T.S.; Tay, S. Induction of Cytokine Expression in Rat Post-Ischemic Sinoatrial Node (SAN). Cell Tissue Res. 2002, 310, 59–66. [Google Scholar] [CrossRef]
- Finley, J.P.; Nugent, S.T. Heart Rate Variability in Infants, Children and Young Adults. J. Auton. Nerv. Syst. 1995, 51, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Kamen, P.W.; Krum, H.; Tonkin, A.M. Poincaré Plot of Heart Rate Variability Allows Quantitative Display of Parasympathetic Nervous Activity in Humans. Clin. Sci. 1996, 91, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ardissino, M.; Nicolaou, N.; Vizcaychipi, M. Noninvasive Real-Time Autonomic Function Characterization during Surgery via Continuous Poincaré Quantification of Heart Rate Variability. J. Clin Monit. Comput. 2019, 33, 627–635. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H. Heart Rate Asymmetry by Poincaré Plots of RR Intervals. Biomed. Tech. 2006, 51, 272–275. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Geometry of the Poincaré Plot of RR Intervals and Its Asymmetry in Healthy Adults. Physiol. Meas. 2007, 28, 287–300. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do Existing Measures of Poincare Plot Geometry Reflect Nonlinear Features of Heart Rate Variability? IEEE. Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Electrophysiology Task Force of the European Society of Cardiology the North American Society of Pacing Heart Rate Variability. Circulation 1996, 93, 1043–1065. [CrossRef]
- Parati, G.; Saul, J.P.; Di Rienzo, M.; Mancia, G. Spectral Analysis of Blood Pressure and Heart Rate Variability in Evaluating Cardiovascular Regulation: A Critical Appraisal. Hypertension 1995, 25, 1276–1286. [Google Scholar] [CrossRef]
- Eckberg, D.L. Sympathovagal Balance: A Critical Appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef]
- Marmerstein, J.T.; McCallum, G.A.; Durand, D.M. Direct Measurement of Vagal Tone in Rats Does Not Show Correlation to HRV. Sci. Rep. 2021, 11, 1210. [Google Scholar] [CrossRef]
- Billman, G.E. Heart Rate Variability—A Historical Perspective. Front. Physiol. 2011, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Larson, M.G.; Venditti, F.J.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of Reduced Heart Rate Variability on Risk for Cardiac Events. The Framingham Heart Study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef] [PubMed]
- Rennie, K.; Hemingway, H.; Kumari, M.; Brunner, E.; Malik, M.; Marmot, M. Effects of Moderate and Vigorous Physical Activity on Heart Rate Variability in a British Study of Civil Servants. Am. J. Epidemiol. 2003, 158, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.; Seifert, G.; Schroeder, R.; Gruhn, B.; Stritter, W.; Jeitler, M.; Steckhan, N.; Kessler, C.S.; Michalsen, A.; Voss, A. Yoga in School Sports Improves Functioning of Autonomic Nervous System in Young Adults: A Non-Randomized Controlled Pilot Study. PLoS ONE 2020, 15, e0231299. [Google Scholar] [CrossRef]
- Wang, X.; Yan, C.; Shi, B.; Liu, C.; Karmakar, C.; Li, P. Does the Temporal Asymmetry of Short-Term Heart Rate Variability Change during Regular Walking? A Pilot Study of Healthy Young Subjects. Comput. Math. Methods. Med. 2018, 2018, 3543048. [Google Scholar] [CrossRef]
- Porta, A.; Casali, K.R.; Casali, A.G.; Gnecchi-Ruscone, T.; Tobaldini, E.; Montano, N.; Lange, S.; Geue, D.; Cysarz, D.; Van Leeuwen, P. Temporal Asymmetries of Short-Term Heart Period Variability Are Linked to Autonomic Regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R550–R557. [Google Scholar] [CrossRef] [PubMed]
