A Comparison of Spinopelvic Alignment and Quality of Life between Farmers and Non-Farmers: A Cross-Sectional Population-Based Study in a Japanese Rural Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Radiological Evaluations
2.3. Clinical Evaluations
2.4. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, F.P.; Chevillotte, T.; Leglise, A.; Thompson, W.; Bouthors, C.; Le Huec, J.-C. Which Parameters Are Relevant in Sagittal Balance Analysis of the Cervical Spine? A Literature Review. Eur. Spine J. 2018, 27, 8–15. [Google Scholar] [CrossRef]
- Schneider, D.L.; von Mühlen, D.; Barrett-Connor, E.; Sartoris, D.J. Kyphosis Does Not Equal Vertebral Fractures: The Rancho Bernardo Study. J. Rheumatol. 2004, 31, 747–752. [Google Scholar] [PubMed]
- Seidler, A.; Bolm-Audorff, U.; Heiskel, H.; Henkel, N.; Roth-Küver, B.; Kaiser, U.; Bickeböller, R.; Willingstorfer, W.J.; Beck, W.; Elsner, G. The Role of Cumulative Physical Work Load in Lumbar Spine Disease: Risk Factors for Lumbar Osteochondrosis and Spondylosis Associated with Chronic Complaints. Occup. Environ. Med. 2001, 58, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Shirazi-Adl, A.; El-Rich, M.; Pop, D.G.; Parnianpour, M. Spinal Muscle Forces, Internal Loads and Stability in Standing under Various Postures and Loads—Application of Kinematics-Based Algorithm. Eur. Spine J. 2005, 14, 381–392. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Zheng, Z.; Wang, J.; Huang, B.; Fan, S.; Wang, X.; Zhao, F. The Influence of Long-Term Shoulder Loading on Sagittal Spino-Pelvic Morphology: A Population-Based Retrospective Study of Chinese Farmers from Radiology. J. Orthop. Surg. Res. 2020, 15, 196. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Bath, B.; Kociolek, A.; Zeng, X.; Koehncke, N.; Trask, C. Trunk Posture Exposure Patterns among Prairie Ranch and Grain Farmers. J. Agromed. 2020, 25, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Bassani, T.; Galbusera, F.; Luca, A.; Lovi, A.; Gallazzi, E.; Brayda-Bruno, M. Physiological Variations in the Sagittal Spine Alignment in an Asymptomatic Elderly Population. Spine J. 2019, 19, 1840–1849. [Google Scholar] [CrossRef]
- Ensrud, K.E.; Black, D.M.; Harris, F.; Ettinger, B.; Cummings, S.R. Correlates of Kyphosis in Older Women. The Fracture Intervention Trial Research Group. J. Am. Geriatr. Soc. 1997, 45, 682–687. [Google Scholar] [CrossRef]
- Ryan, P.J.; Blake, G.; Herd, R.; Fogelman, I. A Clinical Profile of Back Pain and Disability in Patients with Spinal Osteoporosis. Bone 1994, 15, 27–30. [Google Scholar] [CrossRef]
- Ettinger, B.; Black, D.M.; Palermo, L.; Nevitt, M.C.; Melnikoff, S.; Cummings, S.R. Kyphosis in Older Women and Its Relation to Back Pain, Disability and Osteopenia: The Study of Osteoporotic Fractures. Osteoporos. Int. 1994, 4, 55–60. [Google Scholar] [CrossRef]
