A Gap of Patients with Infective Endocarditis between Clinical Trials and the Real World
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Definitions
2.3. Exclusion Criteria for Randomized Control Trial
- Age < 18 years, >80 years.
- Coexisting comorbidities or medical conditions that could make the evaluation of infective endocarditis difficult such as severe liver dysfunction, severe renal dysfunction, or HIV/AIDS. (Severe liver dysfunction was defined as serum total bilirubin, or aspartate aminotransferase/alanine aminotransferase > the upper limit of the normal reference range ×3. Severe renal dysfunction was defined as Creatinine clearance < 30 mL/min.) Unassessable malignancies were defined as any terminal stage malignancy) or any with metastatic lesions. Unassessable diabetes mellitus was defined as serum-hemoglobin A1c (NGSP) ≧ 7.0%.
- Having prosthetic valve involvement.
- Receiving immunosuppressive therapy due to any cause.
- Receiving chemotherapy for malignancy.
- Receiving palliative therapy for malignancy.
- Receiving hemodialysis due to any cause.
- Having other complicated infection such as mycobacterial tuberculosis.
- Inability to give full informed consent such as cognitive impairment due to any cause.
- Causative pathogens are fungi.
- Multiple pathogens identified.
- Need of prolonged antibiotic therapy due to spondylodiscitis or other septic complication.
- Patients who need urgent cardiac surgery but are considered inoperable due to high surgical risks.
- Poor prognosis (anticipated life expectancy <90 days or patients who are not expected to survive until the end of the trial).
- Pregnant or breastfeeding women.
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 1992, 268, 2420–2425. [Google Scholar] [CrossRef]
- Asai, N.; Sakanashi, D.; Suematsu, H.; Kato, H.; Hagihara, M.; Shiota, A.; Koizumi, Y.; Yamagishi, Y.; Mikamo, H. To what degree could clinical trials in evidence based medicine reflect reality in the treatment of candidemia? J. Microbiol. Immunol. Infect. 2022, 55, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.K.H.; Nakashima, K.; Asai, N.; Katsurada, N.; Hasegawa, K.; Makino, H.; Misawa, M.; Ohkuni, Y.; Aoshima, M.; Motojima, S. To What Degree EBM Reflect the Real World in COPD Patients? Publisher: Tokyo, Japan, 2012; p. 140. [Google Scholar]
- Moreillon, P.; Que, Y.A. Infective endocarditis. Lancet 2004, 363, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Bradley, S.; Selton-Suty, C.; Tripodi, M.F.; Barsic, B.; Bouza, E.; Cabell, C.H.; Ramos, A.I.; Fowler, V., Jr.; Hoen, B.; et al. Current features of infective endocarditis in elderly patients: Results of the International Collaboration on Endocarditis Prospective Cohort Study. Arch. Intern. Med. 2008, 168, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Benito, N.; Miro, J.M.; de Lazzari, E.; Cabell, C.H.; del Rio, A.; Altclas, J.; Commerford, P.; Delahaye, F.; Dragulescu, S.; Giamarellou, H.; et al. Health care-associated native valve endocarditis: Importance of non-nosocomial acquisition. Ann. Intern. Med. 2009, 150, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Asai, N.; Shiota, A.; Ohashi, W.; Watanabe, H.; Shibata, Y.; Kato, H.; Sakanashi, D.; Hagihara, M.; Koizumi, Y.; Yamagishi, Y.; et al. The SOFA score could predict the severity and prognosis of infective endocarditis. J. Infect. Chemother. 2019, 25, 965–971. [Google Scholar] [CrossRef]
- Li, J.S.; Sexton, D.J.; Mick, N.; Nettles, R.; Fowler, V.G., Jr.; Ryan, T.; Bashore, T.; Corey, G.R. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin. Infect. Dis. 2000, 30, 633–638. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Ranzani, O.T.; Prina, E.; Menendez, R.; Ceccato, A.; Cilloniz, C.; Mendez, R.; Gabarrus, A.; Barbeta, E.; Bassi, G.L.; Ferrer, M.; et al. New Sepsis Definition (Sepsis-3) and Community-acquired Pneumonia Mortality. A Validation and Clinical Decision-Making Study. Am. J. Respir. Crit. Care Med. 2017, 196, 1287–1297. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Wayne, P. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 2011. Available online: https://cir.nii.ac.jp/crid/1572261550694185984 (accessed on 1 January 2020).
