Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review
Abstract
:1. Introduction
2. Methodology
2.1. Mechanism of Action
2.2. Electrode Placements
Electrode Configuration
2.3. Waveform
2.4. Stimulus Amplitude
2.5. Pulse Width
2.6. Frequency
2.7. Carrier Frequency
3. Summary/Conclusions
Funding
Conflicts of Interest
References
- Spinal Cord Injury Facts and Figures at a Glance 2020 SCI Data Sheet. 2020. Available online: www.msktc.org/sci/model-system-centers (accessed on 13 April 2022).
- Figueiredo, N.; Figueiredo, I.E.; Resnick, D. Tetraplegia or paraplegia with brachial diparesis? What is the most appropriate designation for the motor deficit in patients with lower cervical spinal cord injury? Neurol. Sci. 2013, 34, 143–147. [Google Scholar] [CrossRef]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin. Orthop. Relat. Res. 2017, 475, 1499–1504. [Google Scholar] [CrossRef] [Green Version]
- International Neuromodulation Society. Available online: https://www.neuromodulation.com/learn-more (accessed on 12 April 2022).
- Karamian, B.A.; Siegel, N.; Nourie, B.; Serruya, M.D.; Heary, R.F.; Harrop, J.S.; Vaccaro, A.R. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J. Orthop. Traumatol. 2022, 23, 1–17. [Google Scholar] [CrossRef]
- Rahman, M.d.A.; Tharu, N.S.; Gustin, S.M.; Zheng, Y.P.; Alam, M. Trans-Spinal Electrical Stimulation Therapy for Functional Rehabilitation after Spinal Cord Injury: Review. J. Clin. Med. 2022, 11, 1550. [Google Scholar] [CrossRef]
- Benavides, F.D.; Jo, H.J.; Lundell, H.; Edgerton, V.R.; Gerasimenko, Y.; Perez, M.A. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J. Neurosci. 2020, 40, 2633–2643. [Google Scholar] [CrossRef]
- Freyvert, Y.; Yong, N.A.; Morikawa, E.; Zdunowski, S.; Sarino, M.E.; Gerasimenko, Y.; Edgerton, V.R.; Lu, D.C. Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Inanici, F.; Samejima, S.; Gad, P.; Edgerton, V.R.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1272–1278. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Hofer, C.; Kern, H.; Danner, S.M.; Mayr, W.; Dimitrijevic, M.R.; Minassian, K. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed. Tech. 2013, 58 (Suppl. S1A). [Google Scholar] [CrossRef]
- Gad, P.; Gerasimenko, Y.; Zdunowski, S.; Turner, A.; Sayenko, D.; Lu, D.C.; Edgerton, V.R. Weight bearing over-ground stepping in an exoskeleton with non-invasive spinal cord neuromodulation after motor complete paraplegia. Front. Neurosci. 2017, 11, 333. [Google Scholar] [CrossRef]
- Gad, P.; Lee, S.; Terrafranca, N.; Zhong, H.; Turner, A.; Gerasimenko, Y.; Edgerton, V.R. Non-invasive activation of cervical spinal networks after severe paralysis. J. Neurotrauma 2018, 35, 2145–2158. [Google Scholar] [CrossRef]
- Minassian, K.; Hofstoetter, U.S.; Danner, S.M.; Mayr, W.; Bruce, J.A.; McKay, W.B.; Tansey, K.E. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals. Neurorehabil. Neural Repair. 2016, 30, 233–243. [Google Scholar] [CrossRef]
- Shapkova, E.Y.; Pismennaya, E.V.; Emelyannikov, D.V.; Ivanenko, Y. Exoskeleton Walk Training in Paralyzed Individuals Benefits from Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Front. Neurosci. 2020, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-K.; Levine, J.M.; Wecht, J.R.; Maher, M.T.; Limonta, J.M.; Saeed, S.; Santiago, T.M.; Bailey, E.; Kastuar, S.; Guber, K.S.; et al. Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots. Clin. Neurophysiol. 2020, 131, 451–460. [Google Scholar] [CrossRef]
