Absence of High Lipoprotein(a) Levels Is an Independent Predictor of Acute Myocardial Infarction without Coronary Lesions
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Ethics Statement
2.3. Study Design
2.4. Biomarker and Analytical Studies
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Population
3.2. Predictors of the Absence of Coronary Lesions
3.3. Predictors of Cardiovascular Events during Follow-Up
4. Discussion
4.1. MINOCA Prevalence, Pathophysiology and Diagnostic Criteria
4.2. Inflammation and MINOCA
4.3. Relationship between Lp(a) and MINOCA
4.4. Predictors
4.5. Lp(a) as an Outcome Predictor after an AMI
4.6. Future Directions of Research in this Field
4.7. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferretti, G.; Bacchetti, T.; Johnston, T.P.; Banach, M.; Pirro, M.; Sahebkar, A. Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J. Cell. Physiol. 2017, 233, 2966–2981. [Google Scholar] [CrossRef]
- Reyes-Soffer, G.; Westerterp, M. Beyond Lipoprotein(a) plasma measurements: Lipoprotein(a) and inflammation. Pharmacol. Res. 2021, 169, 105689. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R. Lipoprotein(a) and Cardiovascular Disease. Clin. Chem. 2021, 67, 154–166. [Google Scholar] [CrossRef]
- Tsimikas, S. A Test in Context: Lipoprotein(a). J. Am. Coll. Cardiol. 2017, 69, 692–711. [Google Scholar] [CrossRef]
- Pustjens, T.F.S.; Appelman, Y.; Damman, P.; Berg, J.M.T.; Jukema, J.W.; de Winter, R.J.; Agema, W.R.P.; van der Wielen, M.L.J.; Arslan, F.; Rasoul, S.; et al. Guidelines for the management of myocardial infarction/injury with non-obstructive coronary arteries (MINOCA): A position paper from the Dutch ACS working group. Neth. Hear. J. 2019, 28, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Tuñón, J.; Badimon, L.; Bochaton-Piallat, M.-L.; Cariou, B.; Daemen, M.; Egido, J.; Evans, P.; E Hoefer, I.; Ketelhuth, D.; Lutgens, E.; et al. Identifying the anti-inflammatory response to lipid lowering therapy: A position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovasc. Res. 2018, 115, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Blanco-Colio, L.; Cristóbal, C.; Tarín, N.; Higueras, J.; Huelmos, A.; Alonso, J.; Egido, J.; Asensio, D.; Lorenzo, Ó.; et al. Usefulness of a combination of monocyte chemoattractant protein-1, galectin-3, and N-terminal probrain natriuretic peptide to predict cardiovascular events in pa-tients with coronary artery disease. Am. J. Cardiol. 2014, 113, 434–440. