Non-Traditional Non-Immunological Risk Factors for Kidney Allograft Loss—Opinion
Abstract
:1. Introduction
2. Search Strategy and Inclusion Criteria
3. Causes of Long-Term Allograft Dysfunction and Allograft Loss
4. Prediction Systems for Allograft Survival
5. Non-Traditional Risk Factors for Allograft Dysfunction
Non-Traditional Cardiovascular Risk Factors (Arterial Stiffness)
6. Persistent Arteriovenous Fistula
7. Mineral and Bone Disease after Kidney Transplant and Impact on Outcomes
8. Immunosuppressive Drug Variability
9. Hypomagnesemia
10. Other Histologic Features—Beyond Banff Criteria
11. Persistent Inflammation
12. Metabolic Acidosis
13. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Chaudhry, D.; Chaudhry, A.; Peracha, J.; Sharif, A. Survival for waitlisted kidney failure patients receiving transplantation versus remaining on waiting list: Systematic review and meta-analysis. BMJ 2022, 376, e068769. [Google Scholar] [CrossRef]
- Wekerle, T.; Segev, D.; Lechler, R.; Oberbauer, R. Strategies for long-term preservation of kidney graft function. Lancet 2017, 389, 2152–2162. [Google Scholar] [CrossRef]
- Hariharan, S.; Israni, A.K.; Danovitch, G. Long-Term Survival after Kidney Transplantation. N. Engl. J. Med. 2021, 385, 729–743. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Kuypers, D.R. Diagnosis and prevention of chronic kidney allograft loss. Lancet 2011, 378, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Mohan, S. Managing Patients with Failing Kidney Allograft: Many Questions Remain. Clin. J. Am. Soc. Nephrol. 2022, 17, 444–451. [Google Scholar] [CrossRef]
- Mourad, G.; Minguet, J.; Pernin, V.; Garrigue, V.; Peraldi, M.N.; Kessler, M.; Jacquelinet, C.; Couchoud, C.; Duny, Y.; Daurès, J.P. Similar patient survival following kidney allograft failure compared with non-transplanted patients. Kidney Int. 2014, 86, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naesens, M.; Kuypers, D.R.; De Vusser, K.; Evenepoel, P.; Claes, K.; Bammens, B.; Meijers, B.; Sprangers, B.; Pirenne, J.; Monbaliu, D.; et al. The histology of kidney transplant failure: A long-term follow-up study. Transplantation 2014, 98, 427–435. [Google Scholar] [CrossRef]
- Van Loon, E.; Bernards, J.; Van Craenenbroeck, A.H.; Naesens, M. The Causes of Kidney Allograft Failure: More Than Alloimmunity. A Viewpoint Article. Transplantation 2020, 104, e46–e56. [Google Scholar] [CrossRef] [PubMed]
- Mayrdorfer, M.; Liefeldt, L.; Wu, K.; Rudolph, B.; Zhang, Q.; Friedersdorff, F.; Lachmann, N.; Schmidt, D.; Osmanodja, B.; Naik, M.G.; et al. Exploring the Complexity of Death-Censored Kidney Allograft Failure. J. Am. Soc. Nephrol. 2021, 32, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- Reese, P.P.; Aubert, O.; Naesens, M.; Huang, E.; Potluri, V.; Kuypers, D.; Bouquegneau, A.; Divard, G.; Raynaud, M.; Bouatou, Y.; et al. Assessment of the Utility of Kidney Histology as a Basis for Discarding Organs in the United States: A Comparison of International Transplant Practices and Outcomes. J. Am. Soc. Nephrol. 2021, 32, 397–409. [Google Scholar] [CrossRef]
- Ayorinde, J.O.; Summers, D.M.; Pankhurst, L.; Laing, E.; Deary, A.J.; Hemming, K.; Wilson, E.C.; Bardsley, V.; Neil, D.A.; Pettigrew, G.J. PreImplantation Trial of Histopathology In renal Allografts (PITHIA): A stepped-wedge cluster randomised controlled trial protocol. BMJ Open 2019, 9, e026166. [Google Scholar] [CrossRef] [Green Version]
