The Necessity of Implant Removal after Fixation of Thoracolumbar Burst Fractures—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Eligibility Criteria
- (i)
- Participants: adult patients who underwent internal fixation for thoracolumbar burst fractures;
- (ii)
- Intervention and/or comparison: removal or retention of the pedicle screw instrument after successful fixation of thoracolumbar burst fractures;
- (iii)
- Outcomes: clinical outcomes related to the benefits or harms of implant removal were considered. The primary outcomes were local kyphosis deformity after implant removal and pain intensity after implant removal. Secondary outcomes included improvement of segmental motion angle and removal-related complications;
- (iv)
- Study type: All types of studies that reported the benefits and risks of implant removal after thoracolumbar burst fractures were considered for inclusion, including but not limited to case reports and case series, cohort studies, case–control studies, cross-over studies, and randomized controlled trials.
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias
3.4. Primary Outcomes
3.4.1. LOCAL Kyphosis Deformity after Implant Removal
3.4.2. Pain Intensity after Implant Removal
3.5. Secondary Outcomes
3.5.1. Improvement of Segmental Motion Angle
3.5.2. Removal-Related Complications
4. Discussion
4.1. Principal Findings
4.2. Comparison with Previous Studies
4.3. Implication for Clinical Practice
4.3.1. Kyphosis Recurrence
4.3.2. Segmental Range of Motion
4.4. Decision-Making
4.5. Call for Future Studies
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASIA | American Spinal Injury Association |
BMD | Bone Mineral Density |
BMI | Body Mass Index |
CIs | Confidence Intervals |
CT | Computed Tomography |
MD | Mean Difference |
MeSH | Medical Subject Headings |
MRI | Magnetic Resonance Imaging |
NOS | Newcastle-Ottawa Scale |
ODI | Oswestry Disability Index |
PMMA | Polymethyl Methacrylate |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
ROM | Range of Motion |
RRs | Risk Ratios |
SF-36 | Short Form 36 |
SMD | Standardized Mean Difference |
TLICS | Thoracolumbar Injury Classification and Severity |
VAS | Visual Analogue Scale |
References
- Bouxsein, M.; Genant, H. The Breaking Spine; International Osteoporosis Foundation: Nyon, Switzerland, 2010. [Google Scholar]
- Hu, R.; Mustard, C.A.; Burns, C. Epidemiology of incident spinal fracture in a complete population. Spine 1996, 21, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.-Y.; Jiang, S.-D.; Wang, X.-Y.; Jiang, L.-S.A. Review of the management of thoracolumbar burst fractures. Surg. Neurol. 2007, 67, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Gnanenthiran, S.R.; Adie, S.; Harris, I.A. Nonoperative versus operative treatment for thoracolumbar burst fractures without neurologic deficit: A meta-analysis. Clin. Orthop. Relat. Res. 2012, 470, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Siebenga, J.; Leferink, V.J.; Segers, M.J.; Elzinga, M.J.; Bakker, F.C.; Henk, J.T.M.; Rommens, P.M.; ten Duis, H.-J.; Patka, P. Treatment of traumatic thoracolumbar spine fractures: A multicenter prospective randomized study of operative versus nonsurgical treatment. Spine 2006, 31, 2881–2890. [Google Scholar] [CrossRef]
- Pehlivanoglu, T.; Akgul, T.; Bayram, S.; Meric, E.; Ozdemir, M.; Korkmaz, M.; Sar, C. Conservative Versus Operative Treatment of Stable Thoracolumbar Burst Fractures in Neurologically Intact Patients: Is There Any Difference Regarding the Clinical and Radiographic Outcomes? Spine 2020, 45, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Aujla, R.; Lee, C. The management of thoracolumbar burst fractures: A prospective study between conservative management, traditional open spinal surgery and minimally interventional spinal surgery. Springerplus 2015, 4, 204. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.; Bohn, D.; Mehbod, A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit: A prospective, randomized study. Clin. Spine Surg. 2005, 18, S15–S23. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, P.W.; Torner, J.; Eichholz, K.M.; Beeler, S.N. Comparison of anterolateral and posterior approaches in the management of thoracolumbar burst fractures. J. Neurosurg. Spine 2006, 5, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkas, G.; Kateros, K.; Papadakis, S.A.; Brilakis, E.; Macheras, G.; Katonis, P. Treatment of unstable thoracolumbar burst fractures by indirect reduction and posterior stabilization: Short-segment versus long-segment stabilization. Open Orthop. J. 2010, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.-Y.; Jiang, L.-S.; Jiang, S.-D. Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures: A five to seven-year prospective randomized study. J. Bone Jt. Surg. 2009, 91, 1033–1041. [Google Scholar] [CrossRef]
- Tian, N.-F.; Wu, Y.-S.; Zhang, X.-L.; Wu, X.-L.; Chi, Y.-L.; Mao, F.-M. Fusion versus nonfusion for surgically treated thoracolumbar burst fractures: A meta-analysis. PLoS ONE 2013, 8, e63995. [Google Scholar] [CrossRef] [Green Version]
- Denis, F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983, 8, 817–831. [Google Scholar] [CrossRef]
- Kim, B.-G.; Dan, J.-M.; Shin, D.-E. Treatment of thoracolumbar fracture. Asian Spine J. 2015, 9, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahueque, M.; Cobar, A.; Zuñiga, C.; Caldera, G. Management of burst fractures in the thoracolumbar spine. J. Orthop. 2016, 13, 278–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heary, R.F.; Kumar, S. Decision-making in burst fractures of the thoracolumbar and lumbar spine. Indian J. Orthop. 2007, 41, 268. [Google Scholar] [CrossRef] [PubMed]
- Minkowitz, R.B.; Bhadsavle, S.; Walsh, M.; Egol, K.A. Removal of painful orthopaedic implants after fracture union. J. Bone Jt. Surg. 2007, 89, 1906–1912. [Google Scholar] [CrossRef]
- Hanson, B.; van der Werken, C.; Stengel, D. Surgeons’ beliefs and perceptions about removal of orthopaedic implants. BMC Musculoskelet. Disord. 2008, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Wild, A.; Pinto, M.R.; Butler, L.; Bressan, C.; Wroblewski, J.M. Removal of lumbar instrumentation for the treatment of recurrent low back pain in the absence of pseudarthrosis. Arch. Orthop. Trauma Surg. 2003, 123, 414–418. [Google Scholar]
- Gaine, W.J.; Andrew, S.M.; Chadwick, P.; Cooke, E.; Williamson, J.B. Late operative site pain with isola posterior instrumentation requiring implant removal: Infection or metal reaction? Spine 2001, 26, 583–587. [Google Scholar] [CrossRef]
- Reith, G.; Schmitz-Greven, V.; Hensel, K.O.; Schneider, M.M.; Tinschmann, T.; Bouillon, B.; Probst, C. Metal implant removal: Benefits and drawbacks–a patient survey. BMC Surg. 2015, 15, 96. [Google Scholar] [CrossRef] [Green Version]
- Hahn, F.; Zbinden, R.; Min, K. Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur. Spine J. 2005, 14, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Jamil, W.; Allami, M.; Choudhury, M.; Mann, C.; Bagga, T.; Roberts, A. Do orthopaedic surgeons need a policy on the removal of metalwork? A descriptive national survey of practicing surgeons in the United Kingdom. Injury 2008, 39, 362–367. [Google Scholar] [CrossRef]
- Bostman, O.; Pihlajamaki, H. Routine implant removal after fracture surgery: A potentially reducible consumer of hospital resources in trauma units. J. Trauma 1996, 41, 846–849. [Google Scholar] [CrossRef]
- Niu, S.; Yang, D.; Ma, Y.; Lin, S.; Xu, X. Is removal of the internal fixation after successful intervertebral fusion necessary? A case-control study based on patient-reported quality of life. J. Orthop. Surg. Res. 2022, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Tanasansomboon, T.; Kittipibul, T.; Limthongkul, W.; Yingsakmongkol, W.; Kotheeranurak, V.; Singhatanadgige, W. Thoracolumbar Burst Fracture without Neurological Deficit: Review of Controversies and Current Evidence of Treatment. World Neurosurg. 2022, 162, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0 [updated March 2011]; John Wiley & Sons: Chichester, UK, 2011; Available online: http://www.cochrane.org/handbook (accessed on 8 March 2016).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 24 February 2023).