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittner, V.A.; Szarek, M.; Aylward, P.E.; Bhatt, D.L.; Diaz, R.; Edelberg, J.M.; Fras, Z.; Goodman, S.G.; Halvorsen, S.; Hanotin, C.; et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 75, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Jadhav, P.; Tamis-Holland, J.E. Myocardial Infarction in the Absence of Obstructive Coronary Artery Disease (MINOCA): A Review of the Present and Preview of the Future. Curr. Atheroscler. Rep. 2021, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, B.; Baron, T.; Albertucci, M.; Prati, F. Myocardial infarction with non-obstructive coronary artery disease. Eurointervention 2021, 17, e875–e887. [Google Scholar] [CrossRef] [PubMed]
- Matta, A.G.; Nader, V.; Roncalli, J. Management of myocardial infarction with Nonobstructive Coronary Arteries (MINOCA): A subset of acute coronary syndrome patients. Rev. Cardiovasc. Med. 2021, 22, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef] [PubMed]
- Safdar, B.; Spatz, E.S.; Dreyer, R.P.; Beltrame, J.F.; Lichtman, J.H.; Spertus, J.A.; Reynolds, H.R.; Geda, M.; Bueno, H.; Dziura, J.D.; et al. Presentation, Clinical Profile, and Prognosis of Young Patients with Myocardial Infarction With Nonob-structive Coronary Arteries (MINOCA): Results from the VIRGO Study. J. Am. Heart Assoc. 2018, 7, e009174. [Google Scholar] [CrossRef] [Green Version]
- Occhipinti, G.; Bucciarelli-Ducci, C.; Capodanno, D. Diagnostic pathways in myocardial infarction with non-obstructive coronary artery disease (MINOCA). Eur. Hear. J. Acute Cardiovasc. Care 2021, 10, 813–822. [Google Scholar] [CrossRef]
- Gaibazzi, N.; Martini, C.; Botti, A.; Pinazzi, A.; Bottazzi, B.; Palumbo, A.A. Coronary Inflammation by Computed Tomography Pericoronary Fat Attenuation in MINOCA and Tako-Tsubo Syndrome. J. Am. Heart Assoc. 2019, 8, e013235. [Google Scholar] [CrossRef]
- Hjort, M.; Eggers, K.M.; Lindahagen, L.; Agewall, S.; Brolina, E.B.; Collste, O.; Daniel, M.; Ekenbäck, C.; Frick, M.; Henareh, L.; et al. Increased inflammatory activity in pa-tients 3 months after myocardial infarction with Nonobstructive coronary arteries. Clin. Chem. 2019, 65, 1023–1030. [Google Scholar] [CrossRef]
- Ugovšek, S.; Šebeštjen, M. Lipoprotein(a)—The Crossroads of Atherosclerosis, Atherothrombosis and Inflammation. Biomolecules 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Na Xu, N.; Yao, Y.; Jiang, L.; Xu, J.; Wang, H.; Song, Y.; Yang, Y.; Xu, B.; Gao, R.; Yuan, J. Lipoprotein(a) predicts recurrent cardiovascular events in patients with prior cardiovascular events post-PCI: Five-year findings from a large single center cohort study. Thromb. J. 2022, 20, 69. [Google Scholar] [CrossRef]
- Ongoing HORIZON Study (Assessing the Impact of Lipoprotein (a) Lowering with Pelacarsen (TQJ230) on Major Cardio-Vascular Events in Patients with CVD. NCT04023552. Available online: https://clinicaltrials.gov/ct2/results?term=HORIZON+AND+pelacarsen&Search=Search (accessed on 16 January 2023).
