Applications of Airway Ultrasound for Endotracheal Intubation in Pediatric Patients: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Data Synthesis and Analysis
3. Results
3.1. Selecting ET Size
3.2. Confirming Endotracheal Intubation
3.3. Intubation Depth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, E.A.; Arheart, K.L.; Penning, D.H. Endotracheal tube malposition within the pediatric population: A common event despite clinical evidence of correct placement. Can. J. Anaesth. 2008, 55, 685–690. [Google Scholar] [PubMed]
- Kerrey, B.T.; Rinderknecht, A.S.; Geis, G.L.; Nigrovic, L.E.; Mittiga, M.R. Rapid sequence intubation for pediatric emergency patients: Higher frequency of failed attempts and adverse effects found by video review. Ann. Emerg. Med. 2012, 60, 251–259. [Google Scholar]
- Leone, T.A.; Rich, W.; Finer, N.N. Neonatal intubation: Success of pediatric trainees. J. Pediatr. 2005, 146, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Gnanaprakasam, P.V.; Selvaraj, V. Ultrasound assessment of subglottic region for estimation of appropriate endotracheal tube size in pediatric anesthesia. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 231–235. [Google Scholar] [PubMed]
- Singh, S.; Jindal, P.; Ramakrishnan, P.; Raghuvanshi, S. Prediction of endotracheal tube size in children by predicting subglottic diameter using ultrasonographic measurement versus traditional formulas. Saudi J. Anaesth. 2019, 13, 93–99. [Google Scholar]
- Soar, J.; Berg, K.M.; Andersen, L.W.; Böttiger, B.W.; Cacciola, S.; Callaway, C.W.; Couper, K.; Cronberg, T.; D’Arrigo, S.; Deakin, C.D.; et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2020, 156, A80–A119. [Google Scholar]
- Sheth, M.; Jaeel, P.; Nguyen, J. Ultrasonography for Verification of Endotracheal Tube Position in Neonates and Infants. Am. J. Perinatol. 2017, 34, 627–632. [Google Scholar] [CrossRef]
- Sharma, D.; Tabatabaii, S.A.; Farahbakhsh, N. Role of ultrasound in confirmation of endotracheal tube in neonates: A review. J. Matern. Fetal Neonatal Med. 2019, 32, 1359–1367. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Chen, M.M.; Chen, L.; Xiao, C. Feasibility study about accessing the catheter size of children’s trachea by measureing the diameter of the airway under ultrasound. Clin. Educ. Gen. Pract. 2015, 13, 646–648. (In Chinese) [Google Scholar]
- Shen, X.; Xiao, C.; Li, Z.P.; Jin, H.H.; Sun, J.L. Feasibility study of accessing the catheter size of children’s trachea by measureing the diameter of the airway under ultrasound. Zhejiang Clin. Med. J. 2015, 17, 188–190. (In Chinese) [Google Scholar]
- Sutagatti, J.G.; Raja, R.; Kurdi, M.S. Ultrasonographic estimation of endotracheal tube size in paediatric patients and its comparison with physical indices based formulae: A prospective study. J. Clin. Diagn. Res. 2017, 11, UC05–UC08. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Nakajima, Y.; Ishii, S.; Shimizu, F.; Shime, N.; Sessler, D.I. Prediction of pediatric endotracheal tube size by ultrasonography. Anesthesiology 2010, 113, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Pillai, R.; Kumaran, S.; Jeyaseelan, L.; George, S.G.; Sahajanandan, R. Usefulness of ultrasound-guided measurement of minimal transverse diameter of subglottic airway in determining the endotracheal tube size in children with congenital heart disease: A prospective observational study. Ann. Card. Anaesth. 2018, 21, 376–381. [Google Scholar]