- Hong, J.-H.; Han, M.-S.; Lee, S.-K.; Lee, J.-K.; Moon, B.J. Is the Agricultural Work a Risk Factor for Koreans Elderly Spinal Sagittal Imbalance? J. Korean Neurosurg. Soc. 2020, 63, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R. EuroQol: The Current State of Play. Health Policy 1996, 37, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H.; Mior, S. The Neck Disability Index: A Study of Reliability and Validity. J. Manipulative Physiol. Ther. 1991, 14, 409–415. [Google Scholar]
- Fairbank, J.C.; Pynsent, P.B. The Oswestry Disability Index. Spine 2000, 25, 2940–2952, discussion 2952. [Google Scholar] [CrossRef]
- Shin, G.; Shu, Y.; Li, Z.; Jiang, Z.; Mirka, G. Influence of Knee Angle and Individual Flexibility on the Flexion-Relaxation Response of the Low Back Musculature. J. Electromyogr. Kinesiol. 2004, 14, 485–494. [Google Scholar] [CrossRef]
- Jain, R.; Meena, M.L.; Dangayach, G.S.; Bhardwaj, A.K. Association of Risk Factors with Musculoskeletal Disorders in Manual-Working Farmers. Arch. Environ. Occup. Health 2018, 73, 19–28. [Google Scholar] [CrossRef]
- Khan, M.I.; Bath, B.; Boden, C.; Adebayo, O.; Trask, C. The Association between Awkward Working Posture and Low Back Disorders in Farmers: A Systematic Review. J. Agromed. 2019, 24, 74–89. [Google Scholar] [CrossRef]
- Kado, D.M.; Huang, M.-H.; Karlamangla, A.S.; Cawthon, P.; Katzman, W.; Hillier, T.A.; Ensrud, K.; Cummings, S.R. Factors Associated with Kyphosis Progression in Older Women: 15 Years’ Experience in the Study of Osteoporotic Fractures. J. Bone Miner. Res. 2013, 28, 179–187. [Google Scholar] [CrossRef]
- Kado, D.M.; Browner, W.S.; Palermo, L.; Nevitt, M.C.; Genant, H.K.; Cummings, S.R. Vertebral Fractures and Mortality in Older Women: A Prospective Study. Study of Osteoporotic Fractures Research Group. Arch. Intern. Med. 1999, 159, 1215–1220. [Google Scholar] [CrossRef]
- Katzman, W.; Cawthon, P.; Hicks, G.E.; Vittinghoff, E.; Shepherd, J.; Cauley, J.A.; Harris, T.; Simonsick, E.M.; Strotmeyer, E.; Womack, C.; et al. Association of Spinal Muscle Composition and Prevalence of Hyperkyphosis in Healthy Community-Dwelling Older Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Manns, R.A.; Haddaway, M.J.; McCall, I.W.; Cassar Pullicino, V.; Davie, M.W. The Relative Contribution of Disc and Vertebral Morphometry to the Angle of Kyphosis in Asymptomatic Subjects. Clin. Radiol. 1996, 51, 258–262. [Google Scholar] [CrossRef] [PubMed]
- McClure, P.W.; Esola, M.; Schreier, R.; Siegler, S. Kinematic Analysis of Lumbar and Hip Motion While Rising from a Forward, Flexed Position in Patients with and without a History of Low Back Pain. Spine 1997, 22, 552–558. [Google Scholar] [CrossRef]
- Li, Y.; McClure, P.W.; Pratt, N. The Effect of Hamstring Muscle Stretching on Standing Posture and on Lumbar and Hip Motions during Forward Bending. Phys. Ther. 1996, 76, 836–845, discussion 845–849. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.K.; Jain, R.; Dangayach, G.S.; Meena, M.L. Effect of Individual and Work Parameters on Musculoskeletal Health of Manual Agriculture Workers. Int. J. Ind. Syst. Eng. 2019, 32, 56. [Google Scholar]
