Persistent Hypochloremia Is Associated with Adverse Prognosis in Patients Repeatedly Hospitalized for Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Protocol
2.2. Methods for Measuring Serum Chloride
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puljak, L.; Kilic, G. Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta 2006, 1762, 404–413. [Google Scholar] [CrossRef]
- Li, Z.; Xing, C.; Li, T.; Du, L.; Wang, N. Hypochloremia is associated with increased risk of all-cause mortality in patients in the coronary care unit: A cohort study. J. Int. Med. Res. 2020, 48, 300060520911500. [Google Scholar] [CrossRef]
- Grodin, J.L.; Verbrugge, F.H.; Ellis, S.G.; Mullens, W.; Testani, J.M.; Tang, W.H. Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure. Circ. Heart Fail. 2016, 9, e002453. [Google Scholar] [CrossRef]
- Madelaire, C.; Gustafsson, F.; Stevenson, L.W.; Kristensen, S.L.; Kober, L.; Andersen, J.; D’Souza, M.; Biering-Sorensen, T.; Andersson, C.; Torp-Pedersen, C.; et al. One-Year Mortality After Intensification of Outpatient Diuretic Therapy. J. Am. Heart Assoc. 2020, 9, e016010. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, J.; Norell, M.; Canepa-Anson, R.; Sutton, G.; Poole-Wilson, P. Untreated heart failure: Clinical and neuroendocrine effects of introducing diuretics. Br. Heart J. 1987, 57, 17–22. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Harjola, V.P.; Mebazaa, A.; Brunner-La Rocca, H.P.; Martens, P.; Testani, J.M.; Tang, W.H.W.; Orso, F.; Rossignol, P.; et al. The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 137–155. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Zandijk, A.J.L.; van Norel, M.R.; Julius, F.E.C.; Sepehrvand, N.; Pannu, N.; McAlister, F.A.; Voors, A.A.; Ezekowitz, J.A. Chloride in Heart Failure: The Neglected Electrolyte. JACC Heart Fail. 2021, 9, 904–915. [Google Scholar] [CrossRef]
- Kalikkot Thekkeveedu, R.; Ramarao, S.; Dankhara, N.; Alur, P. Hypochloremia Secondary to Diuretics in Preterm Infants: Should Clinicians Pay Close Attention? Glob. Pediatr. Health 2021, 8, 2333794X21991014. [Google Scholar] [CrossRef] [PubMed]
- Testani, J.M.; Hanberg, J.S.; Arroyo, J.P.; Brisco, M.A.; Ter Maaten, J.M.; Wilson, F.P.; Bellumkonda, L.; Jacoby, D.; Tang, W.H.; Parikh, C.R. Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur. J. Heart Fail. 2016, 18, 660–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbert, J.J.; Bhandari, S.; Clark, A.L. Hypochloraemia in Patients with Heart Failure: Causes and Consequences. Cardiol. Ther. 2020, 9, 333–347. [Google Scholar] [CrossRef]
- Marchenko, R.; Sigal, A.; Wasser, T.E.; Reyer, J.; Green, J.; Mercogliano, C.; Khan, M.S.; Donato, A.A. Hypochloraemia and 30 day readmission rate in patients with acute decompensated heart failure. ESC Heart Fail. 2020, 7, 903–907. [Google Scholar] [CrossRef]
- Kondo, T.; Yamada, T.; Tamaki, S.; Morita, T.; Furukawa, Y.; Iwasaki, Y.; Kawasaki, M.; Kikuchi, A.; Ozaki, T.; Sato, Y.; et al. Serial Change in Serum Chloride During Hospitalization Could Predict Heart Failure Death in Acute Decompensated Heart Failure Patients. Circ. J. 2018, 82, 1041–1050. [Google Scholar] [CrossRef]