- Kumru, H.; Rodríguez-Cañón, M.; Edgerton, V.; García, L.; Soriano, I.; Opisso, E.; Gerasimenko, Y.; Navarro, X.; García-Alías, G. Transcutaneous electrical neuromodulation of the cervical spinal cord depends both on the stimulation intensity and the degree of voluntary activity for training. A pilot study. J. Clin. Med. 2021, 10, 3278. [Google Scholar] [CrossRef] [PubMed]
- Al’joboori, Y.; Massey, S.J.; Knight, S.L.; de Donaldson, N.; Duffell, L.D. The effects of adding transcutaneous spinal cord stimulation (TSCS) to sit-to-stand training in people with spinal cord injury: A pilot study. J. Clin. Med. 2020, 9, 2765. [Google Scholar] [CrossRef]
- Milosevic, M.; Masugi, Y.; Sasaki, A.; Sayenko, D.G.; Nakazawa, K. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. J. Neurophysiol. 2019, 121, 1672–1679. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Rath, M.; Ferguson, A.; Burdick, J.W.; Havton, L.A.; Edgerton, V.R.; Gerasimenko, Y.P. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J. Neurotrauma 2019, 36, 1435–1450. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Reggie Edgerton, V. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Parhizi, B.; Barss, T.S.; Mushahwar, V.K. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans. Front. Neurosci. 2021, 15, 5103. [Google Scholar] [CrossRef]
- Taylor, C.; McHugh, C.; Mockler, D.; Minogue, C.; Reilly, R.B.; Fleming, N. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review. PLoS ONE 2021, 16, 260166. [Google Scholar] [CrossRef]
- Bunday, K.L.; Perez, M.A. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr. Biol. 2012, 22, 2355–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.P.; Brownstone, R.M. Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. Eur. J. Pain 2019, 23, 652–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, L.M.; Knikou, M. Remodeling brain activity by repetitive cervicothoracic transspinal stimulation after human spinal cord injury. Front. Neurol. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inanici, F.; Brighton, L.N.; Samejima, S.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function after Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; de Freitas, R.M.; Sayenko, D.G.; Masugi, Y.; Nomura, T.; Nakazawa, K.; Milosevic, M. Low-intensity and short-duration continuous cervical transcutaneous spinal cord stimulation intervention does not prime the corticospinal and spinal reflex pathways in able-bodied subjects. J. Clin. Med. 2021, 10, 3633. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, R.M.; Sasaki, A.; Sayenko, D.G.; Masugi, Y.; Nomura, T.; Nakazawa, K.; Molesiv, M. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J. Appl. Physiol. 2021, 131, 746–759. [Google Scholar] [CrossRef]
- Gorodnichev, R.M.; Pivovarova, E.A.; Puhov, A.; Moiseev, S.A.; Savochin, A.; Moshonkina, T.R.; Chsherbakova, N.A.; Kilimnik, V.A.; Selionov, V.; Kozlovskaya, I.B.; et al. Transcutaneous electrical stimulation of the spinal cord: A noninvasive tool for the activation of stepping pattern generators in humans. Hum. Physiol. 2012, 38, 158–167. [Google Scholar] [CrossRef]
- Krenn, M.; Toth, A.; Danner, S.M.; Hofstoetter, U.S.; Minassian, K.; Mayr, W. Selectivity of transcutaneous stimulation of lumbar posterior roots at different spinal levels in humans. Biomed. Tech. 2013, 58 (Suppl. S1A). [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; McKay, W.B.; Tansey, K.E.; Mayr, W.; Kern, H.; Minassian, K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2014, 37, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Kaur Bedi, P.; Kaur, P.; Arumugam, N. Activity Based Therapy and Surface Spinal Stimulation for Recovery of Walking In individual with Traumatic Incomplete Spinal Cord Injury: A Case Report. Available online: http://www.recentscientific.com (accessed on 28 March 2022).
