Effect of Acetazolamide on Postural Control in Patients with COPD Travelling to 3100 m Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Subjects
2.3. Interventions
2.4. Assessments
2.5. Outcomes and Sample Size Estimation
2.6. Randomization and Blinding
2.7. Data Analysis
3. Results
Study Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiba, R.; Takakusaki, K.; Ota, J.; Yozu, A.; Haga, N. Human upright posture control models based on multisensory inputs; in fast and slow dynamics. Neurosci. Res. 2016, 104, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.S.; Oakley, S.R.; Vang, P.; Noble, B.; Cevette, M.J.; Stepanek, J.P. Hypoxia-induced changes in standing balance. Aviat. Space Environ. Med. 2011, 82, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Holness, D.E.; Fraser, W.D.; Eastman, D.E.; Porlier, J.A.; Paul, M.A. Postural stability during slow-onset and rapid-onset hypoxia. Aviat. Space Environ. Med. 1982, 53, 647–651. [Google Scholar] [PubMed]
- Cymerman, A.; Muza, S.R.; Beidleman, B.A.; Ditzler, D.T.; Fulco, C.S. Postural Instability and Acute Mountain Sickness During Exposure to 24 Hours of Simulated Altitude (4300 m). High Alt. Med. Biol. 2001, 2, 509–514. [Google Scholar] [CrossRef]
- Baumgartner, R.W.; Eichenberger, U.; Bärtsch, P. Postural ataxia at high altitude is not related to mild to moderate acute mountain sickness. Eur. J. Appl. Physiol. 2002, 86, 322–326. [Google Scholar] [CrossRef]
- Clarke, S.B.; Deighton, K.; Newman, C.; Nicholson, G.; Gallagher, L.; Boos, C.J.; Mellor, A.; Woods, D.R.; O’Hara, J.P. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition. PLoS ONE 2018, 13, e0190919. [Google Scholar] [CrossRef]
- Stadelmann, K.; Latshang, T.D.; Cascio, C.M.L.; Clark, R.; Huber, R.; Kohler, M.; Achermann, P.; Bloch, K.E. Impaired Postural Control in Healthy Men at Moderate Altitude (1630 M and 2590 M): Data from a Randomized Trial. PLoS ONE 2015, 10, e0116695. [Google Scholar] [CrossRef]
- Global Initiative For Chronic Obstructive Lung Disease 2022 Report. Available online: https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf (accessed on 18 November 2018).
- de Castro, A.A.M.; Porto, E.; Sousa, V.; Sousa, M.; Nascimento, O.; Kumpel, C.; Jardim, J.R. Postural control in chronic obstructive pulmonary disease: A systematic review. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1233–1239. [Google Scholar] [CrossRef]
- Butcher, S.J.; Meshke, J.M.; Sheppard, M.S. Reductions in Functional Balance, Coordination, and Mobility Measures among Patients with Stable Chronic Obstructive Pulmonary Disease. J. Cardiopulm. Rehabil. 2004, 24, 274–280. [Google Scholar] [CrossRef]
- Muralt, L.; Furian, M.; Lichtblau, M.; Aeschbacher, S.S.; Clark, R.; Estebesova, B.; Sheraliev, U.; Marazhapov, N.; Osmonov, B.; Bisang, M.; et al. Postural Control in Lowlanders with COPD Traveling to 3100 m: Data from a Randomized Trial Evaluating the Effect of Preventive Dexamethasone Treatment. Front. Physiol. 2018, 9, 752. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, N.D.; Baggott, A.V.; Andrew Todd, W.T. Acetazolamide for the prevention of acute mountain sickness—A systematic review and meta-analysis. J. Travel Med. 2012, 19, 298–307. [Google Scholar] [CrossRef]
- Furian, M.; Mademilov, M.; Buergin, A.; Scheiwiller, P.M.; Mayer, L.; Schneider, S.; Emilov, B.; Lichtblau, M.; Bitos, K.; Muralt, L.; et al. Acetazolamide to Prevent Adverse Altitude Effects in COPD and Healthy Adults. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef]
- Jeter, P.E.; Wang, J.; Gu, J.; Barry, M.P.; Roach, C.; Corson, M.; Yang, L.; Dagnelie, G. Intra-session test-retest reliability of magnitude and structure of center of pressure from the Nintendo Wii Balance Board™ for a visually impaired and normally sighted population. Gait Posture 2015, 41, 482–487. [Google Scholar] [CrossRef]
- Bartlett, H.L.; Ting, L.H.; Bingham, J.T. Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture 2014, 39, 224–228. [Google Scholar] [CrossRef]
