Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Characteristics of Cases and Controls
3.2. Effect of AGT Gene SNPs on PE
3.3. Stratification Analysis
3.4. The Relevance of rs7079 G>T to AGT Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019, 133, 1. [Google Scholar] [CrossRef]
- Garovic, V.D.; Dechend, R.; Easterling, T.; Karumanchi, S.A.; McMurtry Baird, S.; Magee, L.A.; Rana, S.; Vermunt, J.V.; August, P. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement from the American Heart Association. Hypertension 2022, 79, e21–e41. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018, 13, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Nobles, C.J.; Mendola, P.; Mumford, S.L.; Silver, R.M.; Kim, K.; Andriessen, V.C.; Connell, M.; Sjaarda, L.; Perkins, N.J.; Schisterman, E.F. Preconception Blood Pressure and Its Change into Early Pregnancy: Early Risk Factors for Preeclampsia and Gestational Hypertension. Hypertension 2020, 76, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet 2021, 398, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef]
- Ambrožič, J.; Lučovnik, M.; Cvijić, M. Evolution of cardiac geometry and function in women with severe preeclampsia from immediately post-delivery to 1 year postpartum. Int. J. Cardiovasc. Imaging 2021, 37, 2217–2225. [Google Scholar] [CrossRef]
- Khosla, K.; Heimberger, S.; Nieman, K.M.; Tung, A.; Shahul, S.; Staff, A.C.; Rana, S. Long-Term Cardiovascular Disease Risk in Women After Hypertensive Disorders of Pregnancy: Recent Advances in Hypertension. Hypertension 2021, 78, 927–935. [Google Scholar] [CrossRef]
- Brouwers, L.; van der Meiden-van Roest, A.J.; Savelkoul, C.; Vogelvang, T.E.; Lely, A.T.; Franx, A.; van Rijn, B.B. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: A systematic review and meta-analysis. Br. J. Obstet. Gynaecol. 2018, 125, 1642–1654. [Google Scholar] [CrossRef]
- Berends, A.L.; de Groot, C.J.; Sijbrands, E.J.; Sie, M.P.; Benneheij, S.H.; Pal, R.; Heydanus, R.; Oostra, B.A.; van Duijn, C.M.; Steegers, E.A. Shared constitutional risks for maternal vascular-related pregnancy complications and future cardiovascular disease. Hypertension 2008, 51, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Craici, I.; Wagner, S.; Garovic, V.D. Preeclampsia and future cardiovascular risk: Formal risk factor or failed stress test? Ther. Adv. Cardiovasc. Dis. 2008, 2, 249–259. [Google Scholar] [CrossRef]
- Gray, K.J.; Saxena, R.; Karumanchi, S.A. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am. J. Obstet. Gynecol. 2018, 218, 211–218. [Google Scholar] [CrossRef]
- Ardissino, M.; Slob, E.A.W.; Millar, O.; Reddy, R.K.; Lazzari, L.; Patel, K.H.K.; Ryan, D.; Johnson, M.R.; Gill, D.; Ng, F.S. Maternal Hypertension Increases Risk of Preeclampsia and Low Fetal Birthweight: Genetic Evidence from a Mendelian Randomization Study. Hypertension 2022, 79, 588–598. [Google Scholar] [CrossRef]
- Bagci, B.; Karakus, S.; Bagci, G.; Sancakdar, E. Renalase gene polymorphism is associated with increased blood pressure in preeclampsia. Pregnancy Hypertens. 2016, 6, 115–120. [Google Scholar] [CrossRef]
- Fatima, S.S.; Jamil, Z.; Alam, F.; Malik, H.Z.; Madhani, S.I.; Ahmad, M.S.; Shabbir, T.; Rehmani, M.N.; Rabbani, A. Polymorphism of the renalase gene in gestational diabetes mellitus. Endocrine 2017, 55, 124–129. [Google Scholar] [CrossRef]