- Sutor, T.W.; Ghatas, M.P.; Goetz, L.L.; Lavis, T.D.; Gorgey, A.S. Exoskeleton Training and Trans-Spinal Stimulation for Physical Activity Enhancement After Spinal Cord Injury (EXTra-SCI): An Exploratory Study. Front. Rehabil. Sci. 2022, 2, 9422. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Floyd, T.C.; Gorodnichev, R.M.; Moshonkina, T.R.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neurosci. Lett. 2015, 609, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Gerasimenko, Y.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Roy, R.R.; Lu, D.C.; Edgerton, V.R. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J. Neurophysiol. 2015, 113, 834–842. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Dy, C.J.; Gurley, K.M.; Smith, V.L.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. J. Appl. Physiol. 2015, 118, 1364–1374. [Google Scholar] [CrossRef] [Green Version]
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.; Roy, R.R.; et al. Noninvasive reactivation of motor descending control after paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Kaur Research Scholar, P.; Professor, A. Published by Exercise Fitness & Health Alliance Article no. 253. J. Exerc. Sci. Physiother. 2016, 12, 69–75. [Google Scholar] [CrossRef]
- McHugh, L.V.; Miller, A.A.; Leech, K.A.; Salorio, C.; Martin, R.H. Feasibility and utility of transcutaneous spinal cord stimulation combined with walking-based therapy for people with motor incomplete spinal cord injury. Spinal Cord Ser Cases 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Manson, G.A.; Calvert, J.S.; Ling, J.; Tychhon, B.; Ali, A.; Sayenko, D.G. The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration. Physiol. Rep. 2020, 8, 14397. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Sayenko, D.; Gad, P.; Kozesnik, J.; Moshonkina, T.; Grishin, A.; Pukhov, A.; Moiseev, S.; Gorodnichev, R.; Selionov, V.; et al. Electrical spinal stimulation, and imagining of lower limb movements to modulate brain-spinal connectomes that control locomotor-like behavior. Front. Physiol. 2018, 9, 1196. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Org. 2015, 39, E176–E186. [Google Scholar] [CrossRef]
- Samejima, S.; Caskey, C.D.; Inanici, F.; Shrivastav, S.R.; Brighton, L.N.; Pradarelli, J.; Martinez, V.; Steele, K.M.; Saigal, R.; Moritz, C.T. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys. Ther. 2022, 102, 228. [Google Scholar] [CrossRef]
- Bye, E.A.; Héroux, M.E.; Boswell-Ruys, C.L.; Perez, M.A.; Purcell, M.; Taylor, J.; Lee, B.B.; McCaughey, E.J.; Butler, J.E.; Gandevia, S.C. Transcutaneous spinal cord stimulation combined with locomotor training to improve walking ability in people with chronic spinal cord injury: Study protocol for an international multi-centred double-blinded randomised sham-controlled trial (eWALK). Spinal Cord 2022, 60, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Megía García, A.; Serrano-Muñoz, D.; Taylor, J.; Avendaño-Coy, J.; Gómez-Soriano, J. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil. Neural Repair 2020, 34, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.P.; Eldabe, S.; Buchser, E.; Johanek, L.M.; Guan, Y.; Linderoth, B. Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation 2016, 19, 373–384. [Google Scholar] [CrossRef] [PubMed]
(a) Electrode characteristics for applications of TSS for motor control in the upper extremities | ||||||
---|---|---|---|---|---|---|
First Author | Year | Demographics | Cathode Size | Cathode Location | Anode Location | Channel Number |
Inanici [9] | 2018 | SCI; ASIA D, C3 | 2.5 cm diameter | One midline at C3–C4 spinous processes; one midline at C6–C7 spinous processes | Bilateral iliac crests | 2 |