- Raynaud, M.; Aubert, O.; Reese, P.P.; Bouatou, Y.; Naesens, M.; Kamar, N.; Bailly, É.; Giral, M.; Ladrière, M.; Le Quintrec, M.; et al. Trajectories of glomerular filtration rate and progression to end stage kidney disease after kidney transplantation. Kidney Int. 2021, 99, 186–197. [Google Scholar] [CrossRef]
- Van Loon, E.; Zhang, W.; Coemans, M.; De Vos, M.; Emonds, M.P.; Scheffner, I.; Gwinner, W.; Kuypers, D.; Senev, A.; Tinel, C.; et al. Forecasting of Patient-Specific Kidney Transplant Function With a Sequence-to-Sequence Deep Learning Model. JAMA Netw. Open 2021, 4, e2141617. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, M.; Aubert, O.; Divard, G.; Reese, P.P.; Kamar, N.; Yoo, D.; Chin, C.S.; Bailly, É.; Buchler, M.; Ladrière, M.; et al. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: An observational, international, multicohort study. Lancet Digit Health 2021, 3, e795–e805. [Google Scholar] [CrossRef]
- Loupy, A.; Aubert, O.; Orandi, B.J.; Naesens, M.; Bouatou, Y.; Raynaud, M.; Divard, G.; Jackson, A.M.; Viglietti, D.; Giral, M.; et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: International derivation and validation study. BMJ 2019, 366, l4923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangaswami, J.; Mathew, R.O.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.S.; Birdwell, K.A.; Bennett, W.; Dalal, P.; et al. Cardiovascular disease in the kidney transplant recipient: Epidemiology, diagnosis and management strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Aziz, F.; Jorgenson, M.; Garg, N.; Parajuli, S.; Mohamed, M.; Raza, F.; Mandelbrot, D.; Djamali, A.; Dhingra, R. New Approaches to Cardiovascular Disease and Its Management in Kidney Transplant Recipients. Transplantation 2022, 106, 1143–1158, Erratum in Transplantation 2022, 106, e429. [Google Scholar] [CrossRef]
- Sedaghat, S.; Mattace-Raso, F.U.; Hoorn, E.J.; Uitterlinden, A.G.; Hofman, A.; Ikram, M.A.; Franco, O.H.; Dehghan, A. Arterial Stiffness and Decline in Kidney Function. Clin. J. Am. Soc. Nephrol. 2015, 10, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
- Bahous, S.A.; Stephan, A.; Blacher, J.; Safar, M.E. Aortic stiffness, living donors, and renal transplantation. Hypertension 2006, 47, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Kneifel, M.; Scholze, A.; Burkert, A.; Offermann, G.; Rothermund, L.; Zidek, W.; Tepel, M. Impaired renal allograft function is associated with increased arterial stiffness in renal transplant recipients. Am. J. Transplant. 2006, 6, 1624–1630. [Google Scholar] [CrossRef]
- Verbeke, F.; Maréchal, C.; Van Laecke, S.; Van Biesen, W.; Devuyst, O.; Van Bortel, L.M.; Jadoul, M.; Vanholder, R. Aortic stiffness and central wave reflections predict outcome in renal transplant recipients. Hypertension 2011, 58, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Dahle, D.O.; Eide, I.A.; Åsberg, A.; Leivestad, T.; Holdaas, H.; Jenssen, T.G.; Fagerland, M.W.; Pihlstrøm, H.; Mjøen, G.; Hartmann, A. Aortic Stiffness in a Mortality Risk Calculator for Kidney Transplant Recipients. Transplantation 2015, 99, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Karras, A.; Boutouyrie, P.; Briet, M.; Bozec, E.; Haymann, J.P.; Legendre, C.; McMahon, L.P.; Delahousse, M. Reversal of Arterial Stiffness and Maladaptative Arterial Remodeling After Kidney Transplantation. J. Am. Heart Assoc. 2017, 6, e006078. [Google Scholar] [CrossRef]
