Prostate Volume Influence on Postoperative Outcomes for Patients Undergoing RARP: A Monocentric Serial Analysis of 500 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Procedure and Setting
2.2. Participants and Methods
2.3. Ethics Statement
3. Results
3.1. Baseline Parameters
3.2. Intraoperative Data
3.3. Complications and Readmissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Galfano, A.; Panarello, D.; Secco, S.; Di Trapani, D.; Barbieri, M.; Napoli, G.; Strada, E.; Petralia, G.; Bocciardi, A.M. Does prostate volume have an impact on the functional and oncological results of Retzius-sparing robot-assisted radical prostatectomy? Minerva Urol. Nefrol. 2018, 70, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Preisser, F.; Theissen, L.H.; Humke, C.; Welte, M.N.; Wittler, C.; Kluth, L.A.; Karakiewicz, P.I.; Chun, F.K.H.; Mandel, P.; et al. The Effect of Adverse Patient Characteristics on Perioperative Outcomes in Open and Robot-Assisted Radical Prostatectomy. Front. Surg. 2020, 7, 584897. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, O.; Alhakamy, N.A.; Ahmed, O.A.A.; Khairul-Asri, M.G. Impact of Prostate Size on the Outcomes of Radical Prostatectomy: A Systematic Review and Meta-Analysis. Cancers 2021, 13, 6130. [Google Scholar] [CrossRef] [PubMed]
- Bove, A.M.; Anceschi, U.; Ferriero, M.; Mastroianni, R.; Brassetti, A.; Tuderti, G.; Gallucci, M.; Simone, G. Perioperative and 1-year patient-reported outcomes of Freyer versus Millin versus Madigan robot-assisted simple prostatectomy. World J. Urol. 2021, 39, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Collette, E.R.P.; Klaver, S.O.; Lissenberg-Witte, B.I.; van den Ouden, D.; van Moorselaar, R.J.A.; Vis, A.N. Patient reported outcome measures concerning urinary incontinence after robot assisted radical prostatectomy: Development and validation of an online prediction model using clinical parameters, lower urinary tract symptoms and surgical experience. J. Robot Surg. 2021, 15, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Jang, W.S.; Chung, D.Y.; Koh, D.H.; Lee, J.S.; Goh, H.J.; Choi, Y.D. Effect of prostate gland weight on the surgical and oncological outcomes of extraperitoneal robot-assisted radical prostatectomy. BMC Urol. 2019, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, Y.; Ohno, Y.; Nakashima, J.; Shimodaira, K.; Hashimoto, T.; Gondo, T.; Ohori, M.; Tachibana, M.; Yoshioka, K. Impact of a preoperatively estimated prostate volume using transrectal ultrasonography on surgical and oncological outcomes in a single surgeon’s experience with robot-assisted radical prostatectomy. Surg. Endosc. 2016, 30, 3702–3708. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Liu, X.; Liu, W.; Zhang, C.; Zhou, X.; Chen, L.; Guo, J.; Wang, G.; Fu, B. Functional and Oncological Outcomes Following Robot-Assisted and Laparoscopic Radical Prostatectomy for Localized Prostate Cancer With a Large Prostate Volume: A Retrospective Analysis With Minimum 2-Year Follow-Ups. Front. Oncol. 2021, 11, 714680. [Google Scholar] [CrossRef] [PubMed]