- Chladekova, L.; Czippelova, B.; Turianikova, Z.; Tonhajzerova, I.; Calkovska, A.; Baumert, M.; Javorka, M. Multiscale Time Irreversibility of Heart Rate and Blood Pressure Variability during Orthostasis. Physiol. Meas. 2012, 33, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Visnovcova, Z.; Mestanik, M.; Javorka, M.; Mokra, D.; Gala, M.; Jurko, A.; Calkovska, A.; Tonhajzerova, I. Complexity and Time Asymmetry of Heart Rate Variability Are Altered in Acute Mental Stress. Physiol. Meas. 2014, 35, 1319. [Google Scholar] [CrossRef]
- Klintworth, A.; Ajtay, Z.; Paljunite, A.; Szabados, S.; Hejjel, L. Heart Rate Asymmetry Follows the Inspiration/Expiration Ratio in Healthy Volunteers. Physiol. Meas. 2012, 33, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Massin, M.; von Bernuth, G. Clinical and Haemodynamic Correlates of Heart Rate Variability in Children with Congenital Heart Disease. Eur. J. Pediatr. 1998, 157, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Kardelen, F.; Akçurin, G.; Ertuğ, H.; Akcurin, S.; Bircan, I. Heart Rate Variability and Circadian Variations in Type 1 Diabetes Mellitus. Pediatr. Diabetes 2006, 7, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Akinci, A.; Celiker, A.; Baykal, E.; Teziç, T. Heart Rate Variability in Diabetic Children: Sensitivity of the Time- and Frequency-Domain Methods. Pediatr. Cardiol. 1993, 14, 140–146. [Google Scholar] [CrossRef]
- de Carvalho, T.D.; Wajnsztejn, R.; de Abreu, L.C.; Marques Vanderlei, L.C.; Godoy, M.F.; Adami, F.; Valenti, V.E.; Monteiro, C.B.M.; Leone, C.; da Cruz Martins, K.C.; et al. Analysis of Cardiac Autonomic Modulation of Children with Attention Deficit Hyperactivity Disorder. Neuropsychiatr. Dis. Treat. 2014, 10, 613–618. [Google Scholar] [CrossRef]
- Dahlqvist, J.A.; Karlsson, M.; Wiklund, U.; Hörnsten, R.; Strömvall-Larsson, E.; Berggren, H.; Hanseus, K.; Johansson, S.; Rydberg, A. Heart Rate Variability in Children with Fontan Circulation: Lateral Tunnel and Extracardiac Conduit. Pediatr. Cardiol. 2012, 33, 307–315. [Google Scholar] [CrossRef]
- Bobkowski, W.; Stefaniak, M.E.; Krauze, T.; Gendera, K.; Wykretowicz, A.; Piskorski, J.; Guzik, P. Measures of Heart Rate Variability in 24-h ECGs Depend on Age but Not Gender of Healthy Children. Front. Physiol. 2017, 8, 311. [Google Scholar] [CrossRef]
- Rękawek, J.; Miszczak-Knecht, M.; Mielniczuk, W.K. i J. Zmienność Rytmu Serca u Zdrowych Dzieci. Folia Cardiol. 2003, 10, 203–211. [Google Scholar]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender over Nine Decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Goto, M.; Nagashima, M.; Baba, R.; Nagano, Y.; Yokota, M.; Nishibata, K.; Tsuji, A. Analysis of Heart Rate Variability Demonstrates Effects of Development on Vagal Modulation of Heart Rate in Healthy Children. J. Pediatr. 1997, 130, 725–729. [Google Scholar] [CrossRef]
- Michels, N.; Clays, E.; De Buyzere, M.; Huybrechts, I.; Marild, S.; Vanaelst, B.; De Henauw, S.; Sioen, I. Determinants and Reference Values of Short-Term Heart Rate Variability in Children. Eur. J. Appl. Physiol. 2013, 113, 1477–1488. [Google Scholar] [CrossRef]
- Fukuba, Y.; Sato, H.; Sakiyama, T.; Yamaoka Endo, M.; Yamada, M.; Ueoka, H.; Miura, A.; Koga, S. Autonomic Nervous Activities Assessed by Heart Rate Variability in Pre- and Post-Adolescent Japanese. J. Physiol. Anthropol. 2009, 28, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Galeev, A.R.; Igisheva, L.N.; Kazin, E.M. [Heart rate variability in healthy six- to sixteen year old children]. Fiziol. Cheloveka. 2002, 28, 54–58. [Google Scholar]