- Dhaun, N.; MacIntyre, I.M.; Kerr, D.; Melville, V.; Johnston, N.R.; Haughie, S.; Goddard, J.; Webb, D.J. Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension 2011, 57, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Melilli, E.; Bestard-Matamoros, O.; Manonelles-Montero, A.; Sala-Bassa, N.; Mast, R.; Grinyó-Boira, J.M.; Cruzado, J.M. Arterial stiffness in kidney transplantation: A single center case-control study comparing belatacept versus calcineurin inhibitor immunosuppressive based regimen. Nefrologia, 2015; 35, 58–65, (In English, Spanish). [Google Scholar] [CrossRef]
- Zanoli, L.; Lentini, P.; Briet, M.; Castellino, P.; House, A.A.; London, G.M.; Malatino, L.; McCullough, P.A.; Mikhailidis, D.P.; Boutouyrie, P. Arterial Stiffness in the Heart Disease of CKD. J. Am. Soc. Nephrol. 2019, 30, 918–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Bu, S.; Song, Y.; Wang, M.; Wu, J.; Chen, J. To Ligate or Not to Ligate: A Meta-analysis of Cardiac Effects and Allograft Function following Arteriovenous Fistula Closure in Renal Transplant Recipients. Ann. Vasc. Surg. 2020, 63, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Vajdič Trampuž, B.; Arnol, M.; Gubenšek, J.; Ponikvar, R.; Buturović Ponikvar, J. A national cohort study on hemodialysis arteriovenous fistulas after kidney transplantation-long-term patency, use and complications. BMC Nephrol. 2021, 22, 344. [Google Scholar] [CrossRef]
- Salter, M.L.; Liu, X.; Bae, S.; Chu, N.M.; Miller Dunham, A.; Humbyrd, C.; Segev, D.L.; McAdams-DeMarco, M.A. Fractures and Subsequent Graft Loss and Mortality among Older Kidney Transplant Recipients. J. Am. Geriatr. Soc. 2019, 67, 1680–1688. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, M.G.; Jeon, H.J.; Ro, H.; Park, H.C.; Jeong, J.C.; Oh, K.H.; Ha, J.; Yang, J.; Ahn, C. Clinical manifestations of hypercalcemia and hypophosphatemia after kidney transplantation. Transplant. Proc. 2012, 44, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Çeltik, A.; Şen, S.; Yılmaz, M.; Demirci, M.S.; Aşçı, G.; Tamer, A.F.; Sarsık, B.; Hoşcoşkun, C.; Töz, H.; Ok, E. The effect of hypercalcemia on allograft calcification after kidney transplantation. Int. Urol. Nephrol. 2016, 48, 1919–1925. [Google Scholar] [CrossRef]
- Evenepoel, P.; Cooper, K.; Holdaas, H.; Messa, P.; Mourad, G.; Olgaard, K.; Rutkowski, B.; Schaefer, H.; Deng, H.; Torregrosa, J.V.; et al. A randomized study evaluating cinacalcet to treat hypercalcemia in renal transplant recipients with persistent hyperparathyroidism. Am. J. Transplant. 2014, 14, 2545–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruzado, J.M.; Moreno, P.; Torregrosa, J.V.; Taco, O.; Mast, R.; Gómez-Vaquero, C.; Polo, C.; Revuelta, I.; Francos, J.; Torras, J.; et al. A Randomized Study Comparing Parathyroidectomy with Cinacalcet for Treating Hypercalcemia in Kidney Allograft Recipients with Hyperparathyroidism. J. Am. Soc. Nephrol. 2016, 27, 2487–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khairallah, P.; Nickolas, T.L. Bone and Mineral Disease in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2022, 17, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.Z.; Kovesdy, C.P.; Mucsi, I.; Salusky, I.B.; Kalantar-Zadeh, K. Association of pre-kidney transplant markers of mineral and bone disorder with post-transplant outcomes. Clin. J. Am. Soc. Nephrol. 2012, 7, 1859–1871. [Google Scholar] [CrossRef] [Green Version]