- Zhang, K.; Ma, R.J.; Zheng, J.J.; Chen, Y.Q.; Zhang, M.Z. Selection of cuffed endotracheal tube for children with congenital heart disease based on an ultrasound-based linear regression formula. J. Clin. Monit. Comput. 2019, 33, 687–694. [Google Scholar]
- Zhang, K.; Chen, H.L.; Dan, Y.Z.; Chen, Y.Q.; Zheng, J.J.; Bai, J.; Zhang, M.Z. Accuracy of ultrasonographic measurement of subglottic airway diameter in selecting cuffed endotracheal tube size for pediatric patients with congenital heart disease. Chin. J. Anesthesiol. 2017, 37, 796–799. (In Chinese) [Google Scholar]
- Cho, A.R.; Kim, E.S.; Lee, D.W.; Hong, J.M.; Kwon, J.Y.; Kim, H.K.; Kim, T.K. Comparisons of recursive partitioning analysis and conventional methods for selection of uncuffed endotracheal tubes for pediatric patients. Paediatr. Anaesth. 2015, 25, 698–704. [Google Scholar]
- Altun, D.; Orhan-Sungur, M.; Ali, A.; Özkan-Seyhan, T.; Sivrikoz, N.; Çamcı, E. The role of ultrasound in appropriate endotracheal tube size selection in pediatric patients. Paediatr. Anaesth. 2017, 27, 1015–1020. [Google Scholar]
- Elshazly, A.M.A.; Motlb, E.A.A.; Ghaffar, N.A.A. Re-intubation frequency in paediatric surgical patients: A randomised controlled trial. S. Afr. J. Anaesth. Analg. 2020, 26, 230–234. [Google Scholar] [CrossRef]
- Laksono, B.H.; Hartono, R.; Arifahmi, M.A. The ultrasonography is better than the physically-based formula method in estimating the uncuffed tracheal tube size of Indonesian pediatric patients. Trends Anaesth. Crit. Care 2020, 35, 16–20. [Google Scholar] [CrossRef]
- Schramm, C.; Knop, J.; Jensen, K.; Plaschke, K. Role of ultrasound compared to age-related formulas for uncuffed endotracheal intubation in a pediatric population. Paediatr. Anaesth. 2012, 22, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Makireddy, R.; Cherian, A.; Elakkumanan, L.; Bidkar, P.; Kundra, P. Correlation between correctly sized uncuffed endotracheal tube and ultrasonographically determined subglottic diameter in paediatric population. Indian J. Anaesth. 2020, 64, 103–108. [Google Scholar] [PubMed]
- Altun, D.; Doruk, C.; Dincer, M.B.; Güler, M.M.; Altun, D.; Çamcı, E. Estimation of appropriate endotracheal tube size in pediatric patients: Use of epiphyseal diameter of the distal radius and subglottic diameter. Anestezi Derg. 2021, 29, 119–124. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, J.Z.; Yuan, Z.H.; Xu, W.J. Reliability of ultrasonography used to guide selection of uncuffed endotracheal tube size for pediatric patients. Chin. J. Anesthesiol. 2017, 37, 585–587. (In Chinese) [Google Scholar]
- Bae, J.Y.; Byon, H.J.; Han, S.S.; Kim, H.S.; Kim, J.T. Usefulness of ultrasound for selecting a correctly sized uncuffed tracheal tube for paediatric patients. Anaesthesia 2011, 66, 994–998. [Google Scholar] [CrossRef]
- Raksamani, K.; Atisook, R.; Samerchua, A.; Manomayangkul, K.; Aroonpruksakul, N. Predicting uncuffed endotracheal tube size in anesthetized children by ultrasonography: A randomized controlled trial. Chotmaihet Thangphaet [J. Med. Assoc. Thail.] 2018, 101, 117–123. [Google Scholar]