Parameter | No Coronary Lesion (N = 76) | Coronary Lesions (N = 966) | p | ||
---|---|---|---|---|---|
Sex (Male) (n, %) | 42 (55.3%) | 763 (79.0%) | <0.001 | ||
Age (years) | 57 (48–68) | 61 (52–72) | 0.010 | ||
Race (Caucasian) (n, %) | 72 (94.7%) | 937 (97.0%) | 0.497 | ||
Estimated Glomerular Filtration Rate (mL/min/1.73 m2) | 86 (74–98) | 82 (66–94) | 0.032 | ||
Smoker (n, %) | 33 (43.4%) | 443 (45.9%) | 0.681 | ||
Diabetes (n, %) | 7 (9.2%) | 216 (22.4%) | 0.007 | ||
Hypertension (n, %) | 43 (56.6%) | 538 (55.7%) | 0.881 | ||
Dyslipidemia (n, %) | 40 (52.6%) | 561 (58.1%) | 0.355 | ||
Previous Myocardial Infarction (n, %) | 4 (5.3%) | 113 (11.7%) | 0.087 | ||
Peripheral Artery Disease (n, %) | 5 (6.6%) | 46 (4.8%) | 0.480 | ||
Cerebrovascular Accident (n, %) | 1 (1.3%) | 33 (3.4%) | 0.321 | ||
Atrial Fibrillation (n, %) | 2 (2.6%) | 21 (2.2%) | 0.794 | ||
Previous Heart Failure (n, %) | 0 (0.0%) | 9 (0.9%) | 0.398 | ||
Previous Coronary artery bypass graft (n, %) | 0 (0.0%) | 36 (3.7%) | 0.087 | ||
Body Mass Index (kg/m2) | 27 (25–30) | 28 (25–31) | 0.475 | ||
Familiar background (n, %) | 18 (23.7%) | 238 (24.6%) | 0.385 | ||
Eating Fruit (servings per day) | 2.5 (1.0–3.9) | 2.5 (1.2–3.2) | 0.812 | ||
Eating Fish (per week) | 2.0 (1.6–3.0) | 2.0 (1.5–3.0) | 0.699 | ||
Alcohol consumption | 0 | 28 (37.3%) | 385 (40.9%) | 0.200 | |
1–7 | 33 (44.0%) | 293 (31.1%) | |||
8–14 | 5 (6.7%) | 140 (14.9%) | |||
>14 | 9 (12.0%) | 121 (12.9%) | |||
Index Cardiovascular Event | NSTEMI | 55 (72.4%) | 379 (39.2%) | <0.001 | |
STEMI | 21 (27.6%) | 587 (60.8%) | |||
Number of Vessels Diseased (n) | 0 (0–0) | 1 (1–2) | <0.001 | ||
Ejection fraction < 40 (n, %) | 4 (5.3%) | 161 (16.7%) | 0.028 | ||
Type of revascularization | No | 77 (100%) | 69 (7.1%) | <0.001 | |
Covered Stent | 0 (0.0%) | 541 (56.0%) | |||
Standard Stent | 0 (0.0%) | 282 (29.2%) | |||
Angioplasty | 0 (0.0%) | 34 (3.5%) | |||
Surgical revascularization | 0 (0.0%) | 40 (4.1%) | |||
Troponin I (ng/L) | 3.9 (1.0–18.1) | 19.7 (4.0–70.0) | <0.001 | ||
LDL-c (mg/dL) | 115 ± 35 | 119 ± 37 | 0.412 | ||
Triglycerides (mg/dL) | 127 (92–174) | 129 (91–180) | 0.984 | ||
HDL-c (mg/dL) | 42 (35–54) | 38 (32–46) | 0.002 | ||
IL-18 (ng/L) | 219 (156–283) | 213 (159–298) | 0.899 | ||
PCSK9 (ng/mL) | 423 (338–543) | 434 (353–532) | 0.738 | ||
Lp(a) > 60 mg/dL | 6 (9.2%) | 175 (19.8%) | 0.037 | ||
Hs-CRP (mg/L) | 0.9 (0.5–2.1) | 2.0 (1.0–3.9) | <0.001 | ||
Previous Medical Therapy | |||||
Acetylsalicylic acid (n, %) | 13 (17.1%) | 217 (22.5%) | 0.278 | ||
AntiP2Y12 (n, %) | 1 (1.3%) | 47 (4.9%) | 0.349 | ||