- Rivera, F.B.; Alfonso, P.; Golbin, J.M.; Lo, K.; Lerma, E.; Volgman, A.S.; Kazory, A. The Role of Serum Chloride in Acute and Chronic Heart Failure: A Narrative Review. Cardiorenal Med. 2021, 11, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Hanberg, J.S.; Rao, V.; Ter Maaten, J.M.; Laur, O.; Brisco, M.A.; Perry Wilson, F.; Grodin, J.L.; Assefa, M.; Samuel Broughton, J.; Planavsky, N.J.; et al. Hypochloremia and Diuretic Resistance in Heart Failure: Mechanistic Insights. Circ. Heart Fail. 2016, 9, e003180. [Google Scholar] [CrossRef]
- Ter Maaten, J.M.; Damman, K.; Hanberg, J.S.; Givertz, M.M.; Metra, M.; O’Connor, C.M.; Teerlink, J.R.; Ponikowski, P.; Cotter, G.; Davison, B.; et al. Hypochloremia, Diuretic Resistance, and Outcome in Patients With Acute Heart Failure. Circ. Heart Fail. 2016, 9, e003109. [Google Scholar] [CrossRef]
- Minatoguchi, S. Heart failure and its treatment from the perspective of sympathetic nerve activity. J. Cardiol. 2022, 79, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Saku, K.; Yokota, S.; Nishikawa, T.; Kinugawa, K. Interventional heart failure therapy: A new concept fighting against heart failure. J. Cardiol. 2022, 80, 101–109. [Google Scholar] [CrossRef]
- Okura, Y.; Ramadan, M.M.; Ohno, Y.; Mitsuma, W.; Tanaka, K.; Ito, M.; Suzuki, K.; Tanabe, N.; Kodama, M.; Aizawa, Y. Impending epidemic: Future projection of heart failure in Japan to the year 2055. Circ. J. 2008, 72, 489–491. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsutsui, H.; Isobe, M.; Ito, H.; Okumura, K.; Ono, M.; Kitakaze, M.; Kinugawa, K.; Kihara, Y.; Goto, Y.; Komuro, I.; et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure- Digest Version. Circ. J. 2019, 83, 2084–2184. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Ide, T.; Ito, H.; Kihara, Y.; Kinugawa, K.; Kinugawa, S.; Makaya, M.; Murohara, T.; Node, K.; Saito, Y.; et al. JCS/JHFS 2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. Circ. J. 2021, 85, 2252–2291. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Yoshihisa, A.; Takeishi, R.; Ohara, H.; Anzai, F.; Hotsuki, Y.; Watanabe, K.; Sato, Y.; Abe, S.; Misaka, T.; et al. Prognostic Effects of Changes in Right Ventricular Fractional Area Change in Patients With Heart Failure. Circ. J. 2022, 86, 1982–1989. [Google Scholar] [CrossRef]
- Sugawara, Y.; Yoshihisa, A.; Ishibashi, S.; Matsuda, M.; Yamadera, Y.; Ohara, H.; Ichijo, Y.; Watanabe, K.; Hotsuki, Y.; Anzai, F.; et al. Liver Congestion Assessed by Hepatic Vein Waveforms in Patients With Heart Failure. CJC Open 2021, 3, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Akama, J.; Shimizu, T.; Ando, T.; Anzai, F.; Muto, Y.; Kimishima, Y.; Kiko, T.; Yoshihisa, A.; Yamaki, T.; Kunii, H.; et al. Clinical usefulness of the pattern of non-adherence to anti-platelet regimen in stented patients (PARIS) thrombotic risk score to predict long-term all-cause mortality and heart failure hospitalization after percutaneous coronary intervention. PLoS ONE 2022, 17, e0274287. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Rickham, P.P. Human Experimentation. Code of Ethics of the World Medical Association. Declaration of Helsinki. Br. Med. J. 1964, 2, 177. [Google Scholar] [CrossRef] [PubMed]