- Keyzer, C.A.; Riphagen, I.J.; Joosten, M.M.; Navis, G.; Muller Kobold, A.C.; Kema, I.P.; Bakker, S.J.; de Borst, M.H.; NIGRAM Consortium. Associations of 25(OH) and 1,25(OH)2 vitamin D with long-term outcomes in stable renal transplant recipients. J. Clin. Endocrinol. Metab. 2015, 100, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Cianciolo, G.; Galassi, A.; Capelli, I.; Angelini, M.L.; La Manna, G.; Cozzolino, M. Vitamin D in Kidney Transplant Recipients: Mechanisms and Therapy. Am. J. Nephrol. 2016, 43, 397–407. [Google Scholar] [CrossRef]
- Pihlstrøm, H.K.; Gatti, F.; Hammarström, C.; Eide, I.A.; Kasprzycka, M.; Wang, J.; Haraldsen, G.; Svensson, M.H.S.; Midtvedt, K.; Mjøen, G.; et al. Early introduction of oral paricalcitol in renal transplant recipients. An open-label randomized study. Transpl. Int. 2017, 30, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Bloom, R.D.; Augustine, J.J. Beyond the Biopsy: Monitoring Immune Status in Kidney Recipients. Clin. J. Am. Soc. Nephrol. 2021, 16, 1413–1422. [Google Scholar] [CrossRef]
- Sapir-Pichhadze, R.; Wang, Y.; Famure, O.; Li, Y.; Kim, S.J. Time-dependent variability in tacrolimus trough blood levels is a risk factor for late kidney transplant failure. Kidney Int. 2014, 85, 1404–1411, Erratum in Kidney Int. 2016, 89, 248. [Google Scholar] [CrossRef] [Green Version]
- Borra, L.C.; Roodnat, J.I.; Kal, J.A.; Mathot, R.A.; Weimar, W.; van Gelder, T. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol. Dial. Transplant. 2010, 25, 2757–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahan, B.D.; Welsh, M.; Urbauer, D.L.; Mosheim, M.B.; Beusterien, K.M.; Wood, M.R.; Schoenberg, L.P.; Dicesare, J.; Katz, S.M.; VANBuren, C.T. Low intraindividual variability of cyclosporin A exposure reduces chronic rejection incidence and health care costs. J. Am. Soc. Nephrol. 2000, 11, 1122–1131. [Google Scholar] [CrossRef]
- Rodrigo, E.; Segundo, D.S.; Fernández-Fresnedo, G.; López-Hoyos, M.; Benito, A.; Ruiz, J.C.; de Cos, M.A.; Arias, M. Within-Patient Variability in Tacrolimus Blood Levels Predicts Kidney Graft Loss and Donor-Specific Antibody Development. Transplantation 2016, 100, 2479–2485. [Google Scholar] [CrossRef]
- Davis, S.; Gralla, J.; Klem, P.; Stites, E.; Wiseman, A.; Cooper, J.E. Tacrolimus Intrapatient Variability, Time in Therapeutic Range, and Risk of De Novo Donor-Specific Antibodies. Transplantation 2020, 104, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Duni, A.; Koutlas, V.; Tsitouridis, A.; Tzalavra, E.; Oikonomaki, T.; Kitsos, A.; Rapsomanikis, K.P.; Alekos, J.; Tatsis, V.; Pappas, C.; et al. Longitudinal Assessment of Electrolyte Disorders in a Cohort of Chronic Stable Kidney Transplant Recipients. Transplant. Proc. 2021, 53, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Garnier, A.S.; Duveau, A.; Planchais, M.; Subra, J.F.; Sayegh, J.; Augusto, J.F. Serum Magnesium after Kidney Transplantation: A Systematic Review. Nutrients 2018, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Harindhanavudhi, T.; Edmonds, P.J.; Erickson, S.B. Hypomagnesemia linked to new-onset diabetes mellitus after kidney transplantation: A systematic review and meta-analysis. Endocr. Res. 2016, 41, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.W.; Famure, O.; Li, Y.; Kim, S.J. Hypomagnesemia and the Risk of New-Onset Diabetes Mellitus after Kidney Transplantation. J. Am. Soc. Nephrol. 2016, 27, 1793–1800. [Google Scholar] [CrossRef] [Green Version]
- Odler, B.; Deak, A.T.; Pregartner, G.; Riedl, R.; Bozic, J.; Trummer, C.; Prenner, A.; Söllinger, L.; Krall, M.; Höflechner, L.; et al. Hypomagnesemia Is a Risk Factor for Infections after Kidney Transplantation: A Retrospective Cohort Analysis. Nutrients 2021, 13, 1296. [Google Scholar] [CrossRef]