- Vanichkachorn, J.S.; Vaccaro, A.R.; Cohen, M.J.; Cotler, J.M. Potential large vessel injury during thoracolumbar pedicle screw removal: A case report. Spine 1997, 22, 110–113. [Google Scholar] [CrossRef]
- Waelchli, B.; Min, K.; Cathrein, P.; Boos, N. Vertebral body compression fracture after removal of pedicle screws: A report of two cases. Eur. Spine J. 2002, 11, 504–506. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, M.; De Iure, F.; Amendola, L.; Martucci, A. Vertebral body compression fracture after percutaneous pedicle screw removal in a young man. J. Orthop. Traumatol. 2015, 16, 343–345. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Aoki, Y.; Nakajima, T.; Sato, Y.; Sato, M.; Yoh, S.; Takahashi, H.; Nakajima, A.; Eguchi, Y.; Orita, S.; et al. Postoperative loss of correction after combined posterior and anterior spinal fusion surgeries in a lumbar burst fracture patient with Class II obesity. Surg. Neurol. Int. 2022, 13, 210. [Google Scholar] [CrossRef]
- Kim, S.W.; Ju, C.I.; Kim, C.G.; Lee, S.M.; Shin, H. Efficacy of spinal implant removal after thoracolumbar junction fusion. J. Korean Neurosurg. Soc. 2008, 43, 139. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Dai, L.-Y.; Xu, H.-Z.; Chi, Y.-L. Kyphosis recurrence after posterior short-segment fixation in thoracolumbar burst fractures. J. Neurosurg. Spine 2008, 8, 246–254. [Google Scholar] [CrossRef]
- Toyone, T.; Ozawa, T.; Inada, K.; Shirahata, T.; Shiboi, R.; Watanabe, A.; Matsuki, K.; Hasue, F.; Fujiyoshi, T.; Aoki, Y.; et al. Short-segment fixation without fusion for thoracolumbar burst fractures with neurological deficit can preserve thoracolumbar motion without resulting in post-traumatic disc degeneration: A 10-year follow-up study. Spine 2013, 38, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, P.; Strömqvist, B. Can implant removal restore mobility after fracture of the thoracolumbar segment? A radiostereometric study. Acta Orthop. 2016, 87, 511–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knop, C.; Fabian, H.F.; Bastian, L.; Blauth, M. Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine 2001, 26, 88–99. [Google Scholar] [CrossRef]
- Song, K.-J.; Kim, K.-H.; Lee, S.-K.; Kim, J.-R. Clinical efficacy of implant removal after posterior spinal arthrodesis with pedicle screw fixation for the thoracolumbar burst fractures. J. Korean Orthop. Assoc. 2007, 42, 808–814. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.S.; Tang, T.S.; Yang, H.L. Long-term results of thoracolumbar and lumbar burst fractures after short-segment pedicle instrumentation, with special reference to implant failure and correction loss. Orthop. Surg. 2009, 1, 85–93. [Google Scholar] [CrossRef]
- Stavridis, S.I.; Bücking, P.; Schaeren, S.; Jeanneret, B.; Schnake, K.J. Implant removal after posterior stabilization of the thoraco-lumbar spine. Arch. Orthop. Trauma Surg. 2010, 130, 119. [Google Scholar] [CrossRef]
- Yang, H.; Shi, J.H.; Ebraheim, M.; Liu, X.; Konrad, J.; Husain, I.; Tang, T.S.; Liu, J. Outcome of thoracolumbar burst fractures treated with indirect reduction and fixation without fusion. Eur. Spine J. 2011, 20, 380–386. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, Z.F.; Li, C.Q.; Zheng, W.J.; Liu, J. Radiological study on disc degeneration of thoracolumbar burst fractures treated by percutaneous pedicle screw fixation. Eur. Spine J. 2013, 22, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, S.W.; Ju, C.I.; Wang, H.S.; Lee, S.M.; Kim, D.M. Implant removal after percutaneous short segment fixation for thoracolumbar burst fracture: Does it preserve motion? J. Korean Neurosurg. Soc. 2014, 55, 73–77. [Google Scholar] [CrossRef]
- Ko, S.-B.; Lee, S.-W. Result of posterior instrumentation without fusion in the management of thoracolumbar and lumbar unstable burst fracture. Clin. Spine Surg. 2014, 27, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Jeon, C.-H.; Lee, H.-D.; Lee, Y.-S.; Seo, J.-H.; Chung, N.-S. Is it beneficial to remove the pedicle screw instrument after successful posterior fusion of thoracolumbar burst fractures? Spine 2015, 40, E627–E633. [Google Scholar] [CrossRef]