- Gollu, G.; Bermede, O.; Khanmammadov, F.; Ates, U.; Genc, S.; Selvi Can, O. Use of ultrasonography as a noninvasive decisive tool to determine the accurate endotracheal tube size in anesthetized children. Arch. Argent. Pediatr. 2018, 116, 172–178. [Google Scholar]
- Rajasekhar, M.; Moningi, S.; Patnaik, S.; Rao, P. Correlation between ultrasound-guided subglottic diameter and little finger breadth with the outer diameter of the endotracheal tube in paediatric patients—A prospective observational study. Indian J. Anaesth. 2018, 62, 978–983. [Google Scholar] [PubMed]
- Schramm, C.; Eisleben, L.S.; Kessler, J.; Jensen, K.; Plaschke, K. Role of ultrasound measuring position and ventilation pressure in determining correct tube size in children. Paediatr. Anaesth. 2017, 27, 1241–1246. [Google Scholar] [CrossRef]
- Galicinao, J.; Bush, A.J.; Godambe, S.A. Use of bedside ultrasonography for endotracheal tube placement in pediatric patients: A feasibility study. Pediatrics 2007, 120, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Alonso Quintela, P.; Oulego Erroz, I.; Mora Matilla, M.; Rodríguez Blanco, S.; Mata Zubillaga, D.; Regueras Santos, L. Usefulness of bedside ultrasound compared to capnography and X-ray for tracheal intubation. An. Pediatr. 2014, 81, 283–288. [Google Scholar]
- Tessaro, M.O.; Salant, E.P.; Arroyo, A.C.; Haines, L.E.; Dickman, E. Tracheal rapid ultrasound saline test (T.R.U.S.T.) for confirming correct endotracheal tube depth in children. Resuscitation 2015, 89, 8–12. [Google Scholar]
- Sethi, A.; Nimbalkar, A.; Patel, D.; Kungwani, A.; Nimbalkar, S. Point of care ultrasonography for position of tip of endotracheal tube in neonates. Indian Pediatr. 2014, 51, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Saul, D.; Ajayi, S.; Schutzman, D.L.; Horrow, M.M. Sonography for Complete Evaluation of Neonatal Intensive Care Unit Central Support Devices: A Pilot Study. J. Ultrasound Med. 2016, 35, 1465–1473. [Google Scholar] [CrossRef]
- de Kock, S.H.; Otto, S.F.; Joubert, G. The feasibility of determining the position of an endotracheal tube in neonates by using bedside ultrasonography compared with chest radiographs. SAJCH S. Afr. J. Child Health 2015, 9, 3–5. [Google Scholar] [CrossRef]
- Lingle, P.A. Sonographic verification of endotracheal tube position in neonates: A modified technique. J. Clin. Ultrasound 1988, 16, 605–609. [Google Scholar] [CrossRef]
- Uya, A.; Gautam, N.K.; Rafique, M.B.; Pawelek, O.; Patnana, S.R.; Gupta-Malhotra, M.; Balaguru, D.; Numan, M.T.; Hill, M.J.; Miller, S.K. Point-of-Care Ultrasound in Sternal Notch Confirms Depth of Endotracheal Tube in Children. Pediatr. Crit. Care Med. 2020, 21, e393–e398. [Google Scholar]
- Chowdhry, R.; Dangman, B.; Pinheiro, J.M.B. The concordance of ultrasound technique versus X-ray to confirm endotracheal tube position in neonates. J. Perinatol. 2015, 35, 481–484. [Google Scholar] [CrossRef]
- Slovis, T.L.; Poland, R.L. Endotracheal tubes in neonates: Sonographic positioning. Radiology 1986, 160, 262–263. [Google Scholar] [CrossRef]
- Dennington, D.; Vali, P.; Finer, N.N.; Kim, J.H. Ultrasound confirmation of endotracheal tube position in neonates. Neonatology 2012, 102, 185–189. [Google Scholar] [CrossRef]