- Gąsior, J.S.; Sacha, J.; Jeleń, P.J.; Pawłowski, M.; Werner, B.; Dąbrowski, M.J. Interaction Between Heart Rate Variability and Heart Rate in Pediatric Population. Front. Physiol. 2015, 6, 385. [Google Scholar] [CrossRef]
- Cysarz, D.; Linhard, M.; Edelhäuser, F.; Längler, A.; Van Leeuwen, P.; Henze, G.; Seifert, G. Unexpected Course of Nonlinear Cardiac Interbeat Interval Dynamics during Childhood and Adolescence. PLoS ONE 2011, 6, e19400. [Google Scholar] [CrossRef]
- Harteveld, L.M.; Nederend, I.; ten Harkel, A.D.J.; Schutte, N.M.; de Rooij, S.R.; Vrijkotte, T.G.M.; Oldenhof, H.; Popma, A.; Jansen, L.M.C.; Suurland, J.; et al. Maturation of the Cardiac Autonomic Nervous System Activity in Children and Adolescents. J. Am. Heart Assoc. 2021, 10, e017405. [Google Scholar] [CrossRef]
- Clairambault, J.; Curzi-Dascalova, L.; Kauffmann, F.; Médigue, C.; Leffler, C. Heart Rate Variability in Normal Sleeping Full-Term and Preterm Neonates. Early Hum. Dev. 1992, 28, 169–183. [Google Scholar] [CrossRef]
- Lenard, Z.; Studinger, P.; Mersich, B.; Kocsis, L.; Kollai, M. Maturation of Cardiovagal Autonomic Function from Childhood to Young Adult Age. Circulation 2004, 110, 2307–2312. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Drago, F.; Ragonese, P. Heart Rate Variability in Healthy Children and Adolescents Is Partially Related to Age and Gender. Int. J. Cardiol. 2001, 81, 169–174. [Google Scholar] [CrossRef]
- Nunan, D.; Sandercock, G.R.H.; Brodie, D.A. A Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. Pacing. Clin. Electrophysiol. 2010, 33, 1407–1417. [Google Scholar] [CrossRef]
- Bonnemeier, H.; Richardt, G.; Potratz, J.; Wiegand, U.K.H.; Brandes, A.; Kluge, N.; Katus, H.A. Circadian Profile of Cardiac Autonomic Nervous Modulation in Healthy Subjects: Differing Effects of Aging and Gender on Heart Rate Variability. J. Cardiovasc. Electrophysiol. 2003, 14, 791–799. [Google Scholar] [CrossRef]
- Almeida-Santos, M.A.; Barreto-Filho, J.A.; Oliveira, J.L.M.; Reis, F.P.; da Cunha Oliveira, C.C.; Sousa, A.C.S. Aging, Heart Rate Variability and Patterns of Autonomic Regulation of the Heart. Arch. Gerontol. Geriatr. 2016, 63, 1–8. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex Differences in Healthy Human Heart Rate Variability: A Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Young, F.L.S.; Leicht, A.S. Short-Term Stability of Resting Heart Rate Variability: Influence of Position and Gender. Appl. Physiol. Nutr. Metab. 2011, 36, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, S.; Laitinen, T.; Tarvainen, M.P.; Tompuri, T.; Veijalainen, A.; Savonen, K.; Lakka, T. Normal Values for Heart Rate Variability Parameters in Children 6-8 Years of Age: The PANIC Study. Clin. Physiol. Funct. Imaging 2014, 34, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Subramanian, S.K.; Arunachalam, V.; Rajendran, R. Heart Rate Variability in Adolescents-Normative Data Stratified by Sex and Physical Activity. J. Clin. Diagn. Res. 2015, 9, CC08–CC13. [Google Scholar] [CrossRef] [PubMed]
- Jarrin, D.C.; McGrath, J.J.; Poirier, P.; Séguin, L.; Tremblay, R.E.; Montplaisir, J.Y.; Paradis, G.; Séguin, J.R. Short-Term Heart Rate Variability in a Population-Based Sample of 10-Year-Old Children. Pediatr. Cardiol. 2015, 36, 41–48. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Asymmetric Properties of Long-Term and Total Heart Rate Variability. Med. Biol. Eng. Comput. 2011, 49, 1289–1297. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Compensatory Properties of Heart Rate Asymmetry. J. Electrocardiol. 2012, 45, 220–224. [Google Scholar] [CrossRef]