- Van der Vaart, T.W.; Stuifzand, M.; Boekholdt, S.M.; Cramer, M.J.; Bonten, M.J.M.; Prins, J.M.; van der Meer, J.T.M. The prevalence of persistent bacteraemia in patients with a non-staphylococcal infective endocarditis, a retrospective cohort study. Int. J. Cardiol. 2022, 367, 49–54. [Google Scholar] [CrossRef]
- Gando, S.; Iba, T.; Eguchi, Y.; Ohtomo, Y.; Okamoto, K.; Koseki, K.; Mayumi, T.; Murata, A.; Ikeda, T.; Ishikura, H.; et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: Comparing current criteria. Crit. Care Med. 2006, 34, 625–631. [Google Scholar] [CrossRef]
- Olmos, C.; Vilacosta, I.; Lopez, J.; Saez, C.; Anguita, M.; Garcia-Granja, P.E.; Sarria, C.; Silva, J.; Alvarez-Alvarez, B.; Martinez-Monzonis, M.A.; et al. Short-course antibiotic regimen compared to conventional antibiotic treatment for gram-positive cocci infective endocarditis: Randomized clinical trial (SATIE). BMC Infect. Dis. 2020, 20, 417. [Google Scholar] [CrossRef]
- Bhavnani, S.M.; Rubino, C.M.; Ambrose, P.G.; Drusano, G.L. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: Data from a randomized trial of patients with bacteremia and endocarditis. Clin. Infect. Dis. 2010, 50, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.S.; Soh, S.; Shim, J.K.; Kang, S.; Choi, H.; Kwak, Y.L. Effect of perioperative sodium bicarbonate administration on renal function following cardiac surgery for infective endocarditis: A randomized, placebo-controlled trial. Crit. Care 2017, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Asai, N.; Shibata, Y.; Sakanashi, D.; Kato, H.; Hagihara, M.; Yamagishi, Y.; Suematsu, H.; Mikamo, H. A Large Gap in Patients’ Characteristics and Outcomes between the Real-World and Clinical Trial Settings in Community-Acquired Pneumonia and Healthcare-Associated Pneumonia. J. Clin. Med. 2022, 11, 297. [Google Scholar] [CrossRef]
- Rehm, S.; Campion, M.; Katz, D.E.; Russo, R.; Boucher, H.W. Community-based outpatient parenteral antimicrobial therapy (CoPAT) for Staphylococcus aureus bacteraemia with or without infective endocarditis: Analysis of the randomized trial comparing daptomycin with standard therapy. J. Antimicrob. Chemother. 2009, 63, 1034–1042. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.C.; Lye, D.C.; Yahav, D.; Sud, A.; Robinson, J.O.; Nelson, J.; Archuleta, S.; Roberts, M.A.; Cass, A.; Paterson, D.L.; et al. Effect of Vancomycin or Daptomycin With vs Without an Antistaphylococcal beta-Lactam on Mortality, Bacteremia, Relapse, or Treatment Failure in Patients With MRSA Bacteremia: A Randomized Clinical Trial. JAMA 2020, 323, 527–537. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, Y.J.; Kim, S.H.; Sun, B.J.; Kim, D.H.; Yun, S.C.; Song, J.M.; Choo, S.J.; Chung, C.H.; Song, J.K.; et al. Early surgery versus conventional treatment for infective endocarditis. N. Engl. J. Med. 2012, 366, 2466–2473. [Google Scholar] [CrossRef] [Green Version]
- Musleh, R.; Schlattmann, P.; Caldonazo, T.; Kirov, H.; Witte, O.W.; Doenst, T.; Gunther, A.; Diab, M. Surgical Timing in Patients With Infective Endocarditis and With Intracranial Hemorrhage: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e024401. [Google Scholar] [CrossRef]