- Aono, H.; Tobimatsu, H.; Ariga, K.; Kuroda, M.; Nagamoto, Y.; Takenaka, S.; Furuya, M.; Iwasaki, M. Surgical outcomes of temporary short-segment instrumentation without augmentation for thoracolumbar burst fractures. Injury 2016, 47, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Xu, D.L.; Sheng, S.R.; Goswami, A.; Xuan, J.; Jin, H.M.; Chen, J.; Chen, Y.; Zheng, Z.M.; Chen, X.B.; et al. Risk factors of kyphosis recurrence after implant removal in thoracolumbar burst fractures following posterior short-segment fixation. Int. Orthop. 2016, 40, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Chou, P.H.; Ma, H.L.; Liu, C.L.; Wang, S.T.; Lee, O.K.; Chang, M.C.; Yu, W.K. Is removal of the implants needed after fixation of burst fractures of the thoracolumbar and lumbar spine without fusion? a retrospective evaluation of radiological and functional outcomes. Bone Jt. J. 2016, 98-B, 109–116. [Google Scholar] [CrossRef]
- Aono, H.; Ishii, K.; Tobimatsu, H.; Nagamoto, Y.; Takenaka, S.; Furuya, M.; Chiaki, H.; Iwasaki, M. Temporary short-segment pedicle screw fixation for thoracolumbar burst fractures: Comparative study with or without vertebroplasty. Spine J. 2017, 17, 1113–1119. [Google Scholar] [CrossRef]
- Hoppe, S.; Aghayev, E.; Ahmad, S.; Keel, M.J.B.; Ecker, T.M.; Deml, M.; Benneker, L.M. Short Posterior Stabilization in Combination With Cement Augmentation for the Treatment of Thoracolumbar Fractures and the Effects of Implant Removal. Glob. Spine J. 2017, 7, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-D.; Jeon, C.-H.; Chung, N.-S.; Seo, Y.-W. Cost-utility analysis of pedicle screw removal after successful posterior instrumented fusion in thoracolumbar burst fractures. Spine 2017, 42, E926–E932. [Google Scholar] [CrossRef]
- Smits, A.; Den Ouden, L.; Jonkergouw, A.; Deunk, J.; Bloemers, F. Posterior implant removal in patients with thoracolumbar spine fractures: Long-term results. Eur. Spine J. 2017, 26, 1525–1534. [Google Scholar] [CrossRef] [Green Version]
- Aono, H.; Ishii, K.; Takenaka, S.; Tobimatsu, H.; Nagamoto, Y.; Horii, C.; Yamashita, T.; Furuya, M.; Iwasaki, M. Risk factors for a kyphosis recurrence after short-segment temporary posterior fixation for thoracolumbar burst fractures. J. Clin. Neurosci. 2019, 66, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.S.; Seo, H.Y. Percutaneous Pedicle Screw Fixation in Thoracolumbar Fractures: Comparison of Results According to Implant Removal Time. Clin. Orthop. Surg. 2019, 11, 291–296. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.; Hong, Y.; Yang, Y.; Hu, L. Minimally Invasive Decompression and Intracorporeal Bone Grafting Combined with Temporary Percutaneous Short-Segment Pedicle Screw Fixation for Treatment of Thoracolumbar Burst Fracture with Neurological Deficits. World Neurosurg. 2020, 135, e209–e220. [Google Scholar] [CrossRef]
- Hou, G.J.; Zhou, F.; Tian, Y.; Ji, H.Q.; Zhang, Z.S.; Guo, Y.; Lv, Y.; Yang, Z.W.; Zhang, Y.W. Risk factors of recurrent kyphosis in thoracolumbar burst fracture patients treated by short segmental pedicle screw fixation. Beijing Da Xue Xue Bao Yi Xue Ban 2020, 53, 167–174. [Google Scholar]
- Ko, S.; Jung, S.; Song, S.; Kim, J.Y.; Kwon, J. Long-term follow-up results in patients with thoracolumbar unstable burst fracture treated with temporary posterior instrumentation without fusion and implant removal surgery: Follow-up results for at least 10 years. Medicine 2020, 99, e19780. [Google Scholar] [CrossRef] [PubMed]
- Manson, N.; El-Mughayyar, D.; Bigney, E.; Richardson, E.; Abraham, E. Instrumentation Removal following Minimally Invasive Posterior Percutaneous Pedicle Screw-Rod Stabilization (PercStab) of Thoracolumbar Fractures Is Not Always Required. Adv. Orthop. 2020, 2020, 7949216. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, T.; Takagi, Y.; Hayashi, H.; Nanpo, K. Patient Satisfaction with Implant Removal after Stabilization Using Percutaneous Pedicle Screws for Traumatic Thoracolumbar Fracture. Asian J. Neurosurg. 2021, 16, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Hirahata, M.; Kitagawa, T.; Yasui, Y.; Oka, H.; Yamamoto, I.; Yamada, K.; Fujita, M.; Kawano, H.; Ishii, K. Vacuum phenomenon as a predictor of kyphosis after implant removal following posterior pedicle screw fixation without fusion for thoracolumbar burst fracture: A single-center retrospective study. BMC Musculoskelet. Disord. 2022, 23, 94. [Google Scholar] [CrossRef]