- Lewis, O.L.; Keener, J.P. Enhanced Electrodiffusive Transport across a Mucus Layer. SIAM J. Appl. Math. 2021, 81, 965–981. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- McCallum, L.; Jeemon, P.; Hastie, C.E.; Patel, R.K.; Williamson, C.; Redzuan, A.M.; Dawson, J.; Sloan, W.; Muir, S.; Morrison, D.; et al. Serum chloride is an independent predictor of mortality in hypertensive patients. Hypertension 2013, 62, 836–843. [Google Scholar] [CrossRef]
- Grodin, J.L.; Simon, J.; Hachamovitch, R.; Wu, Y.; Jackson, G.; Halkar, M.; Starling, R.C.; Testani, J.M.; Tang, W.H. Prognostic Role of Serum Chloride Levels in Acute Decompensated Heart Failure. J. Am. Coll. Cardiol. 2015, 66, 659–666. [Google Scholar] [CrossRef]
- Sayer, G.; Bhat, G. The renin-angiotensin-aldosterone system and heart failure. Cardiol. Clin. 2014, 32, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, J.R.; Hohnloser, S.H.; Nattel, S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. Eur. Heart J. 2006, 27, 512–518. [Google Scholar] [CrossRef]
- Duan, D.D. Phenomics of cardiac chloride channels. Compr. Physiol. 2013, 3, 667–692. [Google Scholar] [CrossRef]
- Cappola, T.P.; Matkovich, S.J.; Wang, W.; van Booven, D.; Li, M.; Wang, X.; Qu, L.; Sweitzer, N.K.; Fang, J.C.; Reilly, M.P.; et al. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc. Natl. Acad. Sci. USA 2011, 108, 2456–2461. [Google Scholar] [CrossRef] [PubMed]
- Piala, A.T.; Moon, T.M.; Akella, R.; He, H.; Cobb, M.H.; Goldsmith, E.J. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci. Signal 2014, 7, ra41. [Google Scholar] [CrossRef]
- Ponce-Coria, J.; San-Cristobal, P.; Kahle, K.T.; Vazquez, N.; Pacheco-Alvarez, D.; de Los Heros, P.; Juarez, P.; Munoz, E.; Michel, G.; Bobadilla, N.A.; et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc. Natl. Acad. Sci. USA 2008, 105, 8458–8463. [Google Scholar] [CrossRef]
- Ide, T.; Kaku, H.; Matsushima, S.; Tohyama, T.; Enzan, N.; Funakoshi, K.; Sumita, Y.; Nakai, M.; Nishimura, K.; Miyamoto, Y.; et al. Clinical Characteristics and Outcomes of Hospitalized Patients with Heart Failure from the Large-Scale Japanese Registry of Acute Decompensated Heart Failure (JROADHF). Circ. J. 2021, 85, 1438–1450. [Google Scholar] [CrossRef]
- Cuthbert, J.J.; Pellicori, P.; Rigby, A.; Pan, D.; Kazmi, S.; Shah, P.; Clark, A.L. Low serum chloride in patients with chronic heart failure: Clinical associations and prognostic significance. Eur. J. Heart Fail. 2018, 20, 1426–1435. [Google Scholar] [CrossRef]
- Verbrugge, F.H.; Martens, P.; Ameloot, K.; Haemels, V.; Penders, J.; Dupont, M.; Tang, W.H.W.; Droogne, W.; Mullens, W. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur. J. Heart Fail. 2019, 21, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Imiela, T.; Budaj, A. Acetazolamide as Add-on Diuretic Therapy in Exacerbations of Chronic Heart Failure: A Pilot Study. Clin. Drug Investig. 