Freyvert [8] | 2018 | SCI; ASIA B, C5 and higher | Not reported | Dorsal neck overlying C5 vertebrae | Anterior superior iliac spine bilaterally | 1 |
Benavides [7] | 2020 | SCI; ASIA A–D, C4–C6 | 3.2 cm diameter | Midline C5–C6 between spinous processes | Bilateral iliac crests | 1 |
Murray [25] | 2017 | SCI; ASIA C, C6–7 | 10.2 × 5.1 cm | Midline overlying C5–T2 spinous processes | Bilateral clavicles | 1 |
Inanici [26] | 2021 | SCI; ASIA B–D, C3–C5 | 2.5 cm diameter | Midline above and below injury level | Bilateral iliac crests | 2 |
Gad [12] | 2018 | SCI; ASIA B–C, C7 and higher | 2.0 cm diameter | One midline between C3–C4 spinous processes; one midline between C6–C7 spinous processes | Bilateral iliac crests | 2 |
Wu [15] | 2020 | AB and SCI; C2–C8 | 5 × 10 cm | Midline 4 cm caudal to C7 spinous process, arranged longitudinally | Horizontally over anterior midline with caudal edge 2–3 cm above sternal notch | 1 |
Kumru [16] | 2021 | AB | 2.0 cm diameter | One midline over spinous processes C3–C4; one midline over spinous processes C6–C7 | Bilateral iliac crests | 2 |
Parhizi [21] | 2021 | AB | 2.5 cm diameter | One midline over C3–C4 spinous processes; one midline over C6–C7 spinous processes; one midline over T11 spinous process; one midline over L1 spinous processes | Bilateral iliac crests | 4 |
Sasaki [27] | 2021 | AB | 0.5 × 0.5 cm | Midline over C6 or C7 or T1 spinous processes | Midline on anterior neck | 1 |
de Freitas [28] | 2021 | AB | 5.0 × 5.0 cm | Cathode experiment: over spinous process of C6 vs. C7 vs. T1. Anode experiment: placed at optimum location from cathode experiment | Cathode experiment: midline over anterior neck. Anode experiment: one anode on anterior neck vs. two anodes bilaterally over distal clavicles vs. two anodes bilaterally over iliac crests vs. one anode 4 cm below cathode on posterior neck. | 1 |
Milosevic [18] | 2018 | AB | 5 × 5 cm | Midline between C7–T1 spinous processes | Anterior midline neck | 1 |
(b) Electrode characteristics for applications of TSS for motor control in the lower extremity | ||||||
First Author | Year | Demographics | Cathode Size | Cathode Location | Anode Location | Channel Number |
Gorodnicheva [29] | 2012 | AB | 2.5 cm diameter | Midline between spinous processes T11 and T12 | Bilateral iliac crests | 1 |
Hofstoetter [10] | 2013 | SCI; ASIA D, T9 | 8 × 13 cm | T11/T12 spinous process | Bilaterally over the lower anterior abdomen. | 1 |
Krenn [30] | 2013 | AB | 3 × 12 cm | 8 cm caudal and 4 cm rostral around the interspinous space T11–12 | Bilateral abdomen | 7 |
Hofstoetter [31] | 2014 | SCI; ASIA D, C5–T9 | 5 cm diameter | T11 and T12 spinous processes | Bilaterally over the lower anterior abdomen in symmetry to the umbilicus | 1 |
Bedi [32] | 2015 | SCI; ASIA C, L1 | 4.5 × 9 cm | T10–L1 vertebral level | Not reported | 1 |
Sutor [33] | 2022 | SCI; ASIA A–C, C4–T11 | 10.2 × 17.8 cm | T10/T11 to L4/L5 | Bilateral iliac crests | 1 |
Sayenko [34] | 2015 | AB | 10 mm diameter | Midline spinous processes T10 and L1 | Bilateral iliac crests | 1 and 2 |
Gerasimenko [35] | 2015 | AB | 2.5 cm diameter | Midline at C5, T11, and/or L1spinous processes | Bilateral iliac crests | 3 |
Sayenko [36] | 2015 | AB | 18 mm diameter | Between the spinous processes of T10 –T11, T11–T12, and T12–L1 midline | Bilateral iliac crests | 3 |
Gerasimenko [37] | 2015 | SCI; ASIA A–B | 2.5 cm diameter | Midline between spinous processes T11–T12 or over coccyx | Bilateral iliac crests | 2 |
Minassian [13] | 2016 | SCI; ASIA A | 8 × 13 cm | T11 and T12 spinous processes | Covering the abdomen | 1 |