- Holzmacher, R.; Kendziorski, C.; Michael Hofman, R.; Jaffery, J.; Becker, B.; Djamali, A. Low serum magnesium is associated with decreased graft survival in patients with chronic cyclosporin nephrotoxicity. Nephrol. Dial. Transplant. 2005, 20, 1456–1462. [Google Scholar] [CrossRef]
- Panthofer, A.M.; Lyu, B.; Astor, B.C.; Singh, T.; Aziz, F.; Mandelbrot, D.; Parajuli, S.; Mohamed, M.; Djamali, A.; Garg, N. Post-kidney transplant serum magnesium exhibits a U-shaped association with subsequent mortality: An observational cohort study. Transpl. Int. 2021, 34, 1853–1861. [Google Scholar] [CrossRef]
- Hod, T.; Isakov, O.; Patibandla, B.K.; Christopher, K.B.; Hershkoviz, R.; Schwartz, I.F.; Chandraker, A. Posttransplantation Hypomagnesemia as a Predictor of Better Graft Function after Transplantation. Kidney Blood Press. Res. 2020, 45, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Isakov, O.; Patibandla, B.K.; Christopher, K.B.; Chandraker, A.; Hod, T. Impact of Post-Transplantation Hypomagnesemia on Long-Term Graft and Patient Survival after Transplantation. Kidney Blood Press. Res. 2022, 47, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.D.; Westphal, S.G. Electrolyte Disorders in Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2020, 15, 412–414. [Google Scholar] [CrossRef]
- Loupy, A.; Mengel, M.; Haas, M. Thirty years of the International Banff Classification for Allograft Pathology: The past, present, and future of kidney transplant diagnostics. Kidney Int. 2022, 101, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Denic, A.; Bogojevic, M.; Subramani, R.; Park, W.D.; Smith, B.H.; Alexander, M.P.; Grande, J.P.; Kukla, A.; Schinstock, C.A.; Bentall, A.J.; et al. Changes in Glomerular Volume, Sclerosis, and Ischemia at 5 Years after Kidney Transplantation: Incidence and Correlation with Late Graft Failure. J. Am. Soc. Nephrol. 2022, 34, 346–358. [Google Scholar] [CrossRef]
- Mehta, R.B.; Melgarejo, I.; Viswanathan, V.; Zhang, X.; Pittappilly, M.; Randhawa, P.; Puttarajappa, C.; Sood, P.; Wu, C.; Sharma, A.; et al. Long-term immunological outcomes of early subclinical inflammation on surveillance kidney allograft biopsies. Kidney Int. 2022, 102, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Campise, M.R. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int. 2021, 100, 536–545. [Google Scholar] [CrossRef]
- Molnar, M.Z.; Nagy, K.; Remport, A.; Tapolyai, M.B.; Fülöp, T.; Kamal, F.; Kovesdy, C.P.; Mucsi, I.; Mathe, Z. Inflammatory Markers and Outcomes in Kidney Transplant Recipients. Transplantation 2017, 101, 2152–2164. [Google Scholar] [CrossRef]
- Aksu, K.; Donmez, A.; Keser, G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr. Pharm. Des. 2012, 18, 1478–1493. [Google Scholar] [CrossRef]
- Matas, A.J.; Helgeson, E.S.; Gaston, R.; Cosio, F.; Mannon, R.; Kasiske, B.L.; Hunsicker, L.; Gourishankar, S.; Rush, D.; Michael Cecka, J.; et al. Inflammation in areas of fibrosis: The DeKAF prospective cohort. Am. J. Transplant. 2020, 20, 2509–2521. [Google Scholar] [CrossRef]