2017, 37, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Verbrugge, F.H.; Nijst, P.; Martens, P.; Tartaglia, K.; Theunissen, E.; Bruckers, L.; Droogne, W.; Troisfontaines, P.; Damman, K.; et al. Rationale and design of the ADVOR (Acetazolamide in Decompensated Heart Failure with Volume Overload) trial. Eur. J. Heart Fail. 2018, 20, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.Y.; Porush, J.G.; Slater, P.A.; Flombaum, C.D.; Shafi, T.; Fein, P.A. Effects of acetazolamide on proximal tubule C1, Na, and HCO3 transport in normal and acidotic dogs during distal blockade. J. Clin. Investig. 1977, 60, 162–170. [Google Scholar] [CrossRef] [Green Version]
Total (n = 322) | Group A (n = 243) | Group B (n = 29) | Group C (n = 34) | Group D (n = 16) | p Value | |
---|---|---|---|---|---|---|
Demographic data | ||||||
Age, years | 72 [61, 80] | 72 [60, 81] | 64 [53.5, 75] | 75 [61.5, 81] | 76.5 [69.5, 80] † | 0.027 |
Male sex, n (%) | 203 (63) | 154 (63.4) | 19 (65.5) | 20 (58.8) | 10 (62.5) | 0.950 |
BMI, kg/m2 | 22.2 [19.8, 24.6] | 22.3 [20.2, 24.8] | 22.5 [19.1, 25.2] | 20.8 [17.4, 24] * | 20.7 [17.6, 23.6] | 0.046 |
SBP, mmHg | 120 [102, 143] | 121 [104, 142] | 120 [93, 150] | 120 [102, 164] | 112 [91, 133] | 0.486 |
Hypertension, n (%) | 253 (78.6) | 191 (78.6) | 24 (82.8) | 26 (76.5) | 12 (76.5) | 0.916 |
Diabetes mellitus, n (%) | 162 (50.3) | 119 (49) | 18 (62.1) | 14 (41.2) | 11 (68.8) | 0.165 |
Dyslipidemia, n (%) | 255 (79.2) | 186 (76.5) | 25 (86.2) | 29 (85.3) | 15 (93.8) | 0.193 |
Atrial fibrillation, n (%) | 153 (47.5) | 107 (44) | 14 (48.3) | 18 (52.9) | 14 (87.5) | 0.008 |
CAD, n (%) | 106 (32.9) | 82 (33.7) | 10 (34.5) | 10 (29.4) | 4 (25) | 0.861 |
RAS inhibitors, n (%) | 253 (78.6) | 193 (79.4) | 21 (72.4) | 27 (79.4) | 12 (75) | 0.827 |
Beta blockers, n (%) | 264 (82) | 199 (81.9) | 24 (82.8) | 28 (82.4) | 13 (81.3) | 0.999 |
Loop diuretics, n (%) | 285 (88.5) | 210 (86.4) | 26 (89.7) | 33 (97.1) | 16 (100) | 0.133 |
LVEF, % | 46.3 [34, 60.5] | 45.8 [33.7, 60] | 44.4 [32, 58.7] | 49.2 [34, 62] | 55.4 [36.6, 63] | 0.563 |
Type of HF, n (%) HFrEF HFmrEF HFpEF | 116 (36) 62 (19.3) 144 (44.7) | 86 (35.4) 50 (20.6) 107 (44) | 13 (44.8) 6 (20.7) 10 (34.5) | 11 (32.4) 6 (17.6) 17 (50) | 6 (37.5) 0 (0) 10 (62.5) | 0.400 |
Ischemic HF, n (%) | 78 (24.2) | 61 (25.1) | 7 (24.1) | 8 (23.5) | 2 (12.5) | 0.727 |
NYHA class 3 or 4, n (%) | 20 (6.2) | 15 (6.2) | 2 (6.9) | 1 (2.9) | 2 (12.5) | 0.629 |
Time between 1st and 2nd hospitalizations, days | 295 [93, 948] | 279 [93, 895] | 267 [78, 866] | 728 [222, 1129] | 236 [70.5, 621] | 0.081 |
Laboratory data | ||||||
BNP, pg/mL at 1st hospitalization | 412 [189, 803] | 395 [178, 779] | 390 [147, 969] | 435 [194, 707] | 574 [261, 1475] | 0.600 |
BNP, pg/mL at 2nd hospitalization | 480 [210, 930] | 484 [223, 882] | 514 [146, 997] | 425 [179, 1084] | 488 [209, 1500] | 0.815 |
Hemoglobin, g/dL at 1st hospitalization | 12.5 ± 2.2 | 12.7 ± 2.2 | 12 ± 2.2 | 11.9 ± 1.7 | 11.2 ± 2 | 0.017 |
Hemoglobin, g/dL at 2nd hospitalization | 11.6 ± 2.3 | 11.7 ± 2.3 | 11.2 ± 2.1 | 11.5 ± 1.5 | 10.1 ± 2 * | 0.025 |
eGFR, mL/min/1.73 m2 at 1st hospitalization | 53.1 [39, 70.9] | 53.1 [41.2, 70.2] | 48.5 [33.3, 67.9] | 60.1 [37.3, 77.1] | 48.4 [34.1, 67.3] | 0.513 |