- Chu, V.H.; Park, L.P.; Athan, E.; Delahaye, F.; Freiberger, T.; Lamas, C.; Miro, J.M.; Mudrick, D.W.; Strahilevitz, J.; Tribouilloy, C.; et al. Association between surgical indications, operative risk, and clinical outcome in infective endocarditis: A prospective study from the International Collaboration on Endocarditis. Circulation 2015, 131, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Azuma, A.; Toyoda, K.; O’Uchi, T. Brain magnetic resonance findings in infective endocarditis with neurological complications. Jpn. J. Radiol. 2009, 27, 123–130. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients (n = 66) | RCT Appropriate Group (n = 17) | RCT Inappropriate Group (n = 49) | p-Value |
---|---|---|---|---|
Mean age (years ± SD) | 64.7 ± 17.3 | 53.5 ± 21.5 | 68.6 ± 14.2 | 0.002 |
Median age (years, range) | 70 (19–87) | 55 (19–87) | 71 (29–88) | - |
Male gender (n,%) | 46 (70) | 12 (71) | 34 (69) | 0.926 |
ECOG-performance status (PS) (n,%) | ||||
0 | 23 (35) | 8 (47) | 15 (31) | 0.22 |
1 | 6 (9) | 4 (24) | 2 (4) | 0.016 |
2 | 7 (11) | 2 (12) | 5 (10) | 0.857 |
3–4 | 30 (45) | 3 (18) | 27 (55) | 0.008 |
ECOG-PS (mean ± SD) | 2.0 ± 1.7 | 1.1 ± 1.4 | 2.3 ± 1.7 | 0.015 |
ECOG-PS ≥ 2 | 37 (56) | 5 (29) | 32 (65) | 0.01 |
Procedure of echocardiography (n,%) | ||||
Transthoracic echocardiography | 66 (100) | 17 (100) | 49 (100) | - |
Transesophageal echocardiography | 30 (45) | 9 (53) | 21 (43) | 0.472 |
Detection of vegetation (n,%) | 46 (70) | 12 (71) | 34 (69) | 0.926 |
Infection site (n,%) | ||||
Aortic valve | 20 (30) | 8 (47) | 12 (24) | 0.081 |
Mitral valve | 35 (53) | 9 (53) | 26 (53) | 0.993 |
Pulmonic valve | 0 | 0 | 0 | - |
Tricuspid valve | 7 (11) | 0 | 7 (15) | 0.099 |
Multiple valve involvements | 6 (9) | 2 (12) | 4 (8) | 0.656 |
Unknown | 10 (15) | 2 (12) | 8 (16) | 0.651 |
Naïve valve involvement (n,%) | 53 (80) | 17 (100) | 36 (73) | 0.018 |
Prosthetic valve involvement (n,%) | 13 (20) | 0 | 13 (27) | 0.018 |
Prior dental work (n,%) | 7 (11) | 1 (6) | 6 (12) | 0.463 |
Past history of infectious endocarditis (n,%) | 4 (6) | 0 | 4 (8) | 0.234 |
Underlying diseases (n,%) | ||||
Heart disease | 33 (50) | 7 (41) | 26 (53) | 0.398 |
Chronic pulmonary disease | 8 (12) | 4 (24) | 4 (8) | 0.094 |
Diabetes mellitus | 21 (32) | 3 (18) | 18 (37) | 0.145 |
Chronic kidney disease | 19 (29) | 3 (18) | 16 (33) | 0.239 |
Hemodialysis | 8 (12) | 0 | 8 (16) | 0.076 |
Hepatic disease | 5 (8) | 2 (12) | 3 (6) | 0.449 |
Collagen vascular disease | 7 (11) | 1 (6) | 6 (12) | 0.463 |
Cerebrovascular disease | 12 (18) | 1 (6) | 11 (22) | 0.147 |
Malignancy | 16 (24) | 1 (6) | 15 (31) | 0.04 |
Gastroesophageal reflux disease | 3 (5) | 2 (12) | 1 (2) | 0.097 |
Dementia | 4 (6) | 1 (6) | 3 (6) | 0.971 |
Charlson comorbidity index (mean ± SD) | 2.1 ± 2.2 | 0.9 ± 1.3 | 2.5 ± 2.3 | 0.009 |
Charlson comorbidity index ≧ 3 (n,%) | 19 (29) | 2 (12) | 17 (35) | 0.072 |
Clinical symptoms (n,%) | ||||
Immunological phenomena | 23 (35) | 5 (29) | 18 (37) | 0.585 |
Vascular phenomena | 47 (71) | 13 (76) | 34 (69) | 0.578 |
Heart failure | 9 (14) | 0 | 9 (18) | 0.054 |
CNS disorder | 17 (26) | 4 (24) | 13 (27) | 0.807 |
Conditions of the patients (mean ± SD) | ||||
SIRS score | 1.8 ± 1.1 | 1.7 ± 1.1 | 1.9 ± 1.1 | 0.429 |
SOFA score | 3.8 ± 2.7 | 1.9 ± 1.9 | 4.5 ± 2.7 | <0.001 |
DIC | 11 (17) | 2 (12) | 9 (18) | 0.529 |