- Kenfack, Y.; Oduguwa, E.; Barrie, U.; Kafka, B.; Tecle, N.; Neely, O.; Bagley, C.; Aoun, S. P173: Implications, benefits, and risks of hardware removal following percutaneous screw fixation for thoracolumbar fractures: A retrospective case series of 58 patients at a single institution. Glob. Spine J. 2022, 12 (Suppl. S294), 3. [Google Scholar]
- Wu, J.; Zhu, J.; Wang, Z.; Jin, H.; Wang, Y.; Liu, B.; Yin, X.; Du, L.; Wang, Y.; Liu, M.; et al. Outcomes in Thoracolumbar and Lumbar Traumatic Fractures: Does Restoration of Unfused Segmental Mobility Correlated to Implant Removal Time? World Neurosurg. 2022, 157, e254–e263. [Google Scholar] [CrossRef]
- Xu, X.; Cao, Y.; Fan, J.; Lv, Y.; Zhou, F.; Tian, Y.; Ji, H.; Zhang, Z.; Guo, Y.; Yang, Z.; et al. Is It Necessary to Remove the Implants After Fixation of Thoracolumbar and Lumbar Burst Fractures Without Fusion? A Retrospective Cohort Study of Elderly Patients. Front. Surg. 2022, 9, 921678. [Google Scholar] [CrossRef]
- Kweh, B.T.S.; Tan, T.; Lee, H.Q.; Hunn, M.; Liew, S.; Tee, J.W. Implant Removal Versus Implant Retention Following Posterior Surgical Stabilization of Thoracolumbar Burst Fractures: A Systematic Review and Meta-Analysis. Glob. Spine J. 2022, 12, 700–718. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, Z.; Huang, M.; Wang, X. Stepwise resection of the posterior ligamentous complex for stability of a thoracolumbar compression fracture: An in vitro biomechanical investigation. Medicine 2017, 96, e7873. [Google Scholar] [CrossRef] [PubMed]
- Deckey, J.E.; Bradford, D.S. Loss of sagittal plane correction after removal of spinal implants. Spine 2000, 25, 2453–2460. [Google Scholar] [CrossRef] [PubMed]
- Busam, M.L.; Esther, R.J.; Obremskey, W.T. Hardware removal: Indications and expectations. J. Am. Acad. Orthop. Surg. 2006, 14, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Vos, D.; Verhofstad, M. Indications for implant removal after fracture healing: A review of the literature. Eur. J. Trauma Emerg. Surg. 2013, 39, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.W.; Jang, J.W.; Hur, H.; Lee, J.K.; Kim, J.H.; Kim, S.H. Predictive factors for a kyphosis recurrence following short-segment pedicle screw fixation including fractured vertebral body in unstable thoracolumbar burst fractures. J. Korean Neurosurg. Soc. 2014, 56, 230–236. [Google Scholar] [CrossRef]
- Mahid, S.S.; Qadan, M.; Hornung, C.A.; Galandiuk, S. Assessment of publication bias for the surgeon scientist. Br. J. Surg. 2008, 95, 943–949. [Google Scholar] [CrossRef]
First Author | Publication Year | Region | Journal | Type of Study | Study Dates | No. of Patients | Age (year) | Gender | Fracture Level | Approach |
---|---|---|---|---|---|---|---|---|---|---|
Knop et al. [38] | 2001 | USA | Spine | Retrospective Cohort | January 1989–July 1992 | 76 patients | 34 (range 15–63) | 26F:30M | Thoracolumbar fractures | Posterior Open |
Song et al. [39] | 2007 | South Korea | Journal of the Korean Orthopaedic Association | Retrospective Cohort | —— | 58 patients | —— | —— | Thoracolumbar burst fractures | Posterior approach |
Xu et al. [40] | 2009 | China | Orthopaedic Surgery | Retrospective Cohort | February 1987–June 1995 | 89 patients | 39.1 (range 21–59) | 16F:52 M | Thoracolumbar fractures | Posterior approach |
Stavridis et al. [41] | 2010 | Germany | Archives of Orthopaedic and Trauma Surgery | Retrospective Cohort | —— | 57 patients | 46.5 (range 21–84) | 28F:29M | Thoracolumbar spine | Posterior approach |
Yang et al. [42] | 2011 | China | Global Spine Journal | Retrospective Cohort | 1998–2005 | 64 patients | 42.1 (range 18–70) | 24F:40M | Thoracolumbar burst fractures | Posterior Open |
Wang et al. [43] | 2013 | China | European Spine Journal | Retrospective Cohort | July 2007–November 2009 | 26 patients | 39.6 ± 10.3 (range 21–54) | 7F:19M | Thoracolumbar burst fractures | Posterior percutaneous |