- Messa, P.G.; Alfieri, C.; Vettoretti, S. Metabolic acidosis in renal transplantation: Neglected but of potential clinical relevance. Nephrol. Dial. Transplant. 2016, 31, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kang, E.; Park, S.; Kim, Y.C.; Han, S.S.; Ha, J.; Kim, D.K.; Kim, S.; Park, S.; Han, D.J.; et al. Metabolic Acidosis and Long-Term clinical Outcomes in Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2017, 28, 1886–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, A.; Mohebbi, N. Causes and Consequences of Metabolic Acidosis in Patients after Kidney Transplant. Kidney Blood Press. Res. 2020, 45, 792–801. [Google Scholar] [CrossRef]
- Gojowy, D.; Skiba, K.; Bartmanska, M.; Kolonko, A.; Wiecek, A.; Adamczak, M. Is Metabolic Acidosis a Novel Risk Factor for a Long Term Graft Survival in Patients after Kidney Transplantation? Res. 2020, 45, 702–712. [Google Scholar] [CrossRef]
- Keven, K.; Ozturk, R.; Sengul, S.; Kutlay, S.; Ergun, I.; Ertuk, A.; Erbay, B. Renal tubular acidosis after kidney transplantation-incidence, risk factors and clinical implications. Nephrol. Dial. Transplant. 2007, 22, 906–910. [Google Scholar] [CrossRef] [Green Version]
- Navaneethan, S.D.; Shao, J.; Buysse, J.; Bushinsky, D.A. Effects of treatment of metabolic acidosis in CKD: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2019, 14, 1011–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, K.; Püchel, J.; Schüssel, K.; Borzikowsky, C.; Kunzendorf, U.; Feldkamp, T. Effect of Sodium Bicarbonate in Kidney Transplant Recipients With Chronic Metabolic Acidosis. Transplant. Direct 2019, 5, e464. [Google Scholar] [CrossRef]
- Mohebbi, N.; Ritter, A.; Wiegand, A.; Graf, N.; Dahdal, S.; Sidler, D.; Arampatzis, S.; Hadaya, K.; Mueller, T.F.; Wagner, C.A.; et al. Sodium bicarbonate for kidney transplant recipients with metabolic acidosis in Switzerland: A multicentre, randomised, single-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, P557–P567. [Google Scholar] [CrossRef] [PubMed]
Immunological Factors | Non-Immunological Factors |
---|---|
Antibody-mediated rejection: acute/chronic T-cell mediated rejection: acute/chronic Microvascular inflammation without antibodies | Medical events (cardiovascular events and infections leading to decreased estimated glomerular filtration rate—eGFR) Donor quality: age, comorbidities Ischemia reperfusion injury Calcineurin inhibitors—CNI toxicity Viral nephropathies (polyoma virus associated nephropathy—PVAN, cytomegalovirus—CMV) Urologic/vascular complications (thrombosis, stenosis, leaks, hemorrhage) and perioperative events Recurrent disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrian, T.; Siriteanu, L.; Covic, A.S.; Ipate, C.A.; Miron, A.; Morosanu, C.; Caruntu, I.-D.; Covic, A. Non-Traditional Non-Immunological Risk Factors for Kidney Allograft Loss—Opinion. J. Clin. Med. 2023, 12, 2364. https://doi.org/10.3390/jcm12062364
Andrian T, Siriteanu L, Covic AS, Ipate CA, Miron A, Morosanu C, Caruntu I-D, Covic A. Non-Traditional Non-Immunological Risk Factors for Kidney Allograft Loss—Opinion. Journal of Clinical Medicine. 2023; 12(6):2364. https://doi.org/10.3390/jcm12062364
Chicago/Turabian StyleAndrian, Titus, Lucian Siriteanu, Andreea Simona Covic, Cristina Alexandra Ipate, Adelina Miron, Corneliu Morosanu, Irina-Draga Caruntu, and Adrian Covic. 2023. "Non-Traditional Non-Immunological Risk Factors for Kidney Allograft Loss—Opinion" Journal of Clinical Medicine 12, no. 6: 2364. https://doi.org/10.3390/jcm12062364
APA StyleAndrian, T., Siriteanu, L., Covic, A. S., Ipate, C. A., Miron, A., Morosanu, C., Caruntu, I. -D., & Covic, A. (2023). Non-Traditional Non-Immunological Risk Factors for Kidney Allograft Loss—Opinion. Journal of Clinical Medicine, 12(6), 2364. https://doi.org/10.3390/jcm12062364