Shock state (SBP < 100 mmHg) | 19 (29) | 0 | 19 (38) | 0.001 |
Persistent bacteremia * | 12 (18) | 2 (11) | 10 (21) | 0.456 |
Treatment (n,%) | ||||
Surgical intervention | 19 (29) | 8 (47) | 11 (22) | 0.053 |
Initial antibiotic therapy (n,%) | ||||
Monotherapy | 25 (38) | 6 (35) | 19 (39) | 0.799 |
Penicillins | 10 (15) | 2 (12) | 8 (16) | 0.651 |
Cephalosporins | 7 (11) | 2 (12) | 5 (10) | 0.857 |
Carbapenems | 2 (3) | 0 | 2 (4) | 0.398 |
Anti-MRSA agents | 2 (3) | 0 | 2 (4) | 0.398 |
Others | 4 (6) | 2 (12) | 2 (4) | 0.253 |
Combination therapy | 41 (62) | 11 (65) | 30 (61) | 0.799 |
Combination therapy with anti-MRSA agents | 27 (41) | 8 (47) | 19 (39) | 0.549 |
Combination therapy with aminoglycosides | 10 (15) | 3 (18) | 7 (14) | 0.739 |
Anti-pseudomonal agents use (n,%) | 22 (33) | 3 (18) | 19 (39) | 0.111 |
Duration of | ||||
hospital stay (mean days ± SD) | 64.2 ± 65.5 | 56.8 ± 32.7 | 66.8 ± 74.3 | 0.595 |
antibiotics use (mean days ± SD) | 123.4 ± 179.6 | 131.8 ± 126.6 | 120.4 ± 197.8 | 0.827 |
Outcome | ||||
Mortality (n,%) | ||||
30-day mortality | 8 (12) | 0 | 8 (16) | 0.076 |
In-hospital mortality | 16 (24) | 0 | 16 (33) | 0.007 |
Inappropriate treatment (n,%) | 9 (15) * | 0 | 9 (18) | <0.001 |
Pathogens isolated (n,%) ** | ||||
Streptococcus aureus | 23 (35) | 5 (29) | 18 (37) | - |
MSSA | 17 (26) | 5 (29) | 12 (24) | - |
MRSA | 6 (9) | 0 | 6 (12) | - |
Coagulase-negative streptococci | 12 (18) | 2 (12) | 10 (20) | - |
Streptococcus anginous group | 5 (8) | 2 (12) | 3 (6) | - |
Oral streptococci | 10 (15) | 3 (18) | 7 (14) | - |
Enterococcus faecalis | 8 (12) | 1 (6) | 7 (14) | - |
Enterococcus faecium | 1 (1.5) | 0 | 1 (2) | - |
HACEK | 3 (5) | 2 (12) | 1 (2) | - |
Others | 6 (9) | 0 | 6 (12) | - |
Multiple pathogens isolated (n,%) | 10 (15) | 0 | 10 (20) | - |
Unknown (n,%) | 4 (6) | 2 (12) | 2 (4) | - |
Reasons | Number (%) |
---|---|
| 0 |
| 13 (20) |
| 13 (20) |
| 11 (17) |
| 1 (2) |
| 17 (26) |
| 8 (12) |
| 7 (11) |
| 7 (11) |
| 3 (5) |
| 10 (15) |
| 2 (3) |
| 9 (14) |
| 3 (5) |
| 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asai, N.; Shibata, Y.; Hirai, J.; Ohashi, W.; Sakanashi, D.; Kato, H.; Hagihara, M.; Suematsu, H.; Mikamo, H. A Gap of Patients with Infective Endocarditis between Clinical Trials and the Real World. J. Clin. Med. 2023, 12, 1566. https://doi.org/10.3390/jcm12041566
Asai N, Shibata Y, Hirai J, Ohashi W, Sakanashi D, Kato H, Hagihara M, Suematsu H, Mikamo H. A Gap of Patients with Infective Endocarditis between Clinical Trials and the Real World. Journal of Clinical Medicine. 2023; 12(4):1566. https://doi.org/10.3390/jcm12041566
Chicago/Turabian StyleAsai, Nobuhiro, Yuichi Shibata, Jun Hirai, Wataru Ohashi, Daisuke Sakanashi, Hideo Kato, Mao Hagihara, Hiroyuki Suematsu, and Hiroshige Mikamo. 2023. "A Gap of Patients with Infective Endocarditis between Clinical Trials and the Real World" Journal of Clinical Medicine 12, no. 4: 1566. https://doi.org/10.3390/jcm12041566
APA StyleAsai, N., Shibata, Y., Hirai, J., Ohashi, W., Sakanashi, D., Kato, H., Hagihara, M., Suematsu, H., & Mikamo, H. (2023). A Gap of Patients with Infective Endocarditis between Clinical Trials and the Real World. Journal of Clinical Medicine, 12(4), 1566. https://doi.org/10.3390/jcm12041566