Kim et al. [44] | 2014 | South Korea | Journal of Korean Neurosurgical Society | Retrospective Cohort | May 2007–January 2011 | 44 patients | 52.5 | 6F:10M | Thoracolumbar burst fractures | Posterior percutaneous |
Ko et al. [45] | 2014 | South Korea | Journal of Spinal Disorders and Techniques | Retrospective Cohort | September 2003–December 2009 | 62 patients | 38.5 (range 16–54) | 29F:31M | Thoracolumbar and lumbar unstable burst fracture | Posterior Open |
Jeon et al. [46] | 2015 | South Korea | Spine | Case–Control | June 2008–October 2011 | 45 patients | 39.7 (range 18–62) | 20F:25M | Thoracolumbar burst fractures | Posterior Open |
Aono et al. [47] | 2016 | Japan | Injury | Retrospective Cohort | September 2006–July 2012 | 27 patients | 43 (range 20–66) | 8F:19M | Thoracolumbar burst fractures | Posterior Open |
Chen et al. [48] | 2016 | China | International Orthopaedics | Retrospective Cohort | January 2008–December 2013 | 122 patients | 38 | 49F:73M | Thoracolumbar burst fracture | Posterior Open |
Chou et al. [49] | 2016 | Taiwan | The Bone & Joint Journal | Retrospective Cohort | June 1996–May 2012 | 69 patients | 45.3 ± 10.2 (range 34–56) | 25F:44M | burst thoracolumbar or lumbar fracture | Posterior Open |
Aono et al. [50] | 2017 | Japan | The Spine Journal | Prospective Cohort | September 2006–October 2013 | 62 patients | 40 (range13–69) | 20F:42M | Thoracolumbar burst fracture | Posterior Open |
Hoppe et al. [51] | 2017 | Switzerland | Global Spine Journal | Retrospective Case–control | 2000–2013 | 59 patients | 41.7 ± 15.4 | 12F:17M | Thoracolumbar fractures | Posterior Open |
Lee et al. [52] | 2017 | South Korea | Spine | Retrospective Cohort | February 2009–May 2012 | 88 patients | 40.2 ± 12.8 | 23F:22M | Thoracolumbar burst fractures | Posterior Open |
Smits et al. [53] | 2017 | The Netherlands | European Spine Journal | Retrospective Cohort | 2003–2015 | 102 patients | 38 (range 18–78) | 47F:55M | Thoracolumbar fractures | Posterior open or combined anterior and posterior stabilization |
Aono et al. [54] | 2019 | Japan | Journal of Clinical Neuroscience | Prospective Cohort | September 2006–May 2016 | 76 patients | 40 (range 13–69) | 24F:52M | Thoracolumbar burst fractures | Posterior Open |
Oh et al. [55] | 2019 | South Korea | Clinics in Orthopedic Surgery | Retrospective Cohort | March 2011–October 2017 | 30 patients | 41.4 ± 16.0 (range 16–73) | 14F:16M | Thoracolumbar fractures | Posterior percutaneous |
Chen et al. [56] | 2020 | China | World Neurosurgery | Retrospective Cohort | February 2008–December 2014 | 87 patients | 41.3 ±8.2 (range 17-60) | 28F:56M | Thoracolumbar burst fractures | Posterior Open |
Hou et al. [57] | 2020 | China | Beijing Da Xue Xue Bao Yi Xue Ban | Retrospective Cohort | January 2010–December 2017 | 144 patients | 39.1 ± 13.2 | 70F:74M | Thoracolumbar burst fractures | Posterior Open |
Ko et al. [58] | 2020 | South Korea | Medicine | Retrospective Cohort | March 2004–January 2007 | 27 patients | 34.8 (range 18–49) | 11F:8M | Thoracolumbar burst fractures | Posterior Open |
Manson et al. [59] | 2020 | Canada | Advances in Orthopedics | Prospective Cohort | 24-month–8 years | 32 patients | 38.3 (range 18–61) | 8F:24M | Thoracolumbar fractures | Posterior percutaneous |
Sasagawa et al. [60] | 2021 | Japan | Asian Journal of Neurosurgery | Retrospective Cohort | —— | 24 patients | 43.9 ± 12.3 (range 25–64) | 4F:20M | Thoracolumbar fractures | Posterior percutaneous |
Hirahata et al. [61] | 2022 | Japan | BMC Musculoskeletal Disorders | Retrospective Cohort | December 2008–June 2016 | 59 patients | 38 (range 17–68) | 31F:28M | Thoracolumbar burst fractures | Posterior open |
Kenfack et al. [62] | 2022 | USA | Global Spine Journal | Retrospective Case–control | 2012–2017 | 58 patients | —— | 15F:43M | Thoracolumbar fractures | Posterior percutaneous |
Wu et al. [63] | 2022 | China | World Neurosurgery | Retrospective Cohort | 2018–2020 | 81 patients | 43 | 21F:29M | Thoracolumbar fractures | Posterior open |