Acenocumarol (n, %) | 1 (1.3%) | 22 (2.3%) | 0.583 | ||
Statins (n, %) | 14 (18.4%) | 261 (27.0%) | 0.249 | ||
Ezetimibe (n, %) | 1 (1.3%) | 22 (2.3%) | 0.583 | ||
Fibrates (n, %) | 0 (0%) | 11 (1.1%) | 0.350 | ||
Insulin (n, %) | 2 (2.6%) | 49 (5.1%) | 0.342 | ||
Oral antidiabetic drugs (n, %) | 5 (6.6%) | 137 (14.2%) | 0.162 | ||
ACE inhibitors (n, %) | 19 (25.0%) | 310 (32.1%) | 0.200 | ||
Aldosterone receptor blockers (n, %) | 1 (1.3%) | 21 (2.2%) | 0.616 | ||
Betablockers (n, %) | 11 (14.5%) | 155 (16.0%) | 0.718 | ||
Nitrates (n, %) | 3 (3.9%) | 56 (5.8%) | 0.502 | ||
Diltiazem (n, %) | 0 (0%) | 26 (2.7%) | 0.148 | ||
Verapamil (n, %) | 1 (1.3%) | 8 (0.8%) | 0.872 | ||
Dihydropyridines (n, %) | 3 (3.9%) | 96 (9.9%) | 0.086 | ||
Diuretics (n, %) | 9 (11.8%) | 164 (17.0%) | 0.247 | ||
Proton pump inhibitors (n, %) | 14 (18.4%) | 177 (18.3%) | 0.983 | ||
Digoxin (n, %) | 0 (0%) | 6 (0.6%) | 0.491 | ||
Amiodarone (n, %) | 0 (0%) | 6 (0.6%) | 0.491 |
Crude | |||
---|---|---|---|
Parameter | OR (95% CI) | p | |
Sex (Male) | 0.33 (0.20–0.53) | <0.001 | |
Age (years) | 0.97 (0.95–0.99) | 0.007 | |
Race (Caucasian) | 1.86 (0.63–5.45) | 0.258 | |
Estimated Glomerular Filtration Rate | 1.01 (1.00–1.03) | 0.033 | |
Smoker | 0.91 (0.57–1.45) | 0.681 | |
Diabetes | 0.35 (0.16–0.78) | 0.010 | |
Hypertension | 1.04 (0.65–1.66) | 0.881 | |
Dyslipidemia | 0.80 (0.50–1.28) | 0.356 | |
Previous Myocardial Infarction | 0.42 (0.15–1.17) | 0.097 | |
Peripheral Artery Disease | 1.41 (0.54–3.66) | 0.482 | |
Cerebrovascular Accident | 0.34 (0.05–2.79) | 0.340 | |
Atrial Fibrillation | 1.22 (0.28–5.29) | 0.794 | |
Body Mass Index | 0.98 (0.93–1.04) | 0.475 | |
Familiar background | 0.82 (0.46–1.47) | 0.513 | |
Eating Fruit (servings per day) | 1.01 (0.90–1.14) | 0.812 | |
Eating Fish (servings per week) | 1–03 (0.88–1.20) | 0.699 | |
Alcohol consumption | 0 | Ref. | - |
1–7 | 1.55 (0.91–2.62) | 0.103 | |
8–14 | 0.49 (0.19–1.30) | 0.151 | |
>14 | 1.02 (0.47–2.23) | 0.955 | |
LDL-c | 1.00 (0.99–1.00) | 0.411 | |
Triglycerides | 1.00 (1.00–1.00) | 0.905 | |
HDL-c (per 5 mg/dL increment) | 1.18 (1.08–1.28) | <0.001 | |
IL-18 | 1.00 (1.00–1.00) | 0.900 | |
PCSK9 | 1.00 (1.00–1.00) | 0.490 | |
Lp(a) > 60 mg/dL | 0.41 (0.17–0.97) | 0.043 | |
Hs-CRP | 0.85 (0.75–0.96) | 0.009 | |
Acetylsalicylic acid | 0.71 (0.38–1.32) | 0.280 | |
AntiP2Y12 | 0.26 (0.03–1.91) | 0.186 | |
Acenocumarol | 0.57 (0.08–4.30) | 0.588 | |
Statins | 0.61 (0.33–1.11) | 0.104 | |
Ezetimibe | 0.57 (0.07–4.30) | 0.588 | |
Insulin | 0.51 (0.12–2.12) | 0.351 | |
Oral antidiabetic drugs | 0.42 (0.17–1.07) | 0.070 | |
ACE inhibitors | 0.71 (0.41–1.21) | 0.202 | |
Aldosterone receptor blockers | 0.60 (0.08–4.52) | 0.620 | |