eGFR, mL/min/1.73 m2 at 2nd hospitalization | 46.5 [33.8, 61.5] | 46.5 [34, 61] | 52 [37.5, 71] | 42.8 [30.3, 67.1] | 42.7 [26, 55.7] | 0.383 |
Sodium, mmol/L at 1st hospitalization | 139 [137, 141] | 140 [138, 141] †‡ | 135.5 [130.5, 137] *‡ | 138 [136, 142] *† | 134 [131, 138] *†‡ | <0.001 |
Sodium, mmol/L at 2nd hospitalization | 139 [137, 141.5] | 140 [138, 142] †‡ | 140 [136, 141] *‡ | 134 [129.5, 137.5] *† | 134.5 [132, 140] *†‡ | <0.001 |
Potassium, mmol/L at 1st hospitalization | 4.2 [3.9, 4.5] | 4.1 [3.9, 4.5] | 4.3 [3.8, 5.2] | 4.3 [4.1, 4.6] | 4.2 [4.1, 4.9] | 0.235 |
Potassium, mmol/L at 2nd hospitalization | 4.1 [3.8, 4.5] | 4.1 [3.8, 4.5] | 4.3 [3.8, 4.6] | 4.1 [3.8, 4.6] | 4.1 [3.7, 4.3] | 0.795 |
Chloride, mmol/L at 1st hospitalization | 103 [100, 106] | 104 [102, 107] †‡ | 96 [93, 97] *‡ | 103 [100, 106] *† | 94.5 [90.5, 96] *†‡ | <0.001 |
Chloride, mmol/L at 2nd hospitalization | 102 [99, 106] | 104 [101, 107] †‡ | 103 [100, 104] *‡ | 95 [93, 96] *† | 93.5 [90.5, 95.5] *†‡ | <0.001 |
HR (95% CI) | p Value | |
---|---|---|
All-cause death (event n = 171/322 patients) | ||
Group D (vs. Group A) unadjusted | 4.925 (2.892–8.387) | <0.001 |
Group D (vs. Group A) Model 1 | 3.866 (2.248–6.649) | <0.001 |
Group D (vs. Group A) Model 2 | 3.490 (1.957–6.224) | <0.001 |
Group C (vs. Group A) unadjusted | 1.114 (0.695–1.788) | 0.654 |
Group B (vs. Group A) unadjusted | 1.243 (0.758–2.038) | 0.390 |
Cardiac death (event n = 119/322 patients) | ||
Group D (vs. Group A) unadjusted | 4.841 (2.548–9.198) | <0.001 |
Group D (vs. Group A) Model 1 | 3.846 (1.877–7.879) | <0.001 |
Group D (vs. Group A) Model 2 | 3.919 (1.804–8.512) | <0.001 |
Group C (vs. Group A) unadjusted | 1.252 (0.722–2.172) | 0.424 |
Group B (vs. Group A) unadjusted | 1.348 (0.751–2.420) | 0.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nozaki, Y.; Yoshihisa, A.; Sato, Y.; Ohara, H.; Sugawara, Y.; Abe, S.; Misaka, T.; Sato, T.; Oikawa, M.; Kobayashi, A.; et al. Persistent Hypochloremia Is Associated with Adverse Prognosis in Patients Repeatedly Hospitalized for Heart Failure. J. Clin. Med. 2023, 12, 1257. https://doi.org/10.3390/jcm12041257
Nozaki Y, Yoshihisa A, Sato Y, Ohara H, Sugawara Y, Abe S, Misaka T, Sato T, Oikawa M, Kobayashi A, et al. Persistent Hypochloremia Is Associated with Adverse Prognosis in Patients Repeatedly Hospitalized for Heart Failure. Journal of Clinical Medicine. 2023; 12(4):1257. https://doi.org/10.3390/jcm12041257
Chicago/Turabian StyleNozaki, Yuji, Akiomi Yoshihisa, Yu Sato, Himika Ohara, Yukiko Sugawara, Satoshi Abe, Tomofumi Misaka, Takamasa Sato, Masayoshi Oikawa, Atsushi Kobayashi, and et al. 2023. "Persistent Hypochloremia Is Associated with Adverse Prognosis in Patients Repeatedly Hospitalized for Heart Failure" Journal of Clinical Medicine 12, no. 4: 1257. https://doi.org/10.3390/jcm12041257
APA StyleNozaki, Y., Yoshihisa, A., Sato, Y., Ohara, H., Sugawara, Y., Abe, S., Misaka, T., Sato, T., Oikawa, M., Kobayashi, A., Yamaki, T., Nakazato, K., & Takeishi, Y. (2023). Persistent Hypochloremia Is Associated with Adverse Prognosis in Patients Repeatedly Hospitalized for Heart Failure. Journal of Clinical Medicine, 12(4), 1257. https://doi.org/10.3390/jcm12041257