Bedi [38] | 2016 | SCI; ASIA C, T12–L1 | 4.5 × 9 cm | T10–L1 para-vertebral | Not reported | 1 |
Shapkova [14] | 2020 | SCI; ASIA A–C, C5–L2 | 3 x4 cm | Over T12 vertebra | Centrally over abdomen | 1 |
McHugh [39] | 2020 | SCI; ASIA C–D, C4–T9 | 5 × 10 cm | Between T11–T12 spinous process | Over lower abdomen | 1 |
Al’joboori [17] | 2020 | SCI; ASIA A–D, C5–T10 | 5 × 5 cm | T10/T11 | Over T12/L1 | 1 |
Manson [40] | 2020 | AB | 32 mm diameter | Parallel to the spinous process of L1–L2 vertebrae | Over lower abdomen | 1 |
Sayenko [19] | 2019 | SCI; ASIA A–C, C4–T12 | 3.2 cm diameter | Between spinous process of T11/T12 and L1/L2 | Bilateral iliac crests | 2 |
Gad [11] | 2017 | SCI; ASIA A, T9–L1 | 2.5 cm diameter T11/T12, 5.0 × 10.2 cm rectangle pair at Co1 | T11–T12 midline between spinous processes T11–T12 (Simply T11) or over Co1 | Bilateral iliac crests | 2 |
Gerasimenko [41] | 2018 | AB | 2.5 cm diameter | Between the spinous processes of T11–T12 or L1–L2 | Bilateral iliac crests | 1 |
Hofstoetter [42] | 2015 | SCI; ASIA D, C5–T9 | 5 cm diameter | T11/T12 paraspinally | Paraumblically | 1 |
Samejima [43] | 2022 | SCI; ASIA D, C4–C6 | 2.5 cm diameter | Over midline at C3/C4, C6/C7, T11, and L1 | Bilateral iliac crests | 2 |
Bye [44] | 2022 | SCI; T1–T11 | 5 × 10 cm | L1/L2 | Over lower abdomen | 1 |
Extremity | Threshold Level | First Author | Year | Amplitude Determination | Amplitude |
---|---|---|---|---|---|
Upper Limb | Submotor threshold | Murray [25] | 2017 | Below motor threshold to level that induced bilateral muscle contraction | 68 mA |
Wu [15] | 2020 | 80–200% of resting motor Threshold | 102 mA (80% of the motor threshold) | ||
Kumru [16] | 2021 | at 80%, 90%, and 110% of RMT of adductor pollicis brevis | 90 mA (80% of the motor threshold) | ||
Sasaki [27] | 2021 | Minimum to induce paresthesia | 28 mA | ||
Inanici [26] | 2021 | To best facilitate each activity | 120 mA | ||
Motor threshold | Freyvert [8] | 2018 | To maximize voluntary hand contraction | 100 mA | |
Gad [12] | 2018 | To maximize grip strength | 250 mA | ||
Milosevic [18] | 2018 | To evoke responses on ascending portion of recruitment curve of all muscles tested | 90 mA | ||
Benavides [7] | 2020 | To evoke motor output in biceps brachii | 90 mA | ||
Murray [25] | 2017 | Below motor threshold to level that induced bilateral muscle contraction | 68 mA | ||
Supramotor threshold | Wu [15] | 2020 | 80–200% of resting motor Threshold | 102 mA (up to 200% of the motor threshold) | |
Kumru [16] | 2021 | At 80%, 90%, and 110% of RMT of adductor pollicis brevis | 90 mA (110% of the motor threshold) | ||
Non-specific | Parhizi [21] | 2021 | At tolerance capacity | 70 mA | |
Inanici [9] | 2018 | Unspecified | 120 mA | ||
de Freitas [28] | 2021 | Cathode experiment: 10–100 mA or at pain threshold; anode experiment: to best produce post-activation depression. | 100 mA | ||
Lower Limb | Submotor threshold | Hofstoetter [10] | 2013 | To produce paresthesia below motor threshold | 18 V |
Hofstoetter [31] | 2014 | To produce paresthesia below motor threshold | 22 V | ||
Bedi [32] | 2015 | To induce sensory sensation | Unspecified | ||
Sayenko [34] | 2015 | 10–50% of maximal response amplitude in the LE musculature | 100 mA | ||
Bedi [38] | 2016 | To induce sensory sensation | Unspecified | ||
McHugh [39] | 2020 | Maximum tolerable amplitude or submotor threshold | 80 mA | ||
Hofstoetter [42] | 2015 | Subthreshold | 27 V | ||
Shapkova [14] | 2020 | In 1 Hz and 3Hz group, 1.3–1.4 × motor threshold. In 67 Hz group, below motor threshold. | Unspecified | ||
Samejima [43] | 2022 | Below motor threshold | 75 mA | ||