- Sivaraj, N.; Rachel, K.V.; Suvvari, T.K.; Prasad, S.; Boppana, S.H.; Vegi, P.K. Association of IL1R1 gene (SNP rs2071374) with the risk of preeclampsia. J. Reprod. Immunol. 2022, 149, 103463. [Google Scholar] [CrossRef]
- Kumar, K.S.P.; Arcot, M.; Munisamaiah, M.; Balakrishna, S. Novel association of SNP rs479200 in EGLN1 gene with predisposition to preeclampsia. Gene 2019, 705, 1–4. [Google Scholar] [CrossRef]
- Schmieder, R.E.; Hilgers, K.F.; Schlaich, M.P.; Schmidt, B.M. Renin-angiotensin system and cardiovascular risk. Lancet 2007, 369, 1208–1219. [Google Scholar] [CrossRef]
- Paz Ocaranza, M.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef]
- Takimoto-Ohnishi, E.; Murakami, K. Renin-angiotensin system research: From molecules to the whole body. J. Physiol. Sci. 2019, 69, 581–587. [Google Scholar] [CrossRef]
- Wu, C.H.; Mohammadmoradi, S.; Chen, J.Z.; Sawada, H.; Daugherty, A.; Lu, H.S. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e108–e116. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lu, H.; Cassis, L.A.; Daugherty, A. Molecular and Pathophysiological Features of Angiotensinogen: A Mini Review. N Am. J. Med. Sci. 2011, 4, 183–190. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Xu, Y.; Rong, J.; Zhang, Z. The emerging role of angiotensinogen in cardiovascular diseases. J. Cell. Physiol. 2021, 236, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, Y.; Zhang, K.; Yang, W.; Li, X.; Zhao, J.; Liu, K.; Dong, Z.; Lu, J. AGT serves as a potential biomarker and drives tumor progression in colorectal carcinoma. Int. Immunopharmacol. 2021, 101, 108225. [Google Scholar] [CrossRef]
- Tao, X.R.; Rong, J.B.; Lu, H.S.; Daugherty, A.; Shi, P.; Ke, C.L.; Zhang, Z.C.; Xu, Y.C.; Wang, J.A. Angiotensinogen in hepatocytes contributes to Western diet-induced liver steatosis. J. Lipid. Res. 2019, 60, 1983–1995. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Yildirim, T.; Yilmaz, R.; Aybal-Kutlugun, A.; Altun, B.; Kucukozkan, T.; Erdem, Y. Association between urinary angiotensinogen, hypertension and proteinuria in pregnant women with preeclampsia. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 514–520. [Google Scholar] [CrossRef]
- Dahabiyeh, L.A.; Tooth, D.; Kurlak, L.O.; Mistry, H.D.; Pipkin, F.B.; Barrett, D.A. A pilot study of alterations in oxidized angiotensinogen and antioxidants in pre-eclamptic pregnancy. Sci. Rep. 2020, 10, 1956. [Google Scholar] [CrossRef]
- Watkins, W.S.; Hunt, S.C.; Williams, G.H.; Tolpinrud, W.; Jeunemaitre, X.; Lalouel, J.M.; Jorde, L.B. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: The importance of haplotypes. J. Hypertens. 2010, 28, 65–75. [Google Scholar] [CrossRef]
- Mabhida, S.E.; Mashatola, L.; Kaur, M.; Sharma, J.R.; Apalata, T.; Muhamed, B.; Benjeddou, M.; Johnson, R. Hypertension in African Populations: Review and Computational Insights. Genes 2021, 12, 532. [Google Scholar] [CrossRef]
- Junusbekov, Y.; Bayoglu, B.; Cengiz, M.; Dirican, A.; Arslan, C. AGT rs699 and AGTR1 rs5186 gene variants are associated with cardiovascular-related phenotypes in atherosclerotic peripheral arterial obstructive disease. Ir. J. Med. Sci. 2020, 189, 885–894. [Google Scholar] [CrossRef]