- McDougal, W.S.; Wein, A.J.; Kavoussi, L.R.; Partin, A.W.; Peters, C.A. Campbell-Walsh Urology 11th Edition Review E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Xia, L.; Taylor, B.L.; Pulido, J.E.; Mucksavage, P.; Lee, D.I.; Guzzo, T.J. Predischarge Predictors of Readmissions and Postdischarge Complications in Robot-Assisted Radical Prostatectomy. J. Endourol. 2017, 31, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Wallerstedt Lantz, A.; Stranne, J.; Tyritzis, S.I.; Bock, D.; Wallin, D.; Nilsson, H.; Carlsson, S.; Thorsteinsdottir, T.; Gustafsson, O.; Hugosson, J.; et al. 90-Day readmission after radical prostatectomy-a prospective comparison between robot-assisted and open surgery. Scand. J. Urol. 2019, 53, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Tal, R.; Konichezky, M.; Baniel, J. Impact of prostate weight on radical prostatectomy outcomes. Isr. Med. Assoc. J. 2009, 11, 354–358. [Google Scholar] [PubMed]
- Greenberg, S.A.; Washington, S.L., 3rd; Lonergan, P.E.; Cowan, J.E.; Baskin, A.S.; Nguyen, H.G.; Odisho, A.Y.; Simko, J.P.; Carroll, P.R. Residual Benign Prostate Glandular Tissue after Radical Prostatectomy is Not Associated with the Development of Detectable Postoperative Serum Prostate Specific Antigen. J. Urol. 2021, 206, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Odisho, A.Y.; Washington, S.L., 3rd; Meng, M.V.; Cowan, J.E.; Simko, J.P.; Carroll, P.R. Benign prostate glandular tissue at radical prostatectomy surgical margins. Urology 2013, 82, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikanov, S.; Song, J.; Royce, C.; Al-Ahmadie, H.; Zorn, K.; Steinberg, G.; Zagaja, G.; Shalhav, A.; Eggener, S. Length of positive surgical margin after radical prostatectomy as a predictor of biochemical recurrence. J. Urol. 2009, 182, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Marenco, J.; Calatrava, A.; Casanova, J.; Claps, F.; Mascaros, J.; Wong, A.; Barrios, M.; Martin, I.; Rubio, J. Evaluation of Fluorescent Confocal Microscopy for Intraoperative Analysis of Prostate Biopsy Cores. Eur. Urol. Focus. 2021, 7, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Rocco, B.; Sarchi, L.; Assumma, S.; Cimadamore, A.; Montironi, R.; Reggiani Bonetti, L.; Turri, F.; De Carne, C.; Puliatti, S.; Maiorana, A.; et al. Digital Frozen Sections with Fluorescence Confocal Microscopy During Robot-assisted Radical Prostatectomy: Surgical Technique. Eur. Urol. 2021, 80, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Soeterik, T.; Puche-Sanz, I.; Broggi, G.; Lo Giudice, A.; De Nunzio, C.; Lombardo, R.; Marra, G.; Gandaglia, G. Oncological outcomes of cribriform histology pattern in prostate cancer patients: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, P.A. Histopathology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, D.M.; Goodman, M.; Jani, A.B.; Osunkoya, A.O.; Rossi, P.J. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis. 2012, 15, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total n = 500 | Small and Normal Prostate under or Equal to 50 mL n = 314 (62.8%) | Large Prostate above 50 mL n = 186 (37.2%) | p-Value | |
---|---|---|---|---|
Age (year) | 0.479 | |||
Mean ± SD | 66.8 ± 7.1 | 65.97 ± 7.3 | 68.25 ± 6.5 | |
IQR | 62–72 | 61–71 | 63–73 | |