- Gottlieb, M.; Holladay, D.; Peksa, G.D. Ultrasonography for the Confirmation of Endotracheal Tube Intubation: A Systematic Review and Meta-Analysis. Ann. Emerg. Med. 2018, 72, 627–636. [Google Scholar] [CrossRef]
- Das, S.K.; Choupoo, N.S.; Haldar, R.; Lahkar, A. Transtracheal ultrasound for verification of endotracheal tube placement: A systematic review and meta-analysis. Can. J. Anaesth. 2015, 62, 413–423. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, S.Y.; Kim, W.O.; Kim, H.; Kil, H.K. Ultrasound measurement of subglottic diameter and an empirical formula for proper endotracheal tube fitting in children. Acta Anaesthesiol. Scand. 2013, 57, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Zhang, J.; Dong, B.; Luo, Z. The accuracy of ultrasound to predict endotracheal tube size for pediatric patients with congenital scoliosis. BMC Anesthesiol. 2020, 20, 183. [Google Scholar] [CrossRef] [PubMed]
- Verification of Endotracheal Tube Placement. Ann. Emerg. Med. 2016, 68, 152. [CrossRef]
- Zaytseva, A.; Kurepa, D.; Ahn, S.; Weinberger, B. Determination of optimal endotracheal tube tip depth from the gum in neonates by X-ray and ultrasound. J. Matern.-Fetal Neonatal Med. 2020, 33, 2075–2080. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Holladay, D.; Burns, K.; Gore, S.R.; Wulff, C.; Shah, S.; Bailitz, J. Accuracy of ultrasound for endotracheal intubation between different transducer types. Am. J. Emerg. Med. 2019, 37, 2182–2185. [Google Scholar] [CrossRef]
- Jaeel, P.; Sheth, M.; Nguyen, J. Ultrasonography for endotracheal tube position in infants and children. Eur. J. Pediatr. 2017, 176, 293–300. [Google Scholar] [CrossRef]
- Ahn, J.H.; Park, J.H.; Kim, M.S.; Kang, H.C.; Kim, I.S. Point of care airway ultrasound to select tracheal tube and determine insertion depth in cleft repair surgery. Sci. Rep. 2021, 11, 4743. [Google Scholar] [CrossRef]
- Sethi, A.; Salhotra, R.; Chandra, M.; Mohta, M.; Bhatt, S.; Kayina, C. Confirmation of placement of endotracheal tube—A comparative observational pilot study of three ultrasound methods. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 353–358. [Google Scholar] [PubMed]
- Chou, H.-C.; Tseng, W.-P.; Wang, C.-H.; Ma, M.H.-M.; Wang, H.-P.; Huang, P.-C.; Sim, S.-S.; Liao, Y.-C.; Chen, S.-Y.; Hsu, C.-Y.; et al. Tracheal rapid ultrasound exam (T.R.U.E.) for confirming endotracheal tube placement during emergency intubation. Resuscitation 2011, 82, 1279–1284. [Google Scholar] [CrossRef]
- Gottlieb, M.; Alerhand, S.; Long, B. Point-of-Care Ultrasound for Intubation Confirmation of COVID-19 Patients. West. J. Emerg. Med. 2020, 21, 1042–1045. [Google Scholar] [CrossRef]
- Volsko, T.A.; McNinch, N.L.; Prough, D.S.; Bigham, M.T. Adherence to Endotracheal Tube Depth Guidelines and Incidence of Malposition in Infants and Children. Respir. Care 2018, 63, 1111–1117. [Google Scholar] [CrossRef]
- Orhan-Sungur, M.; Altun, D.; Özkan-Seyhan, T.; Aygün, E.; Koltka, K.; Çamcı, E. Learning curve of ultrasound measurement of subglottic diameter for endotracheal tube selection in pediatric patients. Paediatr. Anaesth. 2019, 29, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Chenkin, J.; McCartney, C.J.; Jelic, T.; Romano, M.; Heslop, C.; Bandiera, G. Defining the learning curve of point-of-care ultrasound for confirming endotracheal tube placement by emergency physicians. Crit. Ultrasound J. 2015, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Traditional Method | Author/Year | n1/N1 a | n2/N2 a | OR (95% CI) [%] |