Betablockers | 0.88 (0.46–1.72) | 0.719 | |
Nitrates | 0.67 (0.20–2.19) | 0.505 | |
Dihydropyridines | 0.37 (0.11–1.20) | 0.099 | |
Diuretics | 0.66 (0.32–1.34) | 0.250 | |
Proton Pump Inhibitors | 1.00 (0.55–1.84) | 0.983 |
Parameter | Odds Ratio | 95% CI | p |
---|---|---|---|
Sex, male | 0.34 | 0.19–0.60 | <0.001 |
Age, years | 0.97 | 0.94–0.99 | 0.002 |
Diabetes | 0.40 | 0.17–0.97 | 0.043 |
HDL-c (per 5 mg/dL increment) | 1.13 | 1.02–1.24 | 0.015 |
Lp(a) >60 mg/dL | 0.35 | 0.14–0.84 | 0.019 |
Parameter | Hazard Ratio | 95% CI | p |
---|---|---|---|
Age, years | 1.02 | 1.00–1.03 | 0.034 |
Estimated Glomerular Filtration Rate | 0.99 | 0.98–0.99 | 0.035 |
Hypertension | 1.50 | 1.06–2.13 | 0.021 |
Previous Heart Failure | 1.55 | 1.07–2.26 | 0.022 |
Coronary Artery Bypass Grafting | 2.05 | 1.19–3.54 | 0.010 |
Lp(a) > 60 mg/dL | 1.44 | 1.02–2.03 | 0.036 |
Insulin | 1.72 | 1.09–2.74 | 0.021 |
Acetylsalicylic acid | 0.57 | 0.32–0.99 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallmeyer, A.; Pello Lázaro, A.M.; Blanco-Colio, L.M.; Aceña, Á.; González-Lorenzo, Ó.; Tarín, N.; Cristóbal, C.; Gutiérrez-Landaluce, C.; Huelmos, A.; Lumpuy-Castillo, J.; et al. Absence of High Lipoprotein(a) Levels Is an Independent Predictor of Acute Myocardial Infarction without Coronary Lesions. J. Clin. Med. 2023, 12, 960. https://doi.org/10.3390/jcm12030960
Kallmeyer A, Pello Lázaro AM, Blanco-Colio LM, Aceña Á, González-Lorenzo Ó, Tarín N, Cristóbal C, Gutiérrez-Landaluce C, Huelmos A, Lumpuy-Castillo J, et al. Absence of High Lipoprotein(a) Levels Is an Independent Predictor of Acute Myocardial Infarction without Coronary Lesions. Journal of Clinical Medicine. 2023; 12(3):960. https://doi.org/10.3390/jcm12030960
Chicago/Turabian StyleKallmeyer, Andrea, Ana María Pello Lázaro, Luis M. Blanco-Colio, Álvaro Aceña, Óscar González-Lorenzo, Nieves Tarín, Carmen Cristóbal, Carlos Gutiérrez-Landaluce, Ana Huelmos, Jairo Lumpuy-Castillo, and et al. 2023. "Absence of High Lipoprotein(a) Levels Is an Independent Predictor of Acute Myocardial Infarction without Coronary Lesions" Journal of Clinical Medicine 12, no. 3: 960. https://doi.org/10.3390/jcm12030960
APA StyleKallmeyer, A., Pello Lázaro, A. M., Blanco-Colio, L. M., Aceña, Á., González-Lorenzo, Ó., Tarín, N., Cristóbal, C., Gutiérrez-Landaluce, C., Huelmos, A., Lumpuy-Castillo, J., López-Castillo, M., Montalvo, J. M., Alonso Martin, J. J., López-Bescós, L., Egido, J., Lorenzo, Ó., & Tuñón, J. (2023). Absence of High Lipoprotein(a) Levels Is an Independent Predictor of Acute Myocardial Infarction without Coronary Lesions. Journal of Clinical Medicine, 12(3), 960. https://doi.org/10.3390/jcm12030960