- Dong, M.Z.; Lin, Z.H.; Liu, S.S.; Xin, Y.N.; Xuan, S.Y. AGT rs5051 gene polymorphism increases the risk of coronary heart disease in patients with non-alcoholic fatty liver disease in the Han Chinese population. Zhonghua Gan Zang Bing Za Zhi 2021, 29, 1095–1100. [Google Scholar] [CrossRef]
- Lin, R.; Lei, Y.; Yuan, Z.; Ju, H.; Li, D. Angiotensinogen gene M235T and T174M polymorphisms and susceptibility of pre-eclampsia: A meta-analysis. Ann. Hum. Genet 2012, 76, 377–386. [Google Scholar] [CrossRef]
- Lee, S.R.; Moon, J.Y.; Lee, S.H.; Ihm, C.G.; Lee, T.W.; Kim, S.K.; Chung, J.H.; Kang, S.W.; Kim, T.H.; Park, S.J. Angiotensinogen Polymorphisms and Post-Transplantation Diabetes Mellitus in Korean Renal Transplant Subjects. Kidney Blood Press. Res. 2013, 37, 95–102. [Google Scholar] [CrossRef]
- El-Garawani, I.M.; Shaheen, E.M.; El-Seedi, H.R.; Khalifa, S.A.M.; Mersal, G.A.M.; Emara, M.M.; Kasemy, Z.A. Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians. Genes 2021, 12, 339. [Google Scholar] [CrossRef]
- Perdomo-Pantoja, A.; Mejía-Pérez, S.I.; Reynoso-Noverón, N.; Gómez-Flores-Ramos, L.; Soto-Reyes, E.; Sánchez-Correa, T.E.; Guerra-Calderas, L.; Castro-Hernandez, C.; Vidal-Millán, S.; Sánchez-Corona, J.; et al. Angiotensinogen rs5050 germline genetic variant as potential biomarker of poor prognosis in astrocytoma. PLoS ONE 2018, 13, e0206590. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, L.; Pi, L.; Che, D.; Xu, Y.; Zheng, H.; Long, H.; Zeng, L.; Huang, P.; Zhang, L.; et al. An Angiotensinogen Gene Polymorphism (rs5050) Is Associated with the Risk of Coronary Artery Aneurysm in Southern Chinese Children with Kawasaki Disease. Dis. Markers 2019, 2849695. [Google Scholar] [CrossRef]
- Mopidevi, B.; Ponnala, M.; Kumar, A. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiol. Genom. 2013, 45, 901–906. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, M.; Zhang, J.; Sun, N.; Li, C. A new model of the mechanism underlying lead poisoning: SNP in miRNA target region influence the AGT expression level. Hereditas 2019, 156, 6. [Google Scholar] [CrossRef]
- Yang, Y.; Le Ray, I.; Zhu, J.; Zhang, J.; Hua, J.; Reilly, M. Preeclampsia Prevalence, Risk Factors, and Pregnancy Outcomes in Sweden and China. JAMA Netw. Open 2021, 4, e218401. [Google Scholar] [CrossRef]
- Zhang, N.; Tan, J.; Yang, H.; Khalil, R.A. Comparative risks and predictors of preeclamptic pregnancy in the Eastern, Western and developing world. Biochem. Pharmacol. 2020, 182, 114247. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Control (n = 358) | Case (n = 228) | p |
---|---|---|---|
BMI (kg/m2) | 20.95 ± 3.07 | 23.68 ± 4.33 | 0.000 |
Maternal age (years) | 28.94 ± 4.58 | 32.89 ± 5.50 | 0.000 |
SBP (mm Hg) | 117.16 ± 6.44 | 142.07 ± 11.11 | 0.000 |
DBP (mm Hg) | 72.25 ± 4.75 | 89.93 ± 8.79 | 0.000 |
Gestational age (weeks) | 39.10 ± 1.14 | 34.36 ± 4.27 | 0.000 |
Fetal birth weight (g) | 3218.62 ± 404.27 | 2171.32 ± 980.26 | 0.000 |
ALB (g/L) | 35.46 ± 2.76 | 29.38 ± 4.64 | 0.000 |
AST (U/L) | 15.305 ± 4.31 | 29.22 ± 59.76 | 0.001 |
PLT (×109/L) | 232.39 ± 60.24 | 209.11 ± 73.00 | 0.000 |
ALT (U/L) | 9.45 ± 4.89 | 23.379 ± 60.85 | 0.000 |