- Karmakar, C.K.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Defining Asymmetry in Heart Rate Variability Signals Using a Poincaré Plot. Physiol. Meas. 2009, 30, 1227–1240. [Google Scholar] [CrossRef]
- Piskorski, J.; Ellert, J.; Krauze, T.; Grabowski, W.; Wykretowicz, A.; Guzik, P. Testing Heart Rate Asymmetry in Long, Nonstationary 24 Hour RR-Interval Time Series. Physiol. Meas. 2019, 40, 105001. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. The Structure of Heart Rate Asymmetry: Deceleration and Acceleration Runs. Physiol. Meas. 2011, 32, 1011–1023. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Contreras, P.; Migliaro, E.R. Asymmetrical Properties of Heart Rate Variability in Type 1 Diabetes. Clin. Auton. Res. 2010, 20, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H. Partitioning Total Heart Rate Variability. Int. J. Cardiol. 2010, 144, 138–139. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Krauze, T.; Narkiewicz, K.; Wykretowicz, A.; Wysocki, H. Asymmetric Features of Short-Term Blood Pressure Variability. Hypertens. Res. 2010, 33, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Zuchowski, B.; Blaszyk, K.; Seniuk, W.; Wasniewski, M.; Gwizdala, A.; Wykretowicz, A.; Piskorski, J. Asymmetry of the Variability of Heart Rate and Conduction Time Between Atria and Ventricles. Circulation 2013, 77, 2904–2911. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Ellert, J.; Krauze, T. Asymmetry of Haemodynamic Variability in Healthy People. In Proceedings of the 2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Trento, Italy, 25–28 May 2014; IEEE: Trento, Italy, 2014; pp. 129–130. [Google Scholar]
- Bauer, A.; Malik, M.; Schmidt, G.; Barthel, P.; Bonnemeier, H.; Cygankiewicz, I.; Guzik, P.; Lombardi, F.; Müller, A.; Oto, A.; et al. Heart Rate Turbulence: Standards of Measurement, Physiological Interpretation, and Clinical Use. J. Am. Coll. Cardiol. 2008, 52, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Schmidt, G. Clinical Significance of Heart Rate Turbulence. Kardiol. Pol. 2006, 64, 198–207. [Google Scholar]
- Grimm, W.; Sharkova, J.; Christ, M.; Schneider, R.; Schmidt, G.; Maisch, B. Heart Rate Turbulence Following Ventricular Premature Beats in Healthy Controls. Ann. Noninvasive Electrocardiol. 2003, 8, 127–131. [Google Scholar] [CrossRef]
- Kowalewski, M.; Alifier, M.; Bochen, D.; Urban, M. Heart Rate Turbulence in Children—Age and Heart Rate Relationships. Pediatr. Res. 2007, 62, 710–714. [Google Scholar] [CrossRef]
- De Maria, B.; Bari, V.; Cairo, B.; Vaini, E.; Martins de Abreu, R.; Perseguini, N.M.; Milan-Mattos, J.; Rehder-Santos, P.; Minatel, V.; Catai, A.M.; et al. Cardiac Baroreflex Hysteresis Is One of the Determinants of the Heart Period Variability Asymmetry. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R539–R551. [Google Scholar] [CrossRef]
- Parlow, J.; Viale, J.-P.; Annat, G.; Hughson, R.; Quintin, L. Spontaneous Cardiac Baroreflex in Humans. Hypertension 1995, 25, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Rudas, L.; Crossman, A.A.; Morillo, C.A.; Halliwill, J.R.; Tahvanainen, K.U.; Kuusela, T.A.; Eckberg, D.L. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am. J. Physiol. 1999, 276, H1691–H1698. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, K.B.; Więckowska, B.; Krauze, T.; Piskorski, J.; Guzik, P. Asymmetrical properties of the spontaneous baroreceptor reflex. In Proceedings of the 2022 12th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Vysoké Tatry, Štrbské Pleso, Slovakia, 9–12 October 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Kubiak, K.B.; Więckowska, B.; Krauze, T.; Piskorski, J.; Guzik, P. Detection of the baroreflex function changes during the 30-minute supine rest by the Poincaré plot-based method. In Proceedings of the 2022 12th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Vysoké Tatry, Štrbské Pleso, Slovakia, 9–12 October 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Karmakar, C.; Khandoker, A.; Kimura, Y.; Palaniswami, M. Investigating Foetal Heart Rate Asymmetry. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2261–2264. [Google Scholar] [CrossRef]
- López-Justo, C.; Pliego-Carrillo, A.C.; Ledesma-Ramírez, C.I.; Mendieta-Zerón, H.; Peña-Castillo, M.Á.; Echeverría, J.C.; Rodríguez-Arce, J.; Reyes-Lagos, J.J. Differences in the Asymmetry of Beat-to-Beat Fetal Heart Rate Accelerations and Decelerations at Preterm and Term Active Labor. Sensors 2021, 10, 8249. [Google Scholar] [CrossRef]
- Kramarić, K.; Šapina, M.; Garcin, M.; Milas, K.; Pirić, M.; Brdarić, D.; Lukić, G.; Milas, V.; Pušeljić, S. Heart rate asymmetry as a new marker for neonatal stress. Biomed. Signal Process. Control 2019, 47, 219–223. [Google Scholar] [CrossRef]
- Czippelova, B.; Chladekova, L.; Uhrikova, Z.; Javorka, K.; Zibolen, M.; Javorka, M. Time irreversibility of heart rate oscillations in newborns—Does it reflect system nonlinearity? Biomed. Signal Process. Control 2015, 19, 85–88. [Google Scholar] [CrossRef]
- Tonhajzerova, I.; Ondrejka, I.; Chladekova, L.; Farsky, I.; Visnovcova, Z.; Calkovska, A.; Jurko, A.; Javorka, M. Heart Rate Time Irreversibility Is Impaired in Adolescent Major Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 212–217. [Google Scholar] [CrossRef]
- Tonhajzerová, I.; Ondrejka, I.; Farský, I.; Višňovcová, Z.; Mešťaník, M.; Javorka, M.; Jurko, A.; Čalkovská, A. Attention Deficit/Hyperactivity Disorder (ADHD) Is Associated with Altered Heart Rate Asymmetry. Physiol. Res. 2014, 63 (Suppl. S4), S509–S519. [Google Scholar] [CrossRef]
- Pawłowski, R.; Zalewski, P.; Newton, J.; Piątkowska, A.; Koźluk, E.; Opolski, G.; Buszko, K. An assessment of heart rate and blood pressure asymmetry in the diagnosis of vasovagal syncope in females. Fron. Physiol. 2023, 13, 2738. [Google Scholar] [CrossRef]
- Mina-Paz, Y.; Santana-García, V.N.; Tafur-Tascon, L.J.; Cabrera-Hernández, M.A.; Pliego-Carrillo, A.C.; Reyes-Lagos, J.J. Analysis of Short-Term Heart Rate Asymmetry in High-Performance Athletes and Non-Athletes. Symmetry 2022, 14, 1229. [Google Scholar] [CrossRef]
- Guzik, P.; Orłowska-Baranowska, E.; Piskorski, J.; Baranowski, R. Expression of Heart Rate Asymmetry Is Related to the NYHA Class of Heart Failure in Patients with Aortic Stenosis. Folia Cardiol. Excerpta 2008, 3, 40. [Google Scholar]
- Platiša, M.M.; Radovanović, N.N.; Kalauzi, A.; Milašinović, G.; Pavlović, S.U. Differentiation of Heart Failure Patients by the Ratio of the Scaling Exponents of Cardiac Interbeat Intervals. Front. Physiol. 2019, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, C.K.; Jelinek, H.F.; Warner, P.; Khandoker, A.H.; Palaniswami, M. Effect of Gender and Diabetes on Major Depressive Disorder Using Heart Rate Asymmetry. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6679–6682. [Google Scholar] [CrossRef]
- Shi, B.; Wang, L.; Yan, C.; Chen, D.; Liu, M.; Li, P. Nonlinear heart rate variability biomarkers for gastric cancer severity: A pilot study. Sci. Rep. 2019, 9, 13833. [Google Scholar] [CrossRef]