- Jain, R.; Meena, M.L.; Dangayach, G.S. Prevalence and Risk Factors of Musculoskeletal Disorders among Farmers Involved in Manual Farm Operations. Int. J. Occup. Environ. Health 2018, 19, 1–6. [Google Scholar] [CrossRef]
- Jain, R.; Meena, M.L.; Dangayach, G.S.; Bhardwaj, A.K. Risk Factors for Musculoskeletal Disorders in Manual Harvesting Farmers of Rajasthan. Ind. Health 2018, 56, 241–248. [Google Scholar] [CrossRef]
n (%) | Total (n = 100) | Farmer (n = 22) | Non-Farmer (n = 78) | p-Value | |
---|---|---|---|---|---|
Sex | Male | 60 (60) | 14 (63) | 4 (58) | 0.69 |
Female | 40 (40) | 8 (36) | 32 (41) | ||
Age, median (IQR) * | 71 (65–84) | 69 (65–74) | 72 (65–84) | 0.02 | |
Dominant hand | Right | 93 (93) | 20 (91) | 73 (94) | 0.65 |
Left | 7 (7) | 2 (9) | 5 (6) | ||
Family members | Alone | 2 (2) | 0 (0) | 2 (3) | 1.00 |
With spouse | 98 (98) | 22 (100) | 76 (97) | ||
Employment status | Employed | 52 (52) | 22 (100) | 30 (38) | <0.01 |
Unemployed | 48 (48) | 0 (0) | 48 (62) |
Measurement | Total (n = 100) | Farmer (n = 22) | Non-Farmer (n = 78) | p-Value | |||
---|---|---|---|---|---|---|---|
Median | Min–Max | Median | Min–Max | Median | Min–Max | ||
SVA (mm) | 12.9 | −68–141.8 | 24.4 | −17.9–141.8 | 9.15 | −68–101 | 0.02 |
LL (Degree) | 43 | −25–67 | 37.5 | −25–58 | 43.5 | 9–67 | 0.04 |
PI (Degree) | 47 | 30–73 | 47.5 | 32–66 | 46 | 30–73 | 0.42 |
PI-LL (Degree) | 7 | −22–81 | 14 | −11–81 | 4 | −22–36 | <0.01 |
TK (Degree) | 36.5 | 11–62 | 32.5 | 11–51 | 39 | 17–62 | 0.02 |
TK/LL (Degree) | 0.9 | −1.47–4.33 | 0.85 | −1.47–3 | 0.91 | 0.47–4.33 | 0.45 |
C2-7SVA (mm) | 16.1 | −7.4–58.3 | 16.9 | −7.4–35 | 15.95 | −3.5–58.3 | 0.75 |
C2-7SVA + SVA (mm) | 30.05 | −29–169.1 | 47.65 | −17.9–169.1 | 25.3 | −29–159.3 | 0.03 |
Cervical LL (Degree) | 11.5 | −20–43 | 14 | −15–40 | 9 | −20–43 | 0.59 |
T1 slope | 27 | 5–46 | 28 | 5–38 | 26.5 | 8–46 | 0.88 |
Diagnosis: Normal Abnormal | 61 (61%) 39 (39%) | 10 (45%) 12 (55%) | 51 (65%) 27 (35%) | 0.09 | |||
ODI Score | 15.6 | 0–37.8 | 11.7 | 0–37.8 | 6 | 0–33.3 | 0.06 |
NDI Score | 12 | 9–25 | 13 | 10–19 | 12 | 9–25 | 0.82 |
LL | PI | PI-LL | TK | C2-7SVA | C2-7SVA + SVA | Cervical LL | T1 Slope | ODI | NDI | |
---|---|---|---|---|---|---|---|---|---|---|
SVA | −0.35 | 0.16 | 0.58 * | −0.03 | −0.12 | 0.95 ** | 0.36 | 0.29 | 0.07 | 0.41 |
LL | 0.36 | −0.81 ** | 0.64 * | 0.32 | −0.25 | −0.06 | 0.07 | −0.37 | −0.06 | |
PI | 0.16 * | 0.17 | 0.20 | 0.22 | −0.10 | 0.05 | −0.26 | 0.01 | ||
PI-LL | −0.59 * | −0.18 | 0.51 * | −0.07 | −0.09 | 0.30 | 0.22 | |||
TK | 0.19 | 0.04 * | 0.30 | 0.50 * | −0.38 | 0.02 | ||||
C2-7SVA | 0.07 * | −0.52 * | 0.39 | −0.14 | 0.03 | |||||
C2-7SVA + SVA | 0.22 | 0.35 | 0.10 | 0.33 | ||||||