Median | 68 | 67 | 70 | |
ASA-score | 0.015 | |||
1 | 96 (19.2) | 68 (21.7) | 28 (15.1) | |
2 | 314 (62.8) | 198 (63.1) | 116 (62.4) | |
3 | 82 (16.4) | 43 (13.7) | 39 (21.0) | |
Missing | 8 (1.6) | 5 (1.6) | 3 (1.3) | |
Preoperative HGB (g/dL) | 0.358 | |||
Mean ± SD | 14.7 ± 1.3 | 14.6 ± 1.36 | 14.7 ± 1.2 | |
IQR | 14.1–15.5 | 14.0–15.5 | 14.1–15.6 | |
Median | 14.8 | 14.8 | 14.9 | |
IPSS | <0.001 | |||
Mean ± SD | 11.4 ± 8.3 | 9.7 ± 7.4 | 14.7 ± 8.9 | |
IQR | 5–16 | 4–8 | 7–21 | |
Median | 8.3 | 8 | 12 | |
IIEF | 0.079 | |||
Mean ± SD | 15.2 ± 8.7 | 15.8 ± 8.8 | 14.3 ± 8.4 | |
IQR | 6–23 | 6–17 | 6–21.5 | |
Median | 17 | 17 | 15 | |
Initial PSA (ng/mL) | 0.004 | |||
Mean ± SD | 14.8 ± 24.5 | 13.5 ± 19.6 | 16.7 ± 26.4 | |
IQR | 5.5–13.6 | 5.3–12 | 5.9–16 | |
Median | 8 | 7.5 | 9 | |
BMI | 0.049 | |||
Mean ± SD | 28.4 1 ± 4.3 | 28.1 ± 4.1 | 29 ± 4.9 | |
IQR | 25–31 | 25–30 | 25.7–31 | |
Median | 28 | 27 | 28 | |
Pretreatment | ||||
Medical (hormonal therapy) | 55 (11) | 29 | 26 | 0.130 |
Surgical (TUR-P) | 34 (6.8) | 29 | 5 | 0.005 |
D’Amico Risk Classification | 0.146 | |||
Low risk | 117 (23.4%) | 76 (24.2%) | 41 (22%) | |
Intermediate risk | 229 (45.8%) | 150 (47.8%) | 79 (42.5%) | |
High risk | 154 (30.8%) | 88 (28%) | 66 (35.5%) | |
Preoperative Gleason score | 0.445 | |||
5 | 1 (0.2%) | 1 (0.3%) | 0 | |
6 | 140 (28%) | 87 (27.7%) | 53 (28.5%) | |
3 + 4 | 176 (35.2%) | 117 (37.3%) | 59 (31.7%) | |
4 + 3 | 59 (11.8%) | 37 (11.8%) | 22 (11.8%) | |
8 | 82 (16.4%) | 48 (15.3%) | 34 (18.3%) | |
9 | 36 (7.2%) | 20 (6.4%) | 16 (8.6%) | |
10 | 5 (1.0%) | 4 (1.3%) | 1 (0.5%) | |
Unclassified * | 1 (0.2%) | 0 | 1 (0.5%) | |
Nerve Sparing | 0.613 | |||
(bilateral) | 347 (69.4%) | 231 (73.6%) | 116 (62.4%) | |
(unilateral) | 19 (3.8%) | 6 (1.9%) | 13 (7%) | |
No | 134 (26.8%) | 77 (24.5%) | 57 (30.6%) |
Total n = 500 | Small and Normal Prostate under or Equal to 50 mL n = 314 (62.8%) | Large Prostateabove 50 mL n = 186 (37.2%) | p-Value | |
---|---|---|---|---|
Console time (minute) | 0.653 | |||
Mean ± SD | 151 ± 45 | 150 ± 47 | 152 ± 42 | |
IQR | 120–180 | 120–180 | 120–180 | |
Median | 140 | 140 | 140 | |
Prostate weight (g) | <0.001 | |||
Mean ± SD | 61 ± 25.6 | 49.3 ± 12.7 | 82.2 ± 28 | |
IQR | 64–72 | 40–56.7 | 64–90 | |
Median | 55 | 49 | 76 | |
Pathological stage | 0.126 | |||
0 | 1 (0.2) | 0 | 1 (0.5) | |
pT1 | 1 (0.2) | 1 (0.3) | 0 | |
pT2 | 295 (59) | 184 (58.6) | 111 (59.7) | |
pT3 | 183 (36.6) | 121 (38.5) | 62 (33.3) | |
pT4 | 20 (4.0) | 8 (2.5) | 12 (6.5) | |
Postoperative Gleason score | 0.077 | |||
6 | 28 (5.6) | 15 (4.8) | 13 (7) | |
3 + 4 | 282 (56.4) | 189 (60.2) | 93 (50) | |
4 + 3 | 89 (17.8) | 56 (17.8) | 33 (17.7) | |
8 | 26 (5.2) | 11 (3.5) | 15 (8.1) | |
9 | 29 (5.8) | 17 (5.4) | 12 (6.5) | |
10 | 1 (0.2) | 1 (0.3) | 0 | |
Unclassified * | 45 (9.0) | 25 (8) | 20 (10.8) | |
Positive surgical margins (total) | 36 (7.2) | 24 (7.6) | 12 (6.5) | 0.619 |
<3 mm | 18 (3.6) | 14 (4.5) | 4 (2.2) | |
>3 mm | 18 (3.6) | 10 (3.2) | 8 (4.3) | |
Number of Lymph nodes | 0.413 | |||
Mean ± SD | 19.6 ± 7.4 | 19.5 ± 7.4 | 20.1 ± 7.5 | |
IQR | (15–24) | (15–23) | (14–26) | |