- Jørgensen, M.G. Assessment of postural balance in community-dwelling older adults—Methodological aspects and effects of biofeedback-based Nintendo Wii training. Dan. Med. J. 2014, 61, B4775. [Google Scholar]
- Roach, R.; Hackett, P.H.; Oelz, O.; Bärtsch, P.; Luks, A.M.; MacInnis, M.; Baillie, J.K.; Achatz, E.; Albert, E.; Andrews, J.; et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt. Med. Biol. 2018, 19, 4–6. [Google Scholar] [CrossRef]
- Sampson, J.B.; Cymerman, A.; Burse, R.L.; Maher, J.T.; Rock, P.B. Procedures for the measurement of acute mountain sickness. Aviat. Space Environ. Med. 1983, 54, 1063–1073. [Google Scholar]
- Meier, D.; Collet, T.-H.; Locatelli, I.; Cornuz, J.; Kayser, B.; Simel, D.L.; Sartori, C. Does This Patient Have Acute Mountain Sickness?: The Rational Clinical Examination Systematic Review. JAMA 2017, 318, 1810–1819. [Google Scholar] [CrossRef]
- Saghaei, M. An overview of randomization and minimization programs for randomized clinical trials. J. Med. Signals Sens. 2011, 1, 55–61. [Google Scholar] [CrossRef]
- Kazis, L.E.; Anderson, J.J.; Meenan, R.F. Effect sizes for interpreting changes in health status. Med Care 1989, 27, S178–S189. [Google Scholar] [CrossRef]
- Baumgartner, R.W.; Bärtsch, P.; Wagner, D.R.; Saunders, S.; Robertson, B.; Davis, J.E.; Hydren, J.R.; Kraemer, W.J.; Volek, J.S.; Dunn-Lewis, C.; et al. Ataxia in Acute Mountain Sickness Does Not Improve with Short-term Oxygen Inhalation. High Alt. Med. Biol. 2002, 3, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Gurfinkel, V.S.; Brumagne, S.; Smith, T.C.; Cordo, P.C. Coexistence of stability and mobility in postural control: Evidence from postural compensation for respiration. Exp. Brain Res. 2002, 144, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Chang, A.T.; Hodges, P.W. Balance recovery is compromised and trunk muscle activity is increased in chronic obstructive pulmonary disease. Gait Posture 2016, 43, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.J.; Wolff, C.B.; Hedges, A.-M.; Nathan, J.; Flower, R.J.; Milledge, J.S.; Swenson, E.R. Benzolamide improves oxygenation and reduces acute mountain sickness during a high-altitude trek and has fewer side effects than acetazolamide at sea level. Pharmacol. Res. Perspect. 2016, 4, e00203. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ke, T.; Zhang, X.; Chen, Y.; Liu, M.; Chen, J.; Luo, W. Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol. Teratol. 2013, 35, 28–33. [Google Scholar] [CrossRef]
- Leandri, M.; Cammisuli, S.; Cammarata, S.; Baratto, L.; Campbell, J.; Simonini, M.; Tabaton, M. Balance features in Alzheimer’s disease and amnestic mild cognitive impairment. J. Alzheimers Dis. 2009, 16, 113–120. [Google Scholar] [CrossRef]
- Sun, M.-K.; Alkon, D.L. Carbonic anhydrase gating of attention: Memory therapy and enhancement. Trends Pharmacol. Sci. 2002, 23, 83–89. [Google Scholar] [CrossRef]
- Hoshikawa, M.; Hashimoto, S.; Kawahara, T.; Ide, R. Postural instability at a simulated altitude of 5,000 m before and after an expedition to Mt. Cho-Oyu (8201 m). Eur. J. Appl. Physiol. 2010, 110, 539–547. [Google Scholar] [CrossRef]
- Sutton, J.R.; Coates, G.; Ilouston, C. The Lake Louise Consensus on the Definition and Quantification of Altitude Illness, Hypoxia and Mountain Medicine; Queen City Printers: Burlington, VT, USA, 1992. [Google Scholar]
- Horak, F.B.; Shupert, C.L.; Mirka, A. Components of postural dyscontrol in the elderly: A review. Neurobiol. Aging 1989, 10, 727–738. [Google Scholar] [CrossRef]
- Paillard, T. Effects of general and local fatigue on postural control: A review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Kwok, B.C.; Clark, R.; Pua, Y. Novel use of the Wii Balance Board to prospectively predict falls in community-dwelling older adults. Clin. Biomech. 2015, 30, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Nordström, A.; Gustafson, Y.; Westling, G.; Nordström, P. Increased postural sway during quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals. Age Ageing 2017, 46, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Piirtola, M.; Era, P. Force Platform Measurements as Predictors of Falls among Older People—A Review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef] [PubMed]