Xu et al. [64] | 2022 | China | Frontiers in Surgery | Retrospective Cohort | August 2011–August 2018 | 96 patients | 69.4 (range 65–77) | 51F:45M | Thoracolumbar fractures | Posterior percutaneous or open |
Study | Fixation | Time to Implant Removal | Pre-Removal | Segmental Motion Angle | Post-Removal Pain | Post-Removal Kyphosis Deformity | Removal Complications | Follow-Up Period |
---|---|---|---|---|---|---|---|---|
Knop et al. [38] 2001 | Short segment fixation | 15 (range 7–35) months | —— | Improved | —— | Average correction loss 10.1° | A late deep wound infection 9 months after removal | 25 (range 3–48) months |
Song et al. [39] 2007 | Fixation with fusion | —— | Symptomatic (pain and discomfort) | —— | VAS decreased from 6.5 to 3.2 | Average correction loss 3.7° | Anterior height of the fractured vertebral body decreased by 1.5% after removal | —— |
Xu et al. [40] 2009 | Short segment fixation | 13.2 (range 8–24) months | 8 patients with implant failure | —— | —— | Average correction loss 5.8° | 5 patients had local kyphosis of >20°and more back pain, 1 patient underwent revision surgery | 8 (range 5–13) years |
Stavridis et al. [41] 2010 | —— | —— | Symptomatic (implant-associated pain) | —— | VAS from 62 to 48 | —— | 5 of 57 patients (8.8%) had complications, (1 infection, 1 hematoma, 1 transient brachial plexus paresis, 2 immediate postoperative pain) | —— |
Yang et al. [42] 2011 | Short segment fixation without fusion | 9–12 months | 4 patients with implant failure | —— | —— | Average correction loss 6.9° | —— | —— |
Wang et al. [43] 2013 | Short segment fixation without fusion | 9–12 months | —— | —— | —— | No significant kyphosis of the fracture area was diagnosed | The Pfirrmann grade of degenerative discs adjacent to the cranial fractured endplates deteriorated from 2.1 to 3.4 after implant removal | 23.5 (15–36) months |
Kim et al. [44] 2014 | Short segment fixation without fusion | 12 months | Symptomatic (pain) | Marked improvement in ROM | Significant pain relief | —— | Some vertebral height loss after implant removal | 11.8 months |
Ko et al. [45] 2014 | Short segment fixation without fusion | 10 (8–14) months | Selected patients | Improved | —— | Average correction loss 1.2° ± 1.63° | Correction loss after removal was due to loss of disk height and/or disk degeneration after implant removal | 38 (range 15–79) months |
Jeon et al. [46] 2015 | Long segment fixation with fusion | 18.3 ± 17.6 months | Asymptomatic | From 1.6°± 1.5° to 5.9° ± 4.1° | From 3.8 ± 2.1 to 2.1 ± 1.7 | No significant change | 3 cases of superficial surgical site infection | 2 years |
Aono et al. [47] 2016 | Short segment fixation without fusion | 50 (range 24–84) months | Asymptomatic (except 1 implant failure) | Mean range of motion 8° | 10 patients had increasing back pain | Average correction loss 7.5° | Postoperative correction loss occurred due to disc degeneration, especially after implant removal | 2 years |
Chen et al. [48] 2016 | Short segment fixation without fusion | 12 months | —— | —— | —— | Average correction loss 6.3° | Kyphosis recurrence 43.4% (53 of 122 patients) | 25 months |
Chou et al. [49] 2016 | Short segment fixation without fusion | 10.3 (8-13) months | —— | 3.8° ± 1.2° (2°–7°) | Significant pain relief, from 6.6 ± 1.6 to 1.7 ± 0.7 | Average correction loss 16.6° ± 4.9° (range 6°–26°) | Progressive loss of injured disc height may play an important role in progressive kyphosis | 12 months |
Aono et al. [50] 2017 | Short segment fixation without fusion | 12 months | Asymptomatic (except 1 implant failure) | —— | —— | Average correction loss 9.2° ± 4.0° | Fractured vertebral body was maintained, kyphotic deformity occurred because of a loss of disc height after implant removal | 12 months |
Hoppe et al. [51] 2017 | Short segment fixation with fusion | 9.8 ± 4.5 months | Asymptomatic | —— | —— | Average correction loss 6.0°± 4.2° (range 0°–16°) | —— | 12.8 (range 11–14) months |
Lee et al. [52] 2017 | Long segment fixation with fusion | 18.7 ± 7.6 months | Asymptomatic | —— | —— | —— | 1 superficial wound infection | 3 years |