Median | 18 | 18 | 19 | |
Positive Lymph node | 87 (17.4%) | 49 (15.6%) | 38 (20.4%) | 0.169 |
HGB Difference (g/dL) | 0.004 | |||
Mean ± SD | 2.5 ± 4.8 | 2.5 ± 4.8 | 2.7 ± 1.3 | |
IQR | 1.9–3.5 | (1.8–3.4) | (2–3.8) | |
Median | 2.6 | 2.6 | 2.6 | |
Transfusion | 7 (1.2%) | 4 (1.3%) | 3 (1.5%) | 0.747 |
Length of hospitalization (days) | 0.490 | |||
Mean ± SD | 5.6 ± 1.6 | 5.66 ± 1.26 | 5.55 ± 2 | |
IQR | (5–6) | (5–6) | (5–6) | |
Median | 5 | 5 | 5 | |
Catheter days | 0.041 | |||
Mean ± SD | 6.9 ± 4.7 | 6.67 ± 4.4 | 7.55 ± 5.2 | |
IQR | 4–10 | (4–8.5) | (4–10) | |
Median | 5 | 5 | 5 |
Complications in Detail | Total (n = 500) | Small and Normal Prostate under or Equal to 50 mL 314 (62.8%) | Large Prostate above 50 mL 186 (37.2%) | p-Value | ||
---|---|---|---|---|---|---|
Minor | 74 (14.8%) | 37 (11.7%) | 37 (19.8%) | 0.062 | ||
Minor | CD I 51 (10.2) | Thrombus/Embolism | 4 (0.8%) | 3 (0.9%) | 1 (0.5%) | |
Elevated Labor Parameter | 6 (1.2%) | 4 (1.2%) | 2 (1%) | |||
AUR | 28 (5.6%) | 13 (4.1%) | 15 (8%) | |||
Diverse | 13 (2.6%) | 7 (2.0%) | 6 (3.6%) | |||
CD II 23 (4.6) | Secondary VUAL * | 11 (2.2%) | 2 (0.6%) | 9 (4.8%) | ||
UTI | 11 (2.2%) | 7 (2.2%) | 4 (2.2%) | |||
Hematoma requiring Transfusion | 1 (0.2%) | 1 (0.3%) | 0 | |||
Major | 21 (4.2%) | 14 (4.4%) | 7 (3.7%) | 0.708 | ||
Major | CD III a 12 (2.4) | Myocardial infarction | 1 (0.2%) | 1 (0.3%) | 0 | |
Hiatus Hernia | 1 (0.2%) | 1 (0.3%) | 0 | |||
Symptomatic Lymphocele | 10 (2.0%) | 6 (1.9%) | 4 (2.2%) | |||
CD III b 8 (1.6) | Revision | 5 (1.0%) | 4 (1.2%) | 1 (0.6%) | ||
UUTO | 3 (0.6%) | 2 (0.6%) | 1 (0.6%) | |||
CD VI 1 (0.2) | Rhabdomyolysis | 1 (0.2%) | 0 | 1 (0.6%) | ||
Readmissions * | 28 (5.6%) | 21 (6.25%) | 7 (4.2%) | 0.814 |
Readmission | Major Complications | Catheter Days | Hospital Stay | Symptomatic Lymphoceles | Positive Surgical Margins | Console Time | Transfusion | |
---|---|---|---|---|---|---|---|---|
Prostate volume | 0.447 | 0.390 | 0.953 | 0.778 | 0.654 | 0.684 | 0.005 | 0.212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farzat, M.; Rosenbauer, J.; Tanislav, C.; Wagenlehner, F.M. Prostate Volume Influence on Postoperative Outcomes for Patients Undergoing RARP: A Monocentric Serial Analysis of 500 Cases. J. Clin. Med. 2023, 12, 2491. https://doi.org/10.3390/jcm12072491
Farzat M, Rosenbauer J, Tanislav C, Wagenlehner FM. Prostate Volume Influence on Postoperative Outcomes for Patients Undergoing RARP: A Monocentric Serial Analysis of 500 Cases. Journal of Clinical Medicine. 2023; 12(7):2491. https://doi.org/10.3390/jcm12072491
Chicago/Turabian StyleFarzat, Mahmoud, Josef Rosenbauer, Christian Tanislav, and Florian M. Wagenlehner. 2023. "Prostate Volume Influence on Postoperative Outcomes for Patients Undergoing RARP: A Monocentric Serial Analysis of 500 Cases" Journal of Clinical Medicine 12, no. 7: 2491. https://doi.org/10.3390/jcm12072491
APA StyleFarzat, M., Rosenbauer, J., Tanislav, C., & Wagenlehner, F. M. (2023). Prostate Volume Influence on Postoperative Outcomes for Patients Undergoing RARP: A Monocentric Serial Analysis of 500 Cases. Journal of Clinical Medicine, 12(7), 2491. https://doi.org/10.3390/jcm12072491