Motor threshold | Gorodnicheva [29] | 2012 | To evoke steplike movements | 100 mA | |
Krenn [30] | 2013 | At tolerance capacity (max 125 mA) | 125 mA | ||
Gerasimenko [35] | 2015 | Based on sensations felt by the subject and the motor output generated | 180 mA | ||
Gerasimenko [37] | 2015 | To induce stepping-like movements | 180 mA | ||
Minassian [13] | 2016 | Lower-limb PRM reflex threshold | 170 mA | ||
Gerasimenko [41] | 2018 | To generate involuntary rhythmic stepping-like movements without causing discomfort | 150 mA | ||
Sayenko [19] | 2019 | To maximally facilitate standing | 150 mA | ||
Manson [40] | 2020 | Maximum tolerable amplitude | Unspecified | ||
Al’joboori [17] | 2020 | At tolerance capacity or to produce paresthesia, whichever lower | 110 mA | ||
Sutor [33] | 2022 | At the lowest amplitude that produced lower-extremity EMG output | Unspecified | ||
Bye [44] | 2022 | 100% of amplitude to cause PRM reflex | Unspecified | ||
Supramotor threshold | Shapkova [14] | 2020 | In 1 Hz and 3Hz group, 1.3–1.4 × motor threshold. In 67 Hz group, below motor threshold. | Unspecified | |
Unspecified | Sayenko [36] | 2015 | At tolerance capacity (max 100 mA) | 100 mA | |
Gad [11] | 2017 | To best facilitate locomotor activity | 200 mA |
Extremity | Carrier Frequency | First Author | Year | Carrier Frequency (kHz) | Stimulation Frequency (Hz) |
---|---|---|---|---|---|
Upper-Extremity Studies | Carrier frequency | Inanici [9] | 2018 | 10 | 30 |
Gad [12] | 2018 | 10 | 30 | ||
Benavides [7] | 2020 | Either 5 or 0 | 30 | ||
Inanici [26] | 2021 | 10 | 30 | ||
Kumru [16] | 2021 | 10 | 30 | ||
Parhizi [21] | 2021 | 10 | 30 | ||
Sasaki [27] | 2021 | 10 | 30 | ||
no carrier frequency | Murray [25] | 2017 | N/A | 0.2 | |
Freyvert [8] | 2018 | N/A | 30 | ||
Milosevic [18] | 2019 | N/A | Single pulse | ||
Wu [15] | 2020 | N/A | 0.2 | ||
de Freitas [28] | 2021 | N/A | Two 2 ms pulses separated by 50 ms | ||
Lower-Extremity Studies | Carrier frequency | Gorodnicheva [29] | 2012 | 10 | 1, 5, 10, 20, 30, 40 |
Gerasimenko [35] | 2015 | 10 | 5 | ||
Bedi [32] | 2015 | 2.5 | 20 | ||
Gerasimenko [37] | 2015 | 10 | 30 Hz at T11, 5 Hz at coccyx | ||
Bedi [38] | 2016 | 2.5 | 30, 50, 70, 90 | ||
Gerasimenko [41] | 2018 | 5 | 30 at T11–T12, 0.3 at L1 | ||
Sayenko [19] | 2019 | 10 | 5, 15, 25, 30 | ||
Manson [40] | 2020 | 5 | Single pulse 0.2 Hz, continuous 30 Hz | ||
Bye [44] | 2022 | 10 | 20 Hz | ||
Samejima [43] | 2022 | 10 | 30 Hz | ||
no carrier frequency | Krenn [30] | 2013 | N/A | Unspecified | |
Hofstoetter [10] | 2013 | N/A | 30 | ||
Hofstoetter [31] | 2014 | N/A | 50 | ||
Sayenko [34] | 2015 | N/A | 30 | ||
Sayenko [36] | 2015 | N/A | Unspecified | ||
Minassian [13] | 2016 | N/A | 30 | ||
Gad [11] | 2017 | N/A | T11: 30 Hz; coccyx segment: 5 Hz | ||
Shapkova [14] | 2020 | N/A | 1, 3, 67 | ||
McHugh [39] | 2020 | N/A | 50 | ||
Al’joboori [17] | 2020 | N/A | 30 | ||
Sutor [33] | 2022 | N/A | 30 | ||
Hofstoetter [42] | 2015 | N/A | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.U.; Sneed, D.; Sutor, T.W.; Hoenig, H.; Gorgey, A.S. Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review. J. Clin. Med. 2023, 12, 854. https://doi.org/10.3390/jcm12030854
Rehman MU, Sneed D, Sutor TW, Hoenig H, Gorgey AS. Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review. Journal of Clinical Medicine. 2023; 12(3):854. https://doi.org/10.3390/jcm12030854
Chicago/Turabian StyleRehman, Muhammad Uzair, Dustin Sneed, Tommy W. Sutor, Helen Hoenig, and Ashraf S. Gorgey. 2023. "Optimization of Transspinal Stimulation Applications for Motor Recovery after Spinal Cord Injury: Scoping Review" Journal of Clinical Medicine 12, no. 3: 854. https://doi.org/10.3390/jcm12030854