CREA (mg/dl) | 51.30 ± 9.45 | 66.93 ± 23.81 | 0.000 |
UA (μmol/L) | 333.35 ± 83.94 | 450.81 ± 136.00 | 0.000 |
Genetype | Control (n = 358) | Case (n = 228) | Crude OR (95% CI) | p | Adjusted OR (95% CI) | pa |
---|---|---|---|---|---|---|
rs4762 G > A | ||||||
GG | 284 | 182 | 1.000 | 1.000 | ||
AG | 68 | 40 | 0.918 (0.596–1.415) | 0.698 | 0.917 (0.568–1.480) | 0.723 |
AA | 6 | 6 | 1.560 (0.496–4.912) | 0.447 | 1.318 (0.373–4.658) | 0.668 |
Dominant | 74 | 46 | 0.970 (0.642–1.465) | 0.885 | 0.953 (0.604–1.505) | 0.837 |
Recessive | 352 | 222 | 1.586 (0.505–4.978) | 0.430 | 1.340 (0.380–4.720) | 0.649 |
rs5050 T > G | ||||||
TT | 250 | 163 | 1.000 | 1.000 | ||
GT | 98 | 58 | 0.908 (0.621–1.327) | 0.617 | 0.829 (0.543–1.266) | 0.385 |
GG | 10 | 7 | 1.074 (0.401–2.877) | 0.888 | 1.009 (0.343–2.962) | 0.987 |
Dominant | 108 | 65 | 0.923 (0.640–1.330) | 0.668 | 0.846 (0.563–1.271) | 0.420 |
Recessive | 348 | 221 | 1.102 (0.413–2.938) | 0.846 | 1.062 (0.364–3.099) | 0.912 |
rs7079 G > T | ||||||
GG | 271 | 172 | 1.000 | 1.000 | ||
GT | 83 | 42 | 0.797 (0.525–1.210) | 0.287 | 0.753 (0.472–1.201) | 0.233 |
TT | 4 | 14 | 5.515 (1.786–17.029) | 0.003 | 3.804 (1.100–13.156) | 0.035 |
Dominant | 87 | 56 | 1.014 (0.689–1.492) | 0.943 | 1.095 (0.708–1.694) | 0.684 |
Recessive | 354 | 214 | 5.790 (1.881–17.817) | 0.002 | 4.054 (1.178–13.945) | 0.026 |
Expected | Observed | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
rs4762 G > A | GG | AG | AA | GG | AG | AA | 0.664 | 0.717 |
Control | 282.47 | 71.06 | 4.47 | 284 | 68 | 6 | ||
rs5050 T > G | TT | GT | GG | TT | GT | GG | 0.011 | 0.994 |
Control | 249.72 | 98.55 | 9.72 | 250 | 98 | 10 | ||
rs7079 G > T | GG | GT | TT | GG | GT | TT | 0.721 | 0.697 |
Control | 272.78 | 79.43 | 5.78 | 271 | 83 | 4 |
Variables | rs7079 | p | ||
---|---|---|---|---|
(Cases/Controls) | OR (95%CI) | |||
TT | GG/GT | |||
Age | ||||
<35 | 9/2 | 129/315 | 10.988(2.342–51.555) | 0.001 |
≥35 | 5/2 | 85/39 | 1.147(0.213–6.174) | 1.000 |
BMI | ||||
<25 | 7/3 | 144/318 | 5.153 (1.314–20.212) | 0.024 |
≥25 | 7/1 | 70/36 | 3.600 (0.426–30.400) | 0.391 |
ALB | ||||
<30 | 8/0 | 112/12 | / | 1.000 |
≥30 | 6/4 | 102/342 | 5.029 (1.392–18.167) | 0.019 |
AST | ||||
<30 | 10/4 | 171/348 | 5.088(1.573–16.456) | 0.007 |
≥30 | 4/0 | 43/6 | / | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Peng, X.; Xie, H.; Peng, R.; Li, Q.; Guo, Y.; Wang, W.; He, H.; Chen, Y. Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. J. Clin. Med. 2023, 12, 1509. https://doi.org/10.3390/jcm12041509
He D, Peng X, Xie H, Peng R, Li Q, Guo Y, Wang W, He H, Chen Y. Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. Journal of Clinical Medicine. 2023; 12(4):1509. https://doi.org/10.3390/jcm12041509
Chicago/Turabian StyleHe, Dong, Xianglan Peng, Hongkai Xie, Rui Peng, Qixuan Li, Yitong Guo, Wei Wang, Hong He, and Yang Chen. 2023. "Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study" Journal of Clinical Medicine 12, no. 4: 1509. https://doi.org/10.3390/jcm12041509
APA StyleHe, D., Peng, X., Xie, H., Peng, R., Li, Q., Guo, Y., Wang, W., He, H., & Chen, Y. (2023). Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. Journal of Clinical Medicine, 12(4), 1509. https://doi.org/10.3390/jcm12041509