Placebo Group | Acetazolamide Group | All Participants | ||
---|---|---|---|---|
N | 63 | 64 | 127 | |
Sex, male/female | 44/19 | 41/23 | 85/42 | |
Age, y | 58.40 ± 9.34 | 56.50 ± 7.13 | 57.4 ± 8.32 | |
Weight, kg | 72.63 ±14.55 | 74.42 ± 12.39 | 73.53 ± 13.48 | |
Height, m | 1.64 ± 0.08 | 1.65 ± 0.09 | 1.64 ± 0.08 | |
BMI, kg/m² | 27.06 ± 4.95 | 27.29 ± 4.01 | 27.18 ± 4.49 | |
Cigarettes, pack years | 20.1 ± 26.5 | 13.7 ± 16.1 | 16.9 ± 22.1 | |
Assessments at baseline (760 m) | ||||
FEV1, % predicted | 60 ± 13 | 60 ± 11 | 60 ± 12 | |
SpO2, % | 94 ± 2 | 94 ± 2 | 94 ± 2 | |
Assessments at 3100 m | ||||
SpO2, % | 88 ± 3 | 89 ± 3 * | 89 ± 3 | |
AMS, n | 25 (40%) | 21 (33%) | 46 (36%) | |
Side effects (n, %) | Tingling sensation | 2 (3%) | 11 (17%) * | |
Polyuria | 10 (16%) | 17 (27%) | ||
Change in taste | 3 (5%) | 2 (3%) | ||
Other | 1 (2%) | 1 (2%) |
Placebo | Acetazolamide | |||
---|---|---|---|---|
760 m | 3100 m | 760 m | 3100 m | |
Center of pressure path length, cm | 28.78 ± 9.68 | 30.40 ± 9.95 ** | 27.64 ± 9.61 | 28.38 ± 9.65 |
Antero-posterior amplitude, cm | 2.27 ± 0.81 | 2.27 ± 0.90 | 2.19 ± 0.81 | 2.49 ± 0.82 ** |
Antero-posterior velocity, cm/s | 0.71 ± 0.26 | 0.78 ± 0.27 ** | 0.69 ± 0.26 | 0.74 ± 0.26 ** |
Medio-lateral amplitude, cm | 1.68 ± 0.69 | 1.53 ± 0.77 ** | 1.52 ± 0.69 | 1.48 ± 0.69 |
Dependent Variable: Center of Pressure Path Length, cm | |||
---|---|---|---|
Coefficient | 95%CI | p-Value | |
Altitude (1 = 760 m; 2 = 3100 m) | 0.98 | 0.39 to 1.58 | 0.001 |
Drug (1 = Plc, 2 = AZA) | 0.66 | −0.25 to 1.57 | 0.156 |
Age, years | −0.002 | −0.06 to 0.05 | 0.937 |
Sex (1 = men; 2 = women) | 0.59 | −0.84 to 2.01 | 0.422 |
Height, cm | 0.1 | 0.01 to 0.19 | 0.030 |
Weight, kg | −0.04 | −0.08 to 0.01 | 0.084 |
AMSc (at morning of PC test) | 2.74 | 0.42 to 5.06 | 0.021 |
COPL baseline (at 760 m) | 0.87 | 0.79 to 0.94 | <0.001 |
Intercept | −11.58 | −27.47 to 4.31 | 0.153 |
Placebo | Acetazolamide | Difference in Changes between Groups | |||
---|---|---|---|---|---|
Without Drug | With Drug | Without Drug | With Drug | ||
COPL, cm | 30.16 ± 9.00 | 29.49 ± 9.01 | 26.50 ± 9.14 | 26.40 ± 9.13 | 0.48 [−1.17 to 2.13] |
AP amplitude, cm | 2.36 ± 0.76 | 2.08 ± 0.77 ** | 2.25 ± 0.77 | 2.22 ± 0.77 | 0.27 [0.07 to 0.48] ## |
AP velocity, cm/s | 0.75 ± 0.24 | 0.74 ± 0.24 | 0.65 ± 0.25 | 0.66 ± 0.25 | 0.02 [−0.02 to 0.07] |
ML amplitude, cm | 0.52 ± 0.17 | 0.49 ± 0.17 * | 0.46 ± 0.17 | 0.45 ± 0.17 | 0.09 [−0.08 to 0.26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buergin, A.; Furian, M.; Mayer, L.; Lichtblau, M.; Scheiwiller, P.M.; Sheraliev, U.; Sooronbaev, T.M.; Ulrich, S.; Bloch, K.E. Effect of Acetazolamide on Postural Control in Patients with COPD Travelling to 3100 m Randomized Trial. J. Clin. Med. 2023, 12, 1246. https://doi.org/10.3390/jcm12041246
Buergin A, Furian M, Mayer L, Lichtblau M, Scheiwiller PM, Sheraliev U, Sooronbaev TM, Ulrich S, Bloch KE. Effect of Acetazolamide on Postural Control in Patients with COPD Travelling to 3100 m Randomized Trial. Journal of Clinical Medicine. 2023; 12(4):1246. https://doi.org/10.3390/jcm12041246
Chicago/Turabian StyleBuergin, Aline, Michael Furian, Laura Mayer, Mona Lichtblau, Philipp M. Scheiwiller, Ulan Sheraliev, Talant M. Sooronbaev, Silvia Ulrich, and Konrad E. Bloch. 2023. "Effect of Acetazolamide on Postural Control in Patients with COPD Travelling to 3100 m Randomized Trial" Journal of Clinical Medicine 12, no. 4: 1246. https://doi.org/10.3390/jcm12041246
APA StyleBuergin, A., Furian, M., Mayer, L., Lichtblau, M., Scheiwiller, P. M., Sheraliev, U., Sooronbaev, T. M., Ulrich, S., & Bloch, K. E. (2023). Effect of Acetazolamide on Postural Control in Patients with COPD Travelling to 3100 m Randomized Trial. Journal of Clinical Medicine, 12(4), 1246. https://doi.org/10.3390/jcm12041246