---|---|---|---|---|
Cole formula b | ||||
Chen, 2015 [11] | 47/50 | 27/50 | 1.38 (0.96–1.99) | |
Gnanaprakasam, 2017 [4] | 56/75 | 34/75 | 1.37 (0.97–1.93) | |
Shen, 2015 [12] | 49/50 | 27/50 | 1.41 (0.98–2.03) | |
Singh, 2019 [5] | 100/100 | 95/100 | 1.03 (0.84–1.25) | |
Cho, 2015 [18] | 78/126 | 42/126 | 1.53 (1.12–2.09) | |
Elshazly, 2020 [20] | 23/25 | 17/25 | 1.18 (0.74–1.90) | |
Schramm, 2012 [22] | 24/50 | 12/50 | 1.68 (0.91–3.07) | |
Makireddy, 2020 [23] | 29/41 | 27/41 | 1.04 (0.70–1.56) | |
Raksamani, 2018 [27] | 37/47 | 24/46 | 1.28 (0.86–1.92) | |
Penlington’s formula c | ||||
Zhang YJ, 2017 [25] | 35/40 | 21/40 | 1.36 (0.89–2.07) | |
Schramm, 2012 [22] | 24/50 | 20/50 | 1.14 (0.69–1.86) | |
Motoyama formula d | ||||
Zhang K, 2017 [17] | 48/60 | 33/60 | 1.25 (0.89–1.77) | |
Height formula e | ||||
Sutagatti, 2017 [13] | 67/75 | 27/75 | 1.78 (1.23–2.57) | |
Singh, 2019 [5] | 100/100 | 81/100 | 1.12 (0.90–1.38) | |
Laksono, 2020 [21] | 12/13 | 9/14 | 1.23 (0.64–2.36) | |
The width of little finger f | ||||
Rajasekhar, 2018 [29] | 14/60 | 11/60 | 1.22 (0.59–2.51) | |
Singh, 2019 [5] | 100/100 | 98/100 | 1.01 (0.83–1.23) | |
Laksono, 2020 [21] | 12/13 | 9/13 | 1.17 (0.61–2.24) |
Author/Year | Airway Ultrasound | Chest X-ray |
---|---|---|
Saul, 2016 [35] | ETT tip below suprasternal notch, above carina | ETT tip ≥ 2 cm below vocal cords, above carina |
de Kock, 2015 [36] | ETT tip inferior to thyroid, superior to aortic arch | ETT tip at T1/2 level |
Lingle, 1988 [37] | ETT tip below suprasternal notch, above superior margin of aortic arch | |
Uya, 2020 [38] | Saline-filled cuff at suprasternal notch level | ETT tip below clavicle, ≥1 cm above carina |
Chowdhry, 2015 [39] | Distance from apex of aortic arch to ETT tip ≥ 1 cm | ETT tip at or above the body of T3 |
Slovis, 1986 [40] | Distance from aortic arch to ETT tip was 1 cm | ETT tip below inferior margin of clavicle, ≥0.5 cm above carina |
Dennington, 2012 [41] | Not available | ETT tip below thoracic inlet, above carina |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ma, W.; Liu, J. Applications of Airway Ultrasound for Endotracheal Intubation in Pediatric Patients: A Systematic Review. J. Clin. Med. 2023, 12, 1477. https://doi.org/10.3390/jcm12041477
Liu Y, Ma W, Liu J. Applications of Airway Ultrasound for Endotracheal Intubation in Pediatric Patients: A Systematic Review. Journal of Clinical Medicine. 2023; 12(4):1477. https://doi.org/10.3390/jcm12041477
Chicago/Turabian StyleLiu, Yijun, Wei Ma, and Jin Liu. 2023. "Applications of Airway Ultrasound for Endotracheal Intubation in Pediatric Patients: A Systematic Review" Journal of Clinical Medicine 12, no. 4: 1477. https://doi.org/10.3390/jcm12041477
APA StyleLiu, Y., Ma, W., & Liu, J. (2023). Applications of Airway Ultrasound for Endotracheal Intubation in Pediatric Patients: A Systematic Review. Journal of Clinical Medicine, 12(4), 1477. https://doi.org/10.3390/jcm12041477