- Jelinek, H.F.; August, K.G.; Imam, M.H.; Khandoker, A.H.; Koenig, A.; Riener, R. Heart rate asymmetry and emotional response to robot-assist task challenges in post-stroke patients. Comput. Cardiol. 2011, 38, 521–524. [Google Scholar]
- Porta, A.; D’addio, G.; Bassani, T.; Maestri, R.; Pinna, G.D. Assessment of Cardiovascular Regulation through Irreversibility Analysis of Heart Period Variability: A 24 Hours Holter Study in Healthy and Chronic Heart Failure Populations. Philos. Trans. R. Soc. A 2009, 367, 1359–1375. [Google Scholar] [CrossRef]
- Pawłowski, R.; Buszko, K.; Newton, J.L.; Kujawski, S.; Zalewski, P. Heart Rate Asymmetry Analysis During Head-Up Tilt Test in Healthy Men. Front. Physiol. 2021, 12, 657902. [Google Scholar] [CrossRef]
- Karmakar, C.; Khandoker, A.; Palaniswami, M. Investigating the Changes in Heart Rate Asymmetry (HRA) with Perturbation of Parasympathetic Nervous System. Australas. Phys. Eng. Sci. Med. 2012, 35, 465–474. [Google Scholar] [CrossRef]
Parameter | All Children | Girls | Boys | p-Value | |||
---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | Median | IQR | ||
SD1d (ms) | 34.25 | 21.33–43.97 | 32.04 | 20.01–43.40 | 36.13 | 24.69–44.64 | 0.36 |
SD1a (ms) | 29.21 | 19.80–37.88 | 28.83 | 19.13–37.49 | 30.09 | 21.19–40.08 | 0.50 |
SD2d (ms) | 153.07 | 117.68–177.64 | 153.59 | 117.65–177.79 | 148.72 | 117.71–177.48 | 0.97 |
SD2a (ms) | 158.35 | 126.79–191.71 | 160.02 | 127.44–193.25 | 156.22 | 124.79–191.50 | 0.82 |
SDNNd (ms) | 111.49 | 88.63–129.36 | 112.27 | 90.15–128.58 | 109.89 | 86.43–129.72 | 0.96 |
SDNNa (ms) | 114.96 | 91.77–137.54 | 114.98 | 92.71–137.61 | 113.61 | 91.32–137.47 | 0.83 |
C1d | 0.56 | 0.53–0.58 | 0.55 | 0.51–0.57 | 0.57 | 0.53–0.58 | 0.03 * |
C2d | 0.48 | 0.46–0.49 | 0.48 | 0.46–0.49 | 0.47 | 0.46–0.49 | 0.22 |
CTd | 0.48 | 0.47–0.49 | 0.48 | 0.47–0.49 | 0.47 | 0.46–0.49 | 0.24 |
Nd | 0.42 | 0.39–0.45 | 0.42 | 0.39–0.44 | 0.43 | 0.40–0.45 | 0.35 |
Prevalence | |||||
---|---|---|---|---|---|
All Children (%) | p-Value | Girls (%) | Boys (%) | p-Value | |
HRA1 | 90 (93.7) | <0.001 | 45 (90.0) | 45 (97.8) | 0.12 |
HRA2 | 85 (88.5) | <0.001 | 44 (88.0) | 41 (89.1) | 0.86 |
HRAT | 85 (88.5) | <0.001 | 44 (88.0) | 41 (89.1) | 0.86 |
HRAN | 95 (99.0) | <0.001 | 49 (98.0) | 46 (89.1) | 0.34 |
HRAcomp | 85 (88.5) | <0.001 | 44 (88.0) | 41 (89.1) | 0.86 |
Parameter | rho | SE of rho | p-Value |
---|---|---|---|
SD1d | −0.04 | 0.1031 | 0.7148 |
SD1a | −0.05 | 0.1030 | 0.6592 |
SD2d | 0.42 | 0.0938 | <0.0001 |
SD2a | 0.34 | 0.0970 | 0.0007 |
SDNNd | 0.36 | 0.0962 | 0.0003 |
SDNNa | 0.31 | 0.0979 | 0.0018 |
C1d | 0.01 | 0.10 | 0.9729 |
C2d | 0.05 | 0.10 | 0.5967 |
CTd | 0.04 | 0.10 | 0.7179 |
Nd | 0.03 | 0.1031 | 0.7353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalas, D.; Bobkowski, W.; Piskorski, J.; Guzik, P. Heart Rate Asymmetry in Healthy Children. J. Clin. Med. 2023, 12, 1194. https://doi.org/10.3390/jcm12031194
Zalas D, Bobkowski W, Piskorski J, Guzik P. Heart Rate Asymmetry in Healthy Children. Journal of Clinical Medicine. 2023; 12(3):1194. https://doi.org/10.3390/jcm12031194
Chicago/Turabian StyleZalas, Dominika, Waldemar Bobkowski, Jarosław Piskorski, and Przemysław Guzik. 2023. "Heart Rate Asymmetry in Healthy Children" Journal of Clinical Medicine 12, no. 3: 1194. https://doi.org/10.3390/jcm12031194
APA StyleZalas, D., Bobkowski, W., Piskorski, J., & Guzik, P. (2023). Heart Rate Asymmetry in Healthy Children. Journal of Clinical Medicine, 12(3), 1194. https://doi.org/10.3390/jcm12031194