CL | 0.37 | −0.17 | 0.02 | |||||||
T1 slope | −0.51 * | −0.08 | ||||||||
ODI | 0.16 |
LL | PI | PI-LL | TK | C2-7SVA | C2-7SVA + SVA | Cervical LL | T1 Slope | ODI | NDI | |
---|---|---|---|---|---|---|---|---|---|---|
SVA | −0.04 | 0.13 | 0.22 * | 0.28 * | 0.07 | 0.93 ** | 0.31 * | 0.52 ** | −0.03 | −0.03 |
LL | 0.32 * | −0.64 ** | 0.51 ** | −0.01 | −0.02 | 0.37 ** | 0.35 * | −0.16 | 0.09 | |
PI | 0.45 ** | 0.17 | −0.16 | 0.09 | 0.15 | 0.22 | 0.06 | 0.04 | ||
PI-LL | −0.31 * | −0.12 | 0.17 | −0.21 | −0.08 | 0.22 | −0.05 | |||
TK | 0.14 | 0.35 * | 0.48 ** | 0.71 ** | 0.11 | 0.15 | ||||
C2-7SVA | 0.37 ** | −0.23 * | 0.30 * | 0.06 | 0.11 | |||||
C2-7SVA + SVA | 0.23 * | 0.62 ** | −0.02 | 0.00 | ||||||
CL | 0.63 ** | −0.15 | 0.04 | |||||||
T1 slope | −0.08 | 0.00 | ||||||||
ODI | 0.57 ** |
ODI | NDI | |
---|---|---|
SVA | 0.07 | 0.41 |
LL | −0.37 | −0.06 |
PI | −0.26 | 0.01 |
PI-LL | 0.30 | 0.22 |
TK | −0.38 | 0.02 |
C2-7SVA | −0.14 | 0.03 |
C2-7SVA + SVA | 0.10 | 0.33 |
CL | −0.17 | 0.02 |
T1 slope | −0.51 * | −0.08 |
ODI | 0.16 |
ODI | NDI | |
---|---|---|
SVA | −0.03 | −0.03 |
LL | −0.16 | 0.09 |
PI | 0.06 | 0.04 |
PI-LL | 0.22 | −0.05 |
TK | 0.11 | 0.15 |
C2-7SVA | 0.06 | 0.11 |
C2-7SVA + SVA | −0.02 | 0.00 |
CL | −0.15 | 0.04 |
T1 slope | −0.08 | 0.00 |
ODI | 0.57 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, T.; Fukushima, K.; Niimi, M.; Schermann, H.; Motoyoshi, T.; Moross, J.; Hashimoto, M.; Hirai, T.; Fujiwara, T.; Okawa, A.; et al. A Comparison of Spinopelvic Alignment and Quality of Life between Farmers and Non-Farmers: A Cross-Sectional Population-Based Study in a Japanese Rural Area. J. Clin. Med. 2023, 12, 1393. https://doi.org/10.3390/jcm12041393
Ogawa T, Fukushima K, Niimi M, Schermann H, Motoyoshi T, Moross J, Hashimoto M, Hirai T, Fujiwara T, Okawa A, et al. A Comparison of Spinopelvic Alignment and Quality of Life between Farmers and Non-Farmers: A Cross-Sectional Population-Based Study in a Japanese Rural Area. Journal of Clinical Medicine. 2023; 12(4):1393. https://doi.org/10.3390/jcm12041393
Chicago/Turabian StyleOgawa, Takahisa, Kazuyuki Fukushima, Miyuki Niimi, Haggai Schermann, Takayuki Motoyoshi, Janelle Moross, Motonori Hashimoto, Takashi Hirai, Takeo Fujiwara, Atsushi Okawa, and et al. 2023. "A Comparison of Spinopelvic Alignment and Quality of Life between Farmers and Non-Farmers: A Cross-Sectional Population-Based Study in a Japanese Rural Area" Journal of Clinical Medicine 12, no. 4: 1393. https://doi.org/10.3390/jcm12041393
APA StyleOgawa, T., Fukushima, K., Niimi, M., Schermann, H., Motoyoshi, T., Moross, J., Hashimoto, M., Hirai, T., Fujiwara, T., Okawa, A., Kurosa, Y., & Yoshii, T. (2023). A Comparison of Spinopelvic Alignment and Quality of Life between Farmers and Non-Farmers: A Cross-Sectional Population-Based Study in a Japanese Rural Area. Journal of Clinical Medicine, 12(4), 1393. https://doi.org/10.3390/jcm12041393