Smits et al. [53] 2017 | Fixation without fusion | median12 (IQR 10–14) months | Most asymptomatic | —— | Majority relief, and minority worse | Average correction loss 4.9° | 8 cases of complications (3 superficial wound infection, 2 deep wound infection, 1 instability after removal, 1 bleeding, 1 pneumonia) | >1 year |
Aono et al. [54] 2019 | Short segment fixation without fusion | 12 months | Asymptomatic | —— | —— | Average correction loss 6.9° | Postoperative kyphotic change was related to disc level, not to the fractured vertebrae | >1 year |
Oh et al. [55] 2019 | Short segment fixation without fusion | 12.8 months | —— | Slight improvement after implant removal, mean ROM 4.1° considered to be motionless | —— | Average correction loss 3.9° ± 7.3° | Two cases of screw breakage were observed when implants were removed | 5.5 months |
Chen et al. [56] 2020 | Short segment fixation | 12 months | —— | ODI from 15.9 ± 6.4 to 8.4 ± 4.6 | VAS from 2.9 ± 1.3 to 1.2 ± 0.8 | Average correction loss 1.5° ± 0.8° | —— | >1 year |
Hou et al. [57] 2020 | Short segment fixation without fusion | 12-18 months | Asymptomatic | —— | —— | Recurrent kyphosis, 92/144 (63.9%) | —— | >6 months |
Ko et al. [58] 2020 | Short segment fixation without fusion | 12.2 (range 8–15) months | Asymptomatic | Segmental motion 10.43° ± 3.32° | —— | Average correction loss 16.78° | Statistically significant improvement in quality of life over time, with SF-36 56.58 ± 21.56 to 76.73 ± 17.24 | >10 year |
Manson et al. [59] 2020 | Fixation without fusion | 16–45 months | Instrumentation prominent or loosening, causing discomfort/pain | Minimal disability after removal, ODI score from 27 to 14 | Dropped from moderate to mild/NRS score from 5 to 3 | —— | —— | 24 months |
Sasagawa et al. [60] 2021 | Fixation without fusion | 14.4 ± 4.9 (range 5–27) months | —— | 4 of 21 patients reported improved range of motion | 12 of 21 patients reported reduced back pain or discomfort | Average correction loss 9.55° | Disc degeneration happened in 16 of 24 patients | 29.1 ± 17.3 (range 3–59) months |
Hirahata et al. [61] 2022 | Fixation without fusion | 16 months | —— | —— | —— | Kyphotic deformity (kyphotic angle >25°) was found in 17 cases (29%) | Loss of correction (kyphotic angle >15°) was found in 35 cases (59%) | 15 months |
Kenfack et al. [62] 2022 | Fixation without fusion | —— | —— | No significant improvement | —— | —— | Patient status was not worse after implant removal | —— |
Wu et al. [63] 2022 | Fixation without fusion | 8.8-67.1 months | When bone fusion was confirmed on CT | Mean ODI declined significantly | VAS for back pain decreased significantly | Correction loss range 5.0°–8.6° | —— | 9.1 ± 5.7 months |
Xu et al. [64] 2022 | Short segment fixation without fusion | 16.8 (range 12–34) months | When bony union of the fractured vertebrae was confirmed | ODI from 8.7 ± 10.7 to 8.3 ± 11.0 | VAS for back pain from 1.1 ± 1.4 to 1.2 ± 1.6 | Cobb angle increased from 9.6° ± 14.1° to 11.4° ± 14.4° | —— | 33.4 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, X.-D.; Zhang, Y.; Zhu, Z.; Jiang, J.; Li, G.; Liu, J.; Shao, J.; Sun, Y. The Necessity of Implant Removal after Fixation of Thoracolumbar Burst Fractures—A Systematic Review. J. Clin. Med. 2023, 12, 2213. https://doi.org/10.3390/jcm12062213
Wang X, Wu X-D, Zhang Y, Zhu Z, Jiang J, Li G, Liu J, Shao J, Sun Y. The Necessity of Implant Removal after Fixation of Thoracolumbar Burst Fractures—A Systematic Review. Journal of Clinical Medicine. 2023; 12(6):2213. https://doi.org/10.3390/jcm12062213
Chicago/Turabian StyleWang, Xing, Xiang-Dong Wu, Yanbin Zhang, Zhenglin Zhu, Jile Jiang, Guanqing Li, Jiacheng Liu, Jiashen Shao, and Yuqing Sun. 2023. "The Necessity of Implant Removal after Fixation of Thoracolumbar Burst Fractures—A Systematic Review" Journal of Clinical Medicine 12, no. 6: 2213. https://doi.org/10.3390/jcm12062213
APA StyleWang, X., Wu, X. -D., Zhang, Y., Zhu, Z., Jiang, J., Li, G., Liu, J., Shao, J., & Sun, Y. (2023). The Necessity of Implant Removal after Fixation of Thoracolumbar Burst Fractures—A Systematic Review. Journal of Clinical Medicine, 12(6), 2213. https://doi.org